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The future application of artificial 
intelligence and telemedicine in the 
retina: A perspective
Chu‑Ting Wu1,2, Ting‑Yi Lin3, Cheng‑Jun Lin4,5, De‑Kuang Hwang6,7*

Abstract:
The development of artificial intelligence (AI) and deep learning provided precise image recognition 
and classification in the medical field. Ophthalmology is an exceptional department to translate AI 
applications since noninvasive imaging is routinely used for the diagnosis and monitoring. In recent 
years, AI‑based image interpretation of optical coherence tomography and fundus photograph in 
retinal diseases has been extended to diabetic retinopathy, age‑related macular degeneration, and 
retinopathy of prematurity. The rapid development of portable ocular monitoring devices coupled with 
AI‑informed interpretations allows possible home monitoring or remote monitoring of retinal diseases 
and patients to gain autonomy and responsibility for their conditions. This review discusses the 
current research and application of AI, telemedicine, and home monitoring devices on retinal disease. 
Furthermore, we propose a future model of how AI and digital technology could be implemented in 
retinal diseases.
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Introduction

Diagnosing ophthalmic diseases relies 
on clinical assessment and image 

interpretation, such as optical coherence 
tomography  (OCT), fundus photographs, 
and the visual field. The traditional reading 
of retinal images requires the trained 
reader to view and report on individual 
images, which significantly burdens 
ophthalmologists and highlights the need 
for artificial intelligence  (AI)‑assisted 
clinical interpretation. Among ophthalmic 
diseases with AI translation, retina 
disease received the greatest attention and 
diseases such as diabetic retinopathy (DR), 
age‑related macular degeneration  (AMD), 
and retinopathy of prematurity (ROP) have 
seen promising advances. Since 2017, the 
number of publications on AI applications 
in retinal diseases has skyrocketed,[1] with 

research on AI in retinal diseases mainly 
focusing on computer engineering and 
medical imaging.[1] Many studies have 
developed DL algorithms that could achieve 
automated screening, prognostic and 
treatment prediction of retinal disease in the 
hope of achieving early detection, further 
management, and better clinical outcomes.

There are multiple dilemmas in the current 
health care of retinal diseases. Reports 
show a shortage of ophthalmologists as we 
face an aging population and an increasing 
number of chronic and age‑related eye 
conditions.[2] In Taiwan, the ophthalmology 
outpatient clinic is overwhelmed with 
patients, either at the local clinic or in the 
tertiary center. Due to the chronic character 
of retina diseases, most patients require 
multiple follow‑up visits for monitoring and 
management, which is time and resource 
intensive. Furthermore, the rural areas 
of Taiwan lack specialists and AI offers 
the solution to eliminate the geographical 
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barrier to health‑care access in screening retinal disease 
and treating the emergent condition.

DL, coupled with telemedicine and remote home 
monitoring, might be a long‑term solution to screen and 
monitor the patients with retinal diseases effectively 
and efficiently. In this review, we discuss the current 
research and application of AI, telemedicine, and home 
monitoring devices on retinal disease. Furthermore, we 
propose a future model of how AI and digital technology 
could be implemented in retinal diseases [Table 1].

Artificial Intelligence, Machine Learning, 
and Deep Learning

Artificial intelligence
AI is a domain of computer science that simulates human 
intelligence processes with the goal of problem‑solving. 
The phrase “AI” was coined by John McCarthy as “the 
science and engineering of making intelligent machines” 
in 1956.[3]

Machine learning
Machine learning (ML), a branch of AI, is how computer 
software learns from the data without humans inputting 
explicit instructions. Arthur Samuel introduced it using 
the game of checkers as an example in 1959.[4] ML differs 
from a primary programming language in which we get 
answers by designing rules. In other words, ML could 
modify itself when exposed to more data and makes 
prediction eventually.

Deep learning
Deep learning (DL), a branch of ML, consists of multiple 
layers of neural networks attempting to mimic the human 
brain.[5] Neural networks are the sets of algorithms that 
could view as artificial neuron that processes data by 
data inputs, weights, summation and bias, activation, 
and output.[6] DL allows data to go through multiple 
layers of pattern recognition for accurate judgment.[5,7] 
In DL, convolutional neural networks (CNN), a type of 
artificial neural network, is primarily used for image 
recognition and classification[7] and plays a vital role in 
medical application.

Digital Technology: Telemedicine and 
Home Monitoring Devices

Telemedicine
Telemedicine refers to providing health care and 
transmitting health‑care information across distances. 
Two aspects could classify telemedicine episodes: (1) The 
interaction between the patient and the expert and (2) the 
information being transmitted.[8] The type of interaction 
could be classified as either store‑and‑forward or real 

time.[8] Store‑and‑forward means that patients’ health 
information was shared in some format and interpreted 
by an expert later. Real‑time interaction means no delay 
in time for the expert to evaluate the patient. The type of 
information transmitted includes data and text, audio, 
images, and video.[8]

Telesurgery
Telesurgery, a subset of telemedicine, connects patients 
and surgeons who are geographically distant by 
utilizing wireless networking and robotic technology. 
ZEUS robotic system  (Computer Motion, Galeta, CA, 
USA) was the first developed functional telesurgery 
system[9] and was used for the first telesurgery operated 
by Jacques Marescaux’s surgical team in New York in 
2001 performing a remote robot‑assisted laparoscopic 
cholecystectomy on a 68‑year‑old woman in Strasbourg, 
France.[10] After undergoing the successful 54‑min 
telesurgery, the patient had an uneventful recovery 
postoperatively. Moreover, a routine telesurgery service 
in Canada was established in 2003, and 21 surgeries have 
taken place in 2  years, including 13 fundoplications, 
3 sigmoid resections, 2 right hemicolectomies, 1 anterior 
resections, and 2 inguinal hernia repairs.[11] For now, 
there is no telesurgery in the field of ophthalmology; 
however, based on the recent advance of 5G technology 
and robotic surgical systems development, telesurgery 
in the retina field might become a reality in the near 
future. The 5G technology provides high‑speed networks 
connecting the remote robot and the control console.[12] To 
date, several ophthalmological robotic surgical systems 
have been developed, including the Preceyes Surgical 
System (Preceyes B.V., Netherlands) and the intraocular 
robotic interventional surgical system (IRISS) (from the 
University of California, Los Angeles).[13] The Preceyes 
Surgical System, a high‑precision device for vitreoretinal 
surgical procedures, was used to conduct two clinical 
trials in the removal of retinal membranes and sub‑retinal 
injection in patients.[14] The IRISS was validated on ex 
vivo pig eyes and the surgeon could successfully perform 
anterior lens capsulorhexis, viscoelastic injection, 
hydrodissection, lens aspiration, retinal vein cannulation, 
and vitrectomy.[15,16]

In the field of ophthalmology, although telesurgery is 
still in the infantile stage, there is another teleoperation 
procedure in great progress. The Navilas® Laser 
System  (OD‑OS, Teltow, German), a navigated laser 
photocoagulator, enables retina specialists to preplan 
the treatment at a specific location and time. Navilas® 
combines laser photocoagulation with fluorescein 
angiographic imaging and can project annotated 
images with the preplanned treatment spots on the live 
fundus view in the real time.[17] The laser beam then 
targets the proposed treatment spots to complete the 
treatment.[17] It achieved a higher accuracy of hitting rate 



Taiwan J Ophthalmol - Volume 13, Issue 2, April-June 2023	 135

of microaneurysm in diabetic macular edema  (DME) 
in photocoagulation treatments  (92%) than standard 
manual‑technique laser treatment (72%).[18]

Home monitoring device
Self‑measurement at home is important in‑between 
consultations as disease fluctuation and progress may 
be recorded  (i.e., blood pressure measurement for 
hypertension and glucose measurement for diabetes). 
The Amsler grid is the most commonly used home 
monitoring tool in ophthalmology. It can detect 
metamorphopsia, symptoms indicating eyes with 
mechanically distorted retinas found typical in wet 
AMD and DME.[19‑21] There are three mobile‑device 
telemonitoring applications currently available to 
patients, Paxos Checkup™  (DigiSight Technologies, 
Inc., San Francisco, CA, USA), myVisiontrack®  (Vital 
Art and Science, LLC., Richardson, TX, USA) and 
Alleye (Oculocare Ltd, Switzerland). Paxos Checkup™ 
offers multiple standard vision‑assessment tests, such 
as Snellen visual acuity (VA), dynamic Amsler grid, and 
color discrimination, and enables the transmission and 
storage of patient data to a cloud‑based system for the 
physician to review. The myVisionTrack® application, 
which assesses shape discrimination hyperacuity,[22] 
was designed for monitoring patients with diagnosed 
maculopathy diseases with AMD and DR.[23] Similarly, 
the Alleye test allows early identification of progression 
in exudative neovascular AMD and DME by assessing 
hyperacuity.[24]

ForeseeHome® (Notal Vision Ltd., Manassas, VA, 
U.S.A.) [Figure 1], the first home telemonitoring device 
in ophthalmology, can have the earlier detection 
of AMD‑related Choroidal neovascularization and 
enhance neovascular‑AMD detection rate in medical 
care.[25,26] ForeseeHome is a portable device that 
adopts Preferential Hyperacuity Perimetry  (PHP), a 
psychophysical test that can detect the changes in the 
macula. ForeseeHome® connects to an Independent 
Diagnostic Testing Facility (IDTF) via a wireless 
network, allowing the pre-assigned staff to promptly 
schedule a clinical evaluation upon identifying a 
significant change in the patient's vision.[27,28]

Deep Learning in Retinal Diseases

Diabetic retinopathy
Diabetes mellitus  (DM) prevalence worldwide in 
20–79  years old in 2021 was estimated to be 10.5% 
(536.6 million people) and is anticipated to rise to 
12.2%  (783.2 million) by the year 2045.[29] DR is a 
common complication of DM and a leading cause of 
preventable blindness, with a global prevalence of 28.54 
million in 2020 for vision‑threatening DR.[30] Annual 
screening with dilated funduscopy is recommended 

by the WHO for patients with DM to prevent vision 
loss.[31] Due to the significant number of DR patients, 
there is high demand for DR screening, timely referral, 
and treatment. However, the fundoscopy screening and 
traditional reading of these images are facing the issues 
of the availability of human assessors and long‑term 
financial sustainability. Therefore, the development of 
DL and digital technology is in need to facilitate the 
process.

DL can be used for screening and even grading DR. The 
application of DL for DR screening has significantly 
been studied and has shown good performance with 
high sensitivity and specificity. In 2016, Google Inc. 
sponsored Gulshan et  al. to train a deep CNN for 
detecting referable.[32] The algorithm was validated 
by two large data sets, EyePACS‑1 and Messidor‑2, 
with an area under the receiver operating  (AUROC) 
curve of 0.991 and 0.990, respectively. In 2018, the DL 
algorithm, called IDx‑DR, developed by Abràmoff et al., 
obtained the first approval from the US Food and Drug 
Administration for the automated detection of DR and 
diabetic macula edema, achieving 87.2% sensitivity and 
90.7% specificity.[33] In addition to the screening of DR, 
AI can be trained to grade DR, having the potential to 
offer the prognosis and treatment recommendations. 
Takahashi et  al. developed a GoogLeNet DL neural 
network to provide a novel AI disease‑staging system 
for grading DR.[34]

Age‑related macular degeneration
AMD is a significant cause of vision loss in elderly persons 
globally. As the aged population grows, the estimated 
prevalence of early and late AMD in 2050 will be 
39.05 million and 6.41 million, respectively.[35] The majority 
of AMD patients (84%) are unaware of their condition 
due to its asymptomatic feature in the early stage.[36] The 
American Academy of Ophthalmology recommends 
routine screening with at least 2‑year intervals for 
patients aged 65 years or older. The current standard 
management of wet AMD is the intravitreal injection of 
anti‑vascular endothelial growth factor (VEGF) agents 
such as bevacizumab or ranibizumab, either monthly 
or with a more individualized treatment strategy with 
close follow‑up.[37] The number of AMD patient visits 
is increasing due to the growth of the aged population, 
the chronic and relapsing nature of the disease, and the 
frequent follow‑up for disease monitoring, evaluation, 
and treatment. Thus, there is a suppressing need 
for a robust automatic mechanism to be developed. 
Fortunately, AMD treatment is primarily determined 
by the VA and OCT findings, so DL and telemedicine 
could play a role.

DL could involve initial screening, subsequent 
monitoring, and treatment prediction of AMD. For 
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AMD screening, Lee et al. developed a DL algorithm 
that differentiates AMD from normal macula using 
OCT images,[38] and Treder et  al. developed one 
that determines exudative AMD from the normal 
macula.[39] DL also showed a promising future in 
monitoring progression and making the prognostic 
prediction of AMD. Burlina et  al. developed deep 
CNNs using color fundus images to perform automated 
AMD grading, comparable to human experts’ 
performance.[40,41] Bogunovic et  al. developed a ML 
model trained on images of 61 eyes with early/
intermediate AMD acquired at 3‑month intervals. It can 
predict drusen regression over the next 2 years with an 
AUROC curve of 0.75.[42] ML was used to predict VA in 
a patient with neovascular AMD after treatment.[43‑45] 
Furthermore, some studies develop ML methods to 
predict the need for anti‐VEGF treatment for AMD, 
which accuracy is similar to a specialist.[46‑49] The most 
relevant feature of OCT scans for treatment prediction 
is the presence of retinal fluid.[47]

Retinopathy of prematurity
ROP, a leading cause of childhood blindness[50,51] with 
an incidence of 60%–72.7%,[52‑54] is a vasoproliferative 
disease affecting premature infant which can progress 
to tractional retinal detachment, resulting in visual loss. 
However, visual loss is primarily preventable with the 
early detection of severe ROP and timely treatment.[55,56] 
“Plus” disease, a critical ICROP parameter to initiate 
ROP treatment,[57,58] is associated with increased venous 
dilation and arterial tortuosity of the posterior pole 
of the retina.[59] “Preplus” disease represents a lesser 
severity of tortuosity and dilation, forming with plus 
disease a continuous spectrum of retinal vascular 
changes. Screening and diagnosis of ROP are made 
either directly through fundoscopic examination or 
captured images with portable cameras examined 
afterward by an expert.

There are two main obstacles in ROP screening: 
(1) Experienced ROP specialists are scarce; and  (2) 
significant inter‑expert variability and inconsistency 
in  ROP diagnosis ,  leading to  dif ferences  in 
management.[60,61] Thus, the application of AI might 
answer the shortage of trained examiners and 
minimize the ROP diagnosis variability, effectively 
implementing ROP screening. Some DL algorithms 
were developed and showed promise in the accuracy 
of detecting “plus” or “preplus” disease.[62‑64] In 2018, 
Brown et al. trained a deep CNN on a set of 5,511 retinal 
photographs to detect “plus” and “preplus” disease, 
with 93% sensitivity and 94% specificity for “plus” 
disease and 100% sensitivity and 94% specificity for 
“pre plus” disease. This fully automated algorithm 
even outperformed human experts in evaluating the 
same data set.[65]

Limitation of Artificial Intelligence and 
Telemedicine

Limitation of artificial intelligence
The major problem of the DL model is the black‑box 
phenomenon. Large‑scale adoption of AI in health 
care is still with great concern that AI and DL use a 
“black‑boxes” approach. DL algorithms do not classify 
or diagnose disease by the criteria but by the underlying 
features.[66,67] Due to the “black‑box” nature of the 
neural network, it is challenging for physicians to know 
what features it utilizes, understands how it reaches a 
particular decision, and thus identify the inherent error.

Limitation of telemedicine
There are four main barriers to telemedicine 
implementation that we need to overcome. The first is 
the infrastructure costs, including ophthalmic imaging 
equipment or hardware, the high‑speed computing 
facility, and storage. It can be prohibitive as retinal 
cameras can cost more than 10,000 USD.[68] Second, the 
digital divide, the availability of internet access and 
mobile phone or digital device and the capability of using 
it affect the adoption of telemedicine geographically and 
socially. People with low incomes, less education or low 
literacy levels, older adults, people in isolated or rural 
areas, and people with more chronic conditions are more 
likely to be left behind by the digital divide.[69,70] Among all 
groups, the digital divide is particularly obvious among 
the elderly: only 58% of the elderly use the Internet in the 
US.[71] Third, whether telemedicine enhances or decreases 
patient compliance and adherence to medical care is 
still an issue to be understood. Tele‑ophthalmology in 
the outpatient setting might overburden primary care 
doctors to perform additional work to ensure patients’ 
compliance with the telemedicine recommendation.[68] 
Finally, the remote nature of virtual clinics undermines 
the quality of the patient–physician interaction. In 
addition, the absence of a physical examination might 
lead to physicians overlooking the whole picture of a 
patient’s illness. Fifty‑nine percent of ophthalmologists 
reported having “low confidence” in making decisions 
based on the images alone.[72] Telemedicine might force 
physicians to make decisions with limited information.

Limitation of telesurgery
The major problem with telesurgery is latency time 
and lack of haptic feedback. Latency time is the delay 
in sending and receiving the auditory, visual, and even 
tactile feedback between the two distant locations.[73] 
Great latency time leads to a lengthy operation, surgical 
inaccuracy, reductions in surgical performance, 
and eventually, risk to the safety of the patients.[74,75] 
According to Xu et al., an ideal latency time for telesurgery 
is <200 ms, and the surgical performance exponentially 
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deteriorates as latency time increases.[74] The first 
telesurgery performed by Professor Marescaux in 2001 
used a high‑speed fiber optic cable with a dedicated 
asynchronous transfer mode connection with 10‑Mbps 
bandwidth, achieving an average latency of 155 ms.[10,73] 
However, there are 40 technicians required to maintain 
the speed.[73] The routine telesurgery service in Canada 
used a commercially available Internet Protocol‑Virtual 
Private Network with 15‑Mbps bandwidth to connect 
the robotic console in Hamilton with three arms of the 
Zeus‑TS surgical system 400 km away in North Bay.[11] 
It achieves an overall latency of 135–140 ms, which is 
noticeable but not difficult for surgeons to adapt.[11]

Haptic feedback technology could compensate for 
telesurgery’s drawback that surgeons could not feel the 
tissue in real instruments. Haptic feedback technology 
conveys tactile information to the users by applying 
advanced vibration patterns and waveforms. In 
telesurgery, it allows the operator to not only rely on 
visual force feedback but feel the texture of the tissue 
and the tension between the sutures to avoid damage 
to the tissues, enhance the operator’s confidence, and 
thus shorten the surgical time.[76,77] The first telesurgical 
system which integrates haptic feedback technology was 
introduced in 2015, called Telelap Alf‑x (SOFAR S. p. A., 
ALF‑X Surgical Robotics Department, Trezzano Rosa, 
Milan, Italy).[76‑78]

The Future Health‑care Model of Retinal 
Diseases

Here, we propose a future healthcare model [Figure 2] 
for retinal diseases that integrates AI, telemedicine, and 
remote patient monitoring.

The model combines portable home monitoring devices 
and software on mobile phones for remote patient 
monitoring. The portable home monitoring devices 
will have the imaging ability to capture OCT images, 
fundus photography, and so forth. The images will be 
sent to and stored at a high‑speed computing facility. The 
high‑speed computing facility will run the DL algorithm 
once it receives the images, report the image back to 
the patient through the software on the mobile phone, 
and integrate the images into their electronic medical 
record. The system allows (1) diagnostic screening for 
patients with associated underlying diseases such as 
diabetes and (2) follow‑up monitoring for patients with 
already‑known retinal diseases. When the DL algorithm 
detects significant changes in the images, it will alert the 
patients and their doctors through software on a mobile 
phone or text messages and arrange an appointment 
subsequently. Suppose the patient is newly diagnosed 
by the screening of DL and is primarily seen by family 
doctors, endocrinologists, or local physicians. In that 

case, they can be referred to the tertiary center’s retinal 
specialist from the local clinic. If the patient with 
already‑known retinal diseases is identified with disease 
progression by the DL algorithm, they can thus schedule 
a follow‑up visit with their retinal specialist.

To avoid unnecessary physical visits and reduced 
health resources consumption, patients can first “visit” 
a virtual clinic, a real‑time video‑based consulting with 
a retinal specialist. The retinal specialist can review the 
images from electronic medical records, evaluate clinical 
symptoms, and treat patients with telesurgery if needed. 
Telesurgery often involves two parts of the robot: the 
robot at the remote site and the surgeon’s robotic console 
at the tertiary center. Telesurgery enables patients in 
the rural areas to receive surgery at the local hospital 
with the remote robot, which the retinal specialist in the 
tertiary center manipulates. Telesurgery of the retina 
will include routine management such as navigated 
laser with photocoagulation and intravitreal injection, 
and more importantly, emergent eye surgery for eyeball 
rupture, retinal detachment, and so on.

This health‑care model involves mixed categories of 
telemedicine. First, the system stores the images and 
generates text reports, sending them to doctors for later 
review. It is the type of store‑and‑forward model that 
transmits images and text information. Second, the 
virtual clinic enables real‑time interaction and transmits 
information from the video. This model connects the 
doctor and patient consistently and reliably despite time 
and place and allows both sides to benefit from AI and 
digital technology.

The model enables clinicians to evaluate and treat 
their patients remotely. It improves healthcare access 
in the remote areas that have limited health‑care 

Figure 1: The schematic diagram of a home monitoring device, ForeseeHome. While 
the patient looks into the LCD monitor of ForeseeHome® (Notal Vision Ltd., Manassas, 
VA, U.S.A.), Preferential Hyperacuity Perimetry technology developed by Notal Vision 
was used to detect minute vision changes. In the central visual field of 14 degrees 
where the patient’s macula is located, the screen presents an “artificial distortion,” a 
straight line with a wave or bump. However, if a disease-related “wave” in the line is 
also present, the patient might only perceive the larger distortion. The patient’s vision 
change can thus be quantified by altering the size of the artificial distortions. (The 
concept was adopted from website of Notal Vision.)
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Figure 2: The future health care model of retinal diseases. The model integrates the application of AI, telemedicine, and remote patient monitoring. The model will rely 
on (1) home‑based self‑monitoring with portable imaging devices which provide OCT images, fundus photographs, or so forth,  (2) a high‑speed computing facility that 
can run the DL algorithms to read the images and produce the primary report, alert each party and schedule an appointment upon detecting changes, and finally store the 
information, (3) an internet system that connects to the electronic medical record and transmit information, (4) a referral system between local clinics, virtual clinic, and 
tertiary centers, and (5) a telesurgery system. Images obtained from the portable home device will be sent to the high‑speed computing facility to run the DL algorithms; 
images and produced reports will be integrated into electronic medical records. Upon detecting significant changes in retinal images, the DL algorithms will alert the patient 
and their doctor via software on a mobile phone or text message, and schedule an appointment at the local clinic, tertiary center, or even virtual clinic, which can also directly 
prescribe medicine. Patients needing further management can be referred to a tertiary center either “physically” or “electronically” from the local or virtual clinic. Instead of 
patients physically visiting tertiary centers to receive treatment, they can receive telesurgery at the local hospital with a remote robot manipulated by another robotic console 
operated by the retinal specialist at the tertiary center–icons made by Freepik, Pause08, Smashicons, Kerismaker, Juicy_fish, and Eucalyp from www.flaticon.com. OCT: 
Optical coherence tomography, DL: Deep learning

Table 1: The summary of the current application of artificial intelligence and telemedicine in retinal field
Types Applicated diseases/Features

AI Disease screening and monitoring DR and DME[32‑34]

AMD[38‑41]

ROP[62‑65]

Prognostic prediction AMD[42‑45]

Anti-VEGF treatment prediction AMD[46‑49]

Telemedicine Home monitoring 
applications

Paxos Checkup Offering users multiple standard vision‑assessment tests, such as Snellen 
visual acuity, dynamic Amsler grid, and color discrimination

myVisiontrack Assessing users’ shape discrimination hyperacuity by presenting the user 
with three visual stimuli (two circles and one radially distorted circular 
shape) at the same time and asking the user to identify the distorted shape

Alleye Assessing users’ hyperacuity by the user aligning the randomly misaligned 
dot between two fixed dots to form one straight axis

Home monitoring 
device

ForeseeHome Adopting PHP to quantify vision change by altering the size of the artificial 
distortions

Tele‑laser Navilas Laser System A navigated laser photocoagulator that could be preplanned to hit 
microaneurysm in DME patients

Robotic surgical 
systems

Preceyes Surgical System A high‑precision device for vitreoretinal surgical procedures
IRISS Being used to successfully perform anterior lens capsulorhexis, viscoelastic 

injection, hydrodissection, lens aspiration, retinal vein cannulation, and 
vitrectomy on ex vivo pig eyes

Nil
Telesurgery Nil

DME = Diabetic macular edema, OCT = Optical coherence tomography, PHP = Preferential hyperacuity perimetry, AI = Artificial intelligence, DR = Diabetic 
retinopathy, AMD = Age‑related macular degeneration, ROP = Retinopathy of prematurity, IRISS = Intraocular robotic interventional surgical system, 
RAM!S = Robot‑assisted microsurgery
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resources and a shortage of certain specialists. Virtual 
clinic and the image transmitted system allows the 
retinal specialist to evaluate patients with their retinal 
images without the patient traveling a far distance. 
Telesurgery provides timely management in the rural 
areas of emergent conditions such as eyeball rupture and 
retinal detachment. Furthermore, during the COVID‑19 
pandemic, telemedicine and teleconferencing have been 
adopted into health care to avoid exposure risks and 
cross‑infection between individuals.[79‑82] This model 
strengthens and sustains the idea, allowing the patient to 
reach medical care more easily by the image‑transmission 
and referral system.

Under regular home monitoring with the DL algorithm, 
the model can detect the retina change and disease 
progression before the symptoms appear, prompt 
treatment to avoid vision loss, and improve long‑term 
visual outcomes. Moreover, by patients gaining 
self‑responsibility and autonomy over their disease 
status, self‑monitoring contributes to higher adherence 
and compliance to treatment and better disease 
outcomes.[83,84] It is also a triaging system that could 
identify patients with acute conditions and prioritize 
medical care. On the other hand, if the patient is in stable 
condition, they do not have to pay a visit. However, 
meanwhile, doctors can still keep track of patients’ 
retinal images through the electronic medical record.

As the population ages, the number of patients with chronic 
diseases such as AMD and DR continue to climb, leading 
to a heavy public health burden. AI and digital technology 
can facilitate capturing, storing, and interpreting the retina 
images. It will decrease the high demand for trained 
technicians and specialists for the traditional reading of 
fundus/OCT images. Moreover, with the availability to 
move the frequent monitoring from clinic to home and 
to reach retinal specialists from virtual clinics, the model 
aims to decrease follow‑up visits to the tertiary center, 
reduce waiting times for physical appointments, decrease 
health‑care costs, and improve quality of care.

In short, the model implicates four linked trends of the 
future health‑care system. The first is migrating disease 
monitoring and screening from hospitals and clinics to 
homes. The second is the application of AI to automate 
disease diagnosis and predict prognosis and treatment, 
reducing the requirement for trained human resources 
and assisting clinical decision‑making. The third is to 
increase access to health care, removing the geographic 
barrier. The fourth is the expansion of telemedicine from 
addressing acute conditions to chronic conditions and 
from medical prescription to surgical intervention. In the 
foreseeing future, the application of telemedicine with 
AI technology in retinal diseases is an unstoppable trend 
and will become a possible reality.

Conclusions

AI has been widely studied in the field of the retina. Either 
to act as a disease‑screening platform or a tool to assist in 
clinical practices, DL will play an increasingly important 
role in retinal practice. Thanks to the advance of digital 
technology, telemedicine was already implemented in 
our current clinical activities and a home monitoring 
device was gradually developed for retinal diseases. DL 
and telemedicine together have the potential to augment 
the benefit and drastically change the future landscape 
of retinal practice.
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