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Abstract 

Background  Despite the advancements in multiagent chemotherapy in the past years, up to 10% of Hodgkin’s 
Lymphoma (HL) cases are refractory to treatment and, after remission, patients experience an elevated risk of death 
from all causes. These complications are dependent on the treatment and therefore an increase in the prognostic 
accuracy of HL can help improve these outcomes and control treatment-related toxicity. Due to the low incidence 
of this cancer, there is a lack of works comprehensively assessing the predictability of treatment response, especially 
by resorting to machine learning (ML) advances and high-throughput technologies.

Methods  We present a methodology for predicting treatment response after two courses of Adriamycin, Bleomycin, 
Vinblastine and Dacarbazine (ABVD) chemotherapy, through the analysis of gene expression profiles using state-of-
the-art ML algorithms. We work with expression levels of tumor samples of Classical Hodgkin’s Lymphoma patients, 
obtained through the NanoString’s nCounter platform. The presented approach combines dimensionality reduction 
procedures and hyperparameter optimization of various elected classifiers to retrieve reference predictability levels 
of refractory response to ABVD treatment using the regulatory profile of diagnostic tumor samples. In addition, we 
propose a data transformation procedure to map the original data space into a more discriminative one using biclus-
tering, where features correspond to discriminative putative regulatory modules.

Results  Through an ensemble of feature selection procedures, we identify a set of 14 genes highly representa-
tive of the result of an fuorodeoxyglucose Positron Emission Tomography (FDG-PET) after two courses of ABVD 
chemotherapy. The proposed methodology further presents an increased performance against reference levels, 
with the proposed space transformation yielding improvements in the majority of the tested predictive models (e.g. 
Decision Trees show an improvement of 20pp in both precision and recall).

Conclusions  Taken together, the results reveal improvements for predicting treatment response in HL disease 
by resorting to sophisticated statistical and ML principles. This work further consolidates the current hypothesis 
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on the structural difficulty of this prognostic task, showing that there is still a considerable gap to be bridged for these 
technologies to reach the necessary maturity for clinical practice.

Keywords  Hodgkin’s lymphoma, Cancer, Machine learning, Gene expression, Data modeling, Discriminative patterns, 
Biclustering, Computational biology

Background
Hodgkin’s Lymphoma (HL) is a type of blood cancer 
that originates in the lymphatic system, more precisely 
in lymphocytes, with the patient age peak of diagnostics 
occurring at the 20 s and 30 s. In 2018, HL represented 
0.4% of all new tumors (79990 new cases) and 0.3% of all 
cancer deaths (26167 deaths) worldwide [1]. Survival of 
Hodgkin’s Lymphoma patients has significantly improved 
over the past years. Still, after initial remission, patients 
experience an elevated risk of death from all causes [2], 
such as cardiotoxicity diseases like myocardial infarction 
and congestive heart failure [3], and secondary cancers 
[4], diseases that are often treatment-related [5].

The current prognosis for HL is largely based on the 
International Prognostic Score (IPS) [6] which predicts 
for 5-year freedom from progression. Moccia et  al. [7] 
concluded that this scoring does not identify with cer-
tainty low or high risk groups, and recommends the use 
of molecular markers and/or fluorodeoxyglucose Posi-
tron Emission Tomography (FDG-PET) scanning for this 
purpose. Despite the proven relevance of FDG-PET for 
HL prognostic, this medical exam is: (i) intrusive, with 
the need to inject a radioactive tracer; (ii) expensive, esti-
mated at 1020 Eur per exam [8]; and (iii) impossible to 
perform in remote locations and ambulatory settings as it 
requires large machinery.

The transcriptional activity of tumor cells is a viable 
proxy candidate to assess regulatory response to treat-
ment, thus being positioned as a possible alternative to 
the FDG-PET exam. Nevertheless, the role of differential 
gene expression in HL has not been exhaustively studied 
as it is a relatively rare cancer (2.86 cases per 100,000 per-
sons annually [9]). Specific approaches, such as hierar-
chical clustering [10, 11], Cox regression [12] and sparse 
multinomial logistic regression [13] have been explored 
in other works, but some of the state-of-the-art machine 
learning (ML) approaches successfully applied to more 
common cancers have not yet been comprehensively 
employed.

In this context, this work aims to assess the predict-
ability limits of an interim FDG-PET performed after two 
courses of Adriamycin, Bleomycin, Vinblastine and Dac-
arbazine (ABVD) chemotherapy treatment using gene 
expression profiling as a surrogate. To this end, a superior 
methodology combining ML advances with subspace-
based data transaformations is proposed. Transcriptomic 

data of Hodgkin’s Lymphoma patients’ diagnostic tumor 
samples acquired by Luminari et  al. [14] are used with 
the objective of better understanding the predictabil-
ity of a patient’s response to a specific chemotherapy 
regimen. To this end, we resort to gene expression pro-
files obtained from Formalin Fixed Paraffin Embedded 
(FFPE) diagnostic tumor samples [15]. Although there 
are other datasets available with gene expression profiles 
of HL patients [16–19],1 these were not collected with 
the objective of studying the result of a FDG-PET after 
undergoing a chemotherapy regimen, hence not possess-
ing the fundamental information for our analysis.

Our work advances the current status quo on this task 
described by Luminari et al. [14], which is grounded on 
a more traditional statistical analysis of the data, resort-
ing to multivariate logistic analysis, filtering by Fold-
Change (FC) and False Discovery Rate (FDR) values and 
multivariate logistic regression. In contrast, we conduct 
a thorough optimization and assessment of preprocess-
ing and ML techniques to develop a predictor that can, at 
the moment of diagnosis, classify patients’ future interim 
PET after two courses of ABVD chemotherapy according 
to treatment response.

In addition to the end-to-end assessment of state-
of-the-art predictors, our work proposes the use of 
biclustering principles to transform the original high-
dimensional feature space into one consisting of features 
given by discriminative gene expression patterns, and 
shows that the new space yields relevant statistical prop-
erties. The gathered results show that this novel transfor-
mation yields statistically significant improvements on 
the predictive performance.

Methods
To tackle the introduced research problem, we propose 
the methodology presented in Fig.  1. This methodology 
starts with essential data preprocessing, followed by a 
feature analysis stage divided into two phases, resulting 
in a reduced data space conducive to the subsequent pre-
dictive analysis stage. Along the predictive analysis stage, 

1  https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE12​5651 (accessed 
3/2022)https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE66​417 
(accessed 3/2022)https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE11​
0348 (accessed 3/2022)https://​www-​ncbi-​nlm-​nih-​gov.​ezpro​xy.u-​pec.​fr/​geo/​
query/​acc.​cgi?​acc=​GSE64​234 (accessed 3/2022).

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE125651
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE66417
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE110348
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE110348
https://www-ncbi-nlm-nih-gov.ezproxy.u-pec.fr/geo/query/acc.cgi?acc=GSE64234
https://www-ncbi-nlm-nih-gov.ezproxy.u-pec.fr/geo/query/acc.cgi?acc=GSE64234


Page 3 of 13Patrício et al. BMC Medical Genomics          (2023) 16:170 	

we propose a bicluster-based space transformation that 
converts the gene-centric space to a pattern-centric one. 
State-of-the-art ML models can then be applied along 
the original or pattern-centric data space for the targeted 
prognostic ends. The methodology is implemented in 
Python (version 3.8.5) and the code is publicly available 
in GitHub.2

Data
The proposed methodology is validated on the cohort 
study conducted by Luminari et al. [14], available at the 
National Center for Biotechnology Information Gene 
Expression Omnibus (GSE1323483). It consists of 106 
samples of patients diagnosed with Classical Hodgkin’s 
Lymphoma. Each individual has associated the normal-
ized expression levels of 765 different genes, obtained 
using the NanoString’s nCounter platform [15] over the 
RNA extracted from FFPE diagnostic tumor samples. 
Gender, age, stage of disease according to the Lugano 
classification [20], and Lymphocyte-to-Monocyte 
Ratio (LMR), LMR>2.1, are further provided. Finally, 
each record contains the result of an interim PET real-
ized after two courses of ABVD chemotherapy (iPET2), 
which is classified as “positive” or “negative” according 
to the Deauville 5-point scale [21], with PET defined as 
positive when its ordinal value is greater or equal than 
4. More information on the data collection process can 
be found in the original work [14]. The data is relatively 
imbalanced, with 84 (80%) iPET2 negatives, and 21 (20%) 
iPET2 positives.

Data preprocessing
The mRNA counts were log2 transformed to better han-
dle the variability of expression within and across genes. 
Samples with missing values were removed, resulting in 
a new distribution of 82 (79.6%) iPET2 negatives and 21 
(20.4%) iPET2 positives. The variable stage was encoded 
as an ordinal variable, ranging from 1 (corresponding to“I 
A”) to 8 (corresponding to “IV B”), indicating that both a 

larger stage number and the B variant are worse prognos-
tic factors. Since the dataset is considerably imbalanced, 
with a target’s distribution of around 80/20, balancing 
methods were assessed through a comparative analysis of 
their effects on predictive performance, with the combi-
nation of both oversampling and subsampling techniques 
being compared. Oversampling using Support Vector 
Machine Synthetic Minority Oversampling Technique 
(SVM-SMOTE)4 [23] yield the best results, hence being 
selected for the target experiments.

Feature analysis
Given the high-dimensionality of the cohort data (770 
transcriptomic features, 103 patients), dimensionality 
reduction was undertaken to aid the target predictive 
task. Following the practice suggested by Saeys et al. [24], 
and supported by previous empirical evidence [25–27], 
we pre-reduced the feature space using univariate fil-
ter methods Wilcoxon Rank Sum Test5 [29] and Mutual 
Information6 [31], and subsequently applied a more 
complex embedded method Support Vector Machine - 
Recursive Feature Elimination (SVM-RFE)6 [32].

Initial Feature Selection. As most preprocessed features 
do not follow a normal distribution according to Shapiro-
Wilk test [33], we resort to the non-parametric Wilcoxon 
Rank Sum Test [29] and Mutual Information (MI) [31] 
criteria. For each independent variable yj and the target 
response outcome z , the former Wilcoxon statistic tests 
whether the distributions yj|z = 0 and yj|z = 1 are equal. 
The latter MI statistic does not test a hypothesis, but a 
p-value is subsequently generated using a one-sided per-
mutation test. As these approaches are univariate, not 
taking into account interactions between variables, a less 
strict than usual significance threshold of 0.1 is consid-
ered to prevent the removal of potentially relevant genes.

Secondary Feature Selection. Grounded on empirical 
evidence [34], the embedded Support Vector Machine - 
Recursive Feature Elimination (SVM-RFE) [32], an adap-
tion of RFE selection method that replaces an external 

Fig. 1  Schematic workflow of proposed solution for the treatment response prediction in HL disease

2  https://​github.​com/​Andre​mpp/​chall​enges_​HL
3  https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE13​2348 
(accessed June 28, 2021).

4  implemented using imbalanced-learn [22]
5  implemented using SciPy [28]
6  implemented using scikit-learn [30]

https://github.com/Andrempp/challenges_HL
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132348
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ranking function with the magnitude of the weights of a 
Support Vector Machine, is subsequently employed.

Predictive analysis
The literature on classification tasks in the oncotranscrip-
tomics domain shows a relative predominance of specific 
machine learning (ML) models [35, 36]. Accordingly, 
Support Vector Machines (SVM) [37], k-Nearest Neigh-
bors (KNN) [38] and Random Forest [39] are selected as 
classifier candidates. Given the consistently state-of-the-
art performance of XGBoost [40] in other domains, we 
further disclose its predictability performance. Comple-
mentarily, Decision Trees [41] are further assessed as the 
learnt associations can reveal important insights about 
the genetic component of HL, and Naive Bayes [42] to 
offer a baseline stance on predictive accuracy.

In order to obtain the best classification possible, all 
the predictors are subjected to parameter optimization 
through the Tree Parzen Estimator algorithm [43], in 
addition to an optimized application of the aforemen-
tioned preprocessing techniques.

Bicluster‑based space transformation
The various biological mechanisms present in our bod-
ies rarely originate due to a single gene’s expression val-
ues. Instead, the majority of gene regulation is done in a 
modular way, in which sets of genes interact with each 
other to enforce a certain mechanism. With this in mind, 
it is important to not reduce the analysis of transcrip-
tomic data to individual genes but instead to study these 
values and its contributions in the context of putative 
regulatory modules. Furthermore, and in spite of the rel-
evance of the introduced feature selection process, such 
process relies on univariate methods that do not take into 

consideration gene interactions and on an embedded 
method that show biases towards specific predictors [34].

In this context, we propose a novel transformation 
procedure in high-dimensional data spaces that can map 
individual gene expression features with loose discrimi-
native power to discriminative pattern-centric features 
given by discriminative regulatory modules able to bet-
ter represent complex interactions between multiple 
genes. Biclustering has been largely employed for the 
effective discovery of gene expression patterns [44–46], 
with pattern-based biclustering showing relevant per-
formance indicators in diverse biological data contexts 
[47, 48]. Biclustering based on PAttern Mining Software 
(BicPAMS) [49] integrates dispersed state-of-the-art con-
tributions on pattern-based biclustering, allowing for a 
high level of parametrization while performing efficient 
searches with guarantees of optimality, statistical signifi-
cance and discriminative power [50, 51].

In this context, BicPAMS is applied to find discrimina-
tive patterns on the training cohort data. Multiple param-
eterizations are tested in order to obtain the best space 
transformation for the classification task. The dataset is 
then transformed so that each feature corresponds to one 
gene expression pattern encompassing multiple genes. 
Each value of the transformed dataset will then repre-
sent the similarity between the gene expression expecta-
tions associated with a given pattern and the actual levels 
of gene expression observed for an individual. Figure  2 
shows an example of the described process.

Results
The proposed methodology is applied on the cohort 
study conducted by Luminari et. al [14] to assess the 
limits to the predictability of the quality of HL patient 

Fig. 2  Example of space transformation using biclustering, showing a found bicluster with the corresponding pattern (left), and the resultant values 
on the transformed dataset using Euclidean distance (right)
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response to ABVD treatment. The gathered results 
are presented in two major steps: (i) a comparison of 
predictive levels from the optimized application of 
state-of-the-art ML models against the current ref-
erence levels; and (ii) an assessment of the improve-
ment yield by the proposed pattern-centric data space 
transformation.

Evaluation methodology. Given the small popula-
tion size (103 samples), a nested Cross-Validation (CV) 
schema is considered using 10 folds. Nested Cross-Vali-
dation is used to separate the data used for hyperparam-
eterization from the data used for assessing the model’s 
performance [52]. Without this separation, the model 
would learn its parameters in data in which it would be 
tested, resulting in an overestimated predictive capabil-
ity. In a nested CV, inside each CV loop used for model 
evaluation, another CV must be performed in the train-
ing data for parameter tuning and preprocessing.

To promote comparison with the evaluation setting 
presented in the precursor work by Luminari et al. [14], 
two evaluation settings are considered. The first setting 
(setting I) purposefully corresponds to an approach sim-
ilar to the one followed by Luminari et al. [14], where the 
preprocessed data using the two configurations of fea-
ture selection (Methods section) are subjected to internal 
bootstrapping for evaluation purposes. The second set-
ting (setting II) guarantees the soundness of the acquired 
predictability levels by ensuring that feature selection 
step is performed inside each fold of the nested cross-
validation, as previously described. Direct comparison 
between the two settings should not be attempted given 
the diversity of the underlying evaluation principles.

A core contribution of this study is the possibility to 
create a reliable decision support system that can help 
decide the intensity of the treatment a patient must 
undergo, with a positive prediction indicating that a 
more aggressive regime is necessary. Attending to this 
observation, the following evaluation metrics were cho-
sen: (i) AUC as an overall indicator of how the predictor 
performs when the decision threshold is not optimized; 
(ii) recall and precision to ensure that the predictor does 
not skew towards the majority class, especially important 
due to the imbalanced data nature; and (iii) specificity 
to guarantee the identification of patients who will react 
well to the standard treatment, avoiding the prescrip-
tion of an unnecessarily stronger chemotherapy regimen. 
Accuracy, although presenting an useful overall indica-
tion of the predictor’s performance, is not considered 
here due to the imbalanced nature of the data. The met-
ric optimized in the hyperparameterization step is the 
F1 score, so that the classifiers can attain a balanced per-
formance in both precision and recall. Precision-Recall 
curves, together with explainability models, are further 

provided to offer a more comprehensive comparison of 
the predictors.

Predictive performance under state‑of‑the‑art ML
The initial phase of feature selection by the Mutual Infor-
mation and Wilcoxon Rank Sum algorithms identified a 
total of 250 features out of the initial 770. These features 
correspond to 248 genes and the clinical variables stage 
and LMR>2.1 . The work of Luminari et  al. [14] found, 
during a first analysis, a 13-gene signature positively cor-
related with iPET2 in addition to the variable LMR>2.1 . 
In comparison, we find that our most influential feature 
set contains 9 out of the 13 genes and the LMR>2.1 vari-
able. The selection of the variable stage by our algorithm 
points to a relation with the target iPET2 not identified 
through the multivariate logistic analysis performed by 
Luminari et al. [14]. The second and final phase of feature 
selection, performed by the algorithm SVM-RFE, identi-
fied a set of 14 genes. Out of these 14 genes, only 2 were 
also found in the 13-gene signature identified by Lumi-
nari et al. [14], indicating a discrepancy between the two 
gene sets and confirming the difficulty of the task of iden-
tifying a concise set of discriminative genes.

In order to provide a reference random baseline for 
the interpretation of classification results, we performed 
twenty iterations of training and validation of a random 
classifier in our dataset. It is the convergence value of 
these metrics that should be interpreted as the refer-
ence minimum value for this classification task, namely, 
a precision of 0.21, and a recall, specificity and AUC of 
approximately 0.5.

Results for setting I are presented in Fig.  3, where 
each color encodes a given performance metric and the 
horizontal lines correspond to the random classifier’s 
results in said metric. We can observe that the combina-
tion of our two feature selections steps, data balancing 
using SVM-SMOTE and the classifier SVM, can achieve 
a superior mean result of 0.97 AUC (against an AUC of 
0.84 obtained by Luminari et  al. [14]). The high predic-
tive power of an SVM in this setting is to be expected due 
to its recurrent good performance in this type of data 
[53, 54], and the fact that is being paired with the SVM-
SMOTE data balancing technique and the SVM-RFE fea-
ture selection algorithm, both using an SVM as the base 
of its decisions.

The results obtained under setting II are presented in 
Fig. 4. In this case, the XGBoost algorithm achieves sig-
nificantly better results than the SVM, the previous best 
performer, with an AUC of 0.77, a precision of 0.67, a 
recall of 0.52 and a specificity of 0.94.

In contrast, KNN has notably poor performance in 
comparison with the defined baseline, which can be 
explained by two major factors: (i) a high percentage of 
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outliers in our dataset; and (ii) high gene expression vari-
ability, leading to inflated differences between individuals 
that belong to the same class. Two out of the three asso-
ciative classifiers, Decision Tree (DT) and Random Forest 
(RF), also present comparable performance to the ran-
dom classifier, suggesting that a decision tree is unable to 
fully take advantage of all the discriminative gene interac-
tions present in the dataset. Since the RF and XGBoost 
classifiers are both ensembles of DTs, the discrepancy 
between their results must originate due to the embed 
feature engineering capabilities of XGBoost and differ-
ences on the pursued bagging and boosting strategies. 
Since bagging uses multiple independently trained DTs 
to make predictions, the fact that a DT cannot assimi-
late the knowledge in the data will lead to an overall lack 
in performance for the RF. Boosting on the other hand 
trains the trees iteratively, allowing for each consequent 
model to improve where the previous one failed, result-
ing in a classifier that can better model more complex 
interactions.

Overall, it is observable that all the classifiers can attain 
a high specificity, but at the cost of a reduced preci-
sion and recall. In other words, classifiers have an easier 
time correctly classifying patients with negative iPET2, 

guaranteeing that the patients that will react well to the 
ABVD regimen are correctly identified. The main diffi-
culty with this predictive problem is in the correct clas-
sification of positive patients, possibly due to the low 
number of samples of this class. In addition, treatment 
response is being assessed with regards to iPET2 results, 
which may not be an optimal representative of the true 
quality of patient response to ABVD chemotherapy.

The predictive results can be further analyzed through 
the study of the classifiers’ Precision-Recall curves pre-
sented in Fig. 5. KNN is omitted from these graphics due 
to its dependence on an ineffective method to calculate 
the appropriate thresholds.

It is in our interest to better understand what leads a 
certain patient to be misclassified by our models. We plot 
some of the characteristics of the correctly classified indi-
viduals against wrongly classified ones by the best predic-
tor in the second configuration, XGBoost. This analysis is 
provided for the four clinical variables, age, gender, stage 
and LMR>2.1 in Fig. 6. Starting with the variable gender, 
no significant trend is noted. LMR>2.1 on the other hand 
shows a more clear inclination for correctly classifying 
positive cases when this variable is “False”, with the per-
centage of True Positives (TP) being substantially higher 

Fig. 3  Optimized classifier’s performance in the prediction of iPET2 (setting I)

Fig. 4  Optimized classifier’s performance in the prediction of iPET2 (setting II)
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than the False Positives (FP) percentage. Regarding the 
stage variable, the values “I A” and “III B” are omitted 
due to the low number of samples corresponding to each 
one. In the observation of the remaining values only “III 
A” shows a significant deviation from the others, with all 
the positive cases correctly predicted but with a low per-
formance in the false cases. The final plot is dedicated to 
the variable age and is presented in a stacked view, where 
the bins encompassing a 10-year period from each class 
(TN, FN, TP or FP) are stacked to facilitate a compara-
tive analysis between them. We can then recognize that 
the majority of False Negatives (FN) occur in patients 
between 30 and 40 years, and the False Positives (FP) are 
more evenly distributed with a slightly higher concentra-
tion in patients between 20 to 30 years.

As some of our results indicate, the majority of useful 
information about how the patient will react to treatment 
is contained on gene expression features, and therefore 
it is imperative that the analysis of the factors inducing 
wrong classifications be extended towards these features. 
In Fig.  7 we can see the distributions of the nine more 
discriminative genes according to their Mutual Infor-
mation [31] with the response outcome. The red vertical 
lines highlight the expression levels associated with the 
six patients that were misclassified by all of the assessed 
predictive models.

We can then observe that, as expected, the majority 
of the highlighted values are found in the intersection of 
both distributions, where the classification is harder to 
perform.

Fig. 5  Precision-Recall curves for configuration one (left) and configuration two (right) for each machine learning model

Fig. 6  Distribution of predictions for the clinical variables (gender, LMR, stage of the disease and age)
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Bicluster‑based Space transformation
The results presented until here correspond to the clas-
sification task in a feature space reduced by a composi-
tion of feature selection procedures. This approach lacks 
the ability to effectively represent the complex gene inter-
actions responsible for the outcome of the patient. In 
accordance with the introduced methodology, we capture 
these interactions through discriminative biclusters using 
BicPAMS [49]. The found biclusters are then used to cre-
ate new features representing discriminative and statisti-
cally significant gene expression patterns.

With the goal of better understanding the impact that 
BicPAMS’ parameters have on predictive performance, 
we performed a comparative analysis of how distinct 
parameterizations affect the behavior of a baseline Naive 
Bayes predictor. The evaluated parameters are: (i) num-
ber of iterations, indicating how many times the min-
ing process is repeated, masking the found biclusters 
in each new iteration and forcing the mining process to 
find other less trivial biclusters but resulting in greater 
computational cost; (ii) minimum lift, a placed thresh-
old to determine whether a given bicluster is sufficiently 
discriminative [51]; (iii) number of labels, correspond-
ing to the number of overlapping gene expression levels 
[48]; and (iv) maximum number of biclusters, the num-
ber of mapped features in the transformed data space by 
the postprocessing filtering of the bottom discriminative 
biclusters according to their lift. The results for each of 
these parameters are shown in Fig. 8. We can see in the 

plotted results that in respect to most of the parameters 
there is a gain in performance by increasing its respective 
values, but only until a certain threshold is reached, from 
which there are no further advantages. The minimum lift 
is an exception to this, showing almost no effect in this 
specific problem and pointing to the importance of less 
discriminative patterns in the learning process.

Finally, we further assessed the impact of different dis-
similarity functions to assess the how likely is a given 
gene expression pattern for a specific patient, determin-
ing how the values present in the transformed dataset are 
computed. To this end, we consider both the Euclidean 
distance and a binary value indicating if a patient pos-
sesses a given pattern or not. In the second case, a tol-
erance threshold can be included to accommodate for 
noise. Figure 9 shows the performance of a Naive Bayes 
classifier in three different settings: the binary transfor-
mation with thresholds of 0.5 and 1, and the transfor-
mation using Euclidean distance. As expected, by using 
a numeric representation instead of a binary one, there 
is less loss of information, and consequently, we can 
achieve better results in the most difficult metrics for this 
classification task, precision and recall.

To assess the effects of the pattern-centric feature space 
mapping, we applied the target transformation using Bic-
PAMS algorithm with the following parameters (placed 
according to previously gathered empirical evidence): 
number of iterations = 9; minimum lift = 1.3; number 
of labels = 10; maximum biclusters = 250; and distance 

Fig. 7  Distribution of top discriminative genes according to Mutual Information with highlighted values (red vertical lines) corresponding to false 
positive and negative predictions
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criterion = Euclidean distance. Under this configuration, 
it is possible to carry out a comprehensive exploration of 
the discriminative biclusters by performing multiple iter-
ations while maintaining a relatively low minimum lift so 
that the computational requirements do not get too high. 
The high number of labels guarantees that the found 

patterns discriminate fine levels of expression while the 
relatively high number of biclusters ensures that most 
discriminative and statistically significant biclusters are 
retrieved. Figure 10 provides a direct comparison of each 
individual metric between these results and the ones pre-
viously obtained by our second setting (Fig. 4).

Fig. 8  Variation of performance according to multiple parameters
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The gathered results show that the transformed fea-
ture space has statistically significant impact on the 
behavior of the classifiers. SVM and XGBoost, clas-
sifiers that already presented good results, are not as 
significantly affected by this transformation, but all the 
others benefit from it and present an increase in perfor-
mance in all the studied metrics.

Discussion
The ability to better discriminate how a patient will 
respond to a treatment is essential, especially in the 
domain of cancer therapy where the majority of treat-
ments are associated with high toxicity and the prog-
nostic exams can be intrusive and expensive. We 
comprehensively assess the predictability guarantees 

Fig. 9  Variation of performance according to the distance criterion

Fig. 10  Direct comparison of results with (blue) and without (red) bicluster-based space transformation
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achieved by state-of-the-art ML models. These models 
are carefully optimized through the Tree Parzen Esti-
mator algorithm and evaluated in a controlled manner 
resorting to nested cross-validation. Despite the placed 
optimization principles, the obtained results still fall 
short on the predictability power necessary to translate 
decisions in real-world practice. Transcriptional and 
iPET2 activity are structurally different, with the former 
being better positioned to model regulatory responses to 
treatment, even at the cost of iPET2 discordance.

The high specificity attained by most models (0.94) 
indicates that the classification models can correctly 
identify most of the patients that show disease regression 
after the treatment, but are more susceptible to recognize 
the positive patients. One possible reason for this bias is 
the low percentage of positive cases, representing only 
20% of the total patients. To correct for this imbalance, 
we resorted to the use of balancing with SVM-SMOTE 
and hyperparameterization of the predictive models 
according to F1 score, an evaluation metric sensitive to 
the positive samples. Despite these efforts, the best clas-
sifier achieved a precision of 0.67 and a recall of 0.52, 
confirming the impact the difficulty of finding a tran-
scriptional exam resembling the nature of iPET2 activity.

The nature of the target cohort data further introduces 
generalization challenges to the target prognostication, 
with low number of samples and high-dimensionality. In 
addition, the transcriptome profiling is susceptible to the 
infiltration of non-cancer cells and arbitrarily-high vari-
ations to the composition of the target cell population, 
further contributing to generalization difficulties. Finally, 
the biological mechanisms underlying diseases such as 
HL are immensely complex and dependent of interac-
tions between many genes at multiple omics levels.

In order to better represent the complex interactions 
between genes that originate biological processes, the 
proposed space transformation offers an elegant way of 
shifting the learning from individual genes towards pat-
terns of gene expression. By doing this, we group statis-
tically significant and discriminative sets of genes that 
partake in regulatory modules correlated with a specific 
outcome of interest. This creates more straightforward 
conditions to guide the learning of predictive models. 
We observed that the efficacy of this transformation is 
proven by the increase in performance of the majority of 
classifiers in all the studied metrics.

Despite the yield improvements, the gathered results 
are indicative of the innate difficulty of the target pre-
dictive task, claiming for further contributions in this 
domain able to translate high-dimensional regulatory 
profiles into actionable and reliable results.

In order to deal with the challenges presented in our 
work, we suggest the following directions of research: (i) 

strengthen this methodology by completing the current 
regulatory stances with complementary omic layers; (ii) 
further combine the transcription of non-coding RNAs, 
recently shown to play an important role in HL [55]; (iii) 
assess the potential increase in performance by using more 
specialized classification principles best suited to deal with 
the inherent overlapping class-conditional distributions of 
expression per gene (Fig. 7); (iv) place a finer description on 
the quality of treatment response, translating the classifica-
tion task into an (ordinal) regression task; and (v) further 
assess the impact of alternative pattern-based feature space 
transformations on predictive accuracy, namely by resort-
ing to ensembles of biclusters with different characteristics.

Conclusion
This work introduced a novel methodology to improve the 
predictive accuracy of HL treatment response after two 
courses of ABVD chemotherapy against reference predic-
tive levels [14]. This is achieved through a biclustering-
based data space transformation that creates a shift from 
gene-centric to pattern-centric organization of expression 
data, combined with a thorough optimization of preproc-
essing procedures and state-of-the-art ML models. The 
methodology presents increased performance with the 
proposed space transformation, yielding improvements as 
large as 20pp in precision and recall, as is the case with 
Decision Trees. Furthermore, through the application of 
an ensemble of feature selection procedures, we identify 
a set of 14 genes highly representative of the result of an 
FDG-PET after two courses of ABVD chemotherapy. This 
set only overlaps with the one identified by Luminari et al. 
[14] in 2 genes, indicating that it can offer a complemen-
tary understanding of the HL response to chemotherapy.
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