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Introduction

laucoma is the leading cause of

irreversible blindness, with number
of people with glaucoma worldwide
projected to increase to 111.8 million by
2040.M The most important ocular tissue
that undergoes damage during the disease
process is the optic nerve head (ONH).
This damage is termed glaucomatous optic
neuropathy (GON) and occurs as axons
of retinal ganglion cells get damaged due
to mechanical, vascular, or biochemical
injury to the ocular structures. This
structural damage leads to the formation
of characteristic scotoma on visual field (VF)
testing, which represents the functional
domain of the optic nerve. Over time, the
damage has been noted to progress, and
intervention decisions are guided by how
progression is assessed and documented.**!
A wide variety of tools and techniques
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Artificial intelligence (Al) has been widely used in ophthalmology for disease detection and monitoring
progression. For glaucoma research, Al has been used to understand progression patterns and
forecast disease trajectory based on analysis of clinical and imaging data. Techniques such as
machine learning, natural language processing, and deep learning have been employed for this
purpose. The results from studies using Al for forecasting glaucoma progression however vary
considerably due to dataset constraints, lack of a standard progression definition and differences
in methodology and approach. While glaucoma detection and screening have been the focus of
most research that has been published in the last few years, in this narrative review we focus on
studies that specifically address glaucoma progression. We also summarize the current evidence,
highlight studies that have translational potential, and provide suggestions on how future research
that addresses glaucoma progression can be improved.

Artificial intelligence, deep learning, forecasting, glaucoma, prediction, progression

have been employed to assess glaucoma
progression. Serial fundus photographs and
optical coherence tomography (OCT) can be
used to document structural progression,
while functional progression is measured
by VF testing.!

Recently, advances in artificial intelligence
(AI) have shown great potential in
diagnosis and monitoring progression of
glaucoma.®! However, defining glaucoma
progression and rate of loss has been
an area of controversy.[*! Instrument
manufacturers have proposed intuitive
solutions like the glaucoma progression
analysis (GPA; Carl-Zeiss Meditec, Inc., Jena,
Germany) or global trend-based analysis of
VF indices such as mean deviation (MD),
pattern standard deviation (PSD), and VF
index (VFI).”l These methods have their own
limitations, as linear trend-based approaches
can miss impact of localized loss or small
scotomas and event-based approaches need
large amount of high-quality longitudinal
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data.*8 Thus, it is difficult to capture both the temporal
and spatial aspects of glaucoma progression using one
single approach.*#1% Another significant challenge is the
test-retest variability of OCT and VF when used to assess
change over time, as this makes it difficult to differentiate
between true progression and normal fluctuations. There
is also a lack of consensus on specific criteria or testing
strategies for defining structural (OCT) or functional
progression (VF) thereby making it difficult to compare
the results of different studies.*'"I Other factors such as
impact of individual variations of the retina (e.g., high
myopia) and disease severity have also been reported to
affect the diagnostic instrument accuracy and increase
ground truth variability, however, these factors are
seldom considered while algorithm development.!*>*3!

Despite these challenges, several groups have made
efforts to address these limitations by using unsupervised
Al techniques like deep learning (DL) to assess glaucoma
progression patterns. Al algorithms trained especially on
imaging data like fundus photographs have been shown
to have excellent performance when compared to expert
graders for the detection and screening of glaucoma.!'1¢!
Research also has been done to utilize similar techniques
for VF and OCT data to detect and predict future disease
progression.l'””l EMR data with information about
surgical interventions for glaucoma management has
also been used to define progression outcomes./?*2!
In this narrative review, we will summarize how Al
and related techniques such as machine learning (ML),
natural language processing (NLP), and DL have been
used to assess and forecast glaucomatous damage.

Assessment of Structural Damage for
Progression Assessment

Fundus photographs

Fundus photographs offer a simple alternative to
document optic nerve damage over time. They have
been successfully used by several groups to demonstrate
the detection of glaucomatous optic neuropathy./415]
However, subtle damage that can be detected on OCT
and perimetry can be missed in fundus photographs.©*#
Moreover, the assessment of “damage” on fundus
photographs is subjective and grader dependent, and
there is only slight to a fair agreement between experts
on what constitutes progressive change.”?!! However,
researchers have used fundus photographs in innovative
ways to address these issues and they are summarized
in Table 1.

Machine-to-machine domain transformation

Medeiros et al. tried to address the issue of subjectivity
by developing a DL model that can predict SDOCT
retinal nerve fiber layer (RNFL) thickness values from
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fundus photographs using a machine-to-machine (M2M)
approach.®! Their algorithm had an area under the
curve (AUC) of 0.86 (95% confidence interval [CI],
0.83-0.88) to discriminate progressors from no
progressors. For detecting fast progressors (rate of
loss >2 um/year), the AUC was 0.96 (95% CI: 0.94-0.98).
The correlation between predicted and observed RNFL
thickness measurements was strong (r = 0.80), and the
median absolute deviation was 6.85 um. This study
demonstrates an exciting domain transformation
approach to use Al-estimated three-dimensional (3D)
parameters from 2D images for outcomes.

Multiple models approach

Li et al. approached the problem by developing two
separate convolutional neural networks (CNN) models
for glaucoma detection and progression.*®! Their
models achieved an AUC range from 0.87 to 0.91
and outperformed (P < 0.001) a traditional prediction
model (AUC range: 0.44-0.76) built using baseline clinical
metadata (e.g., age, sex, IOP, MD, PSD, and hypertension
or diabetes label) in the validation and external test
sets. Having separate models for disease detection
and progression assessment can allow better tuning
of the algorithms for specific dataset characteristics
and end-use requirements. Moreover, multiple models
running as ensembles and cascades can be more
efficient (x1.5 to x5.5 lower latency, x2 speed) than single
large state-of-the-art models.!

Extracting novel imaging biomarkers

Lin et al., demonstrated another approach in which they
use a DL model to extract imaging markers such as
central retinal arteriolar equivalent and central retinal
venular equivalent from fundus photographs and
use these along with traditional predictors to model
progression.””l This is a promising approach that can
utilize features and novel imaging biomarkers along
with additional predictors to improve the performance
of progression models.

Prediction of disease before onset and potential
ethical issues

Thakur et al. have also used fundus photographs to detect
glaucoma before onset using DL.*! They used data from
the Ocular Hypertension Treatment Study study using
66,721 fundus photographs. AUC of the DL model in
predicting glaucoma development 4 to 7 years before
disease onset was 0.77 (95% CI: 0.75-0.79) however eyes
with VF changes without GON had a higher tendency
of being missed by the algorithm. There are however
ethical questions associated with the deployment of
such algorithms in the real world. Will risk of future
disease affect insurance and care eligibility? Should
we initiate treatment for healthy people on the basis of
future risk projections based on Al recommendations?
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Table 1: Summary of studies using fundus photographs for predicting glaucoma progression

Year First Aim Outcome Dataset Model Input Output Results
author
2020 Thakur Predict AUC 66,721 fundus MobileNetV2 Fundus photo Glaucoma  AUC for onset 4-7 years
et al.?4 glaucoma before photos, 3272 prediction before disease: 0.77 (95%
onset eyes, 1636 before onset Cl: 0.75-0.79). AUC for onset
subjects 1-3 years before disease: 0.88
(95% CI: 0.86-0.91)
2021 Medeiros Use fundus AROC 86,123 pairs, ResNet50 Fundus photo Progressor RNFL predictions AROC:
et al.?9 photo to predict 8831 eyes, versus no 0.86 (95% Cl: 0.83-0.88) to
glaucoma 5529 subjects progressor  discriminate progressors from
progression nonprogressors. For detecting
(RNFL loss fast progressors (slope faster
>1 um/year) than 2 um/year), AROC: 0.96
(95% Cl: 0.94-0.98), sensitivity:
97% and specificity: 80%

2022 Lietall® Predict AUROC 17,497 eyes, PredictNet  Fundus photo Glaucoma Glaucoma progression:
progression from 9346 subjects (based on progression AUROCSs of 0.87 (0.81-0.92)
fundus images (3 ConvNet) and 0.88 (0.83-0.94) in two test
experts defined datasets
progression)

2023 Lin et al?? NTG progression C statistic =~ 197 patients SIVA-DLS Fundus photo CRAE/ CRAE + CRVE + age + gender
using retinal of cox features CRVE from  + I0OP + MOPP + SBP have
caliber analysis  regression + other DL algorithm C=0.85 for VF deterioration and

model predictors C=0.708 for progressive RNFL

thinning

AUC/AUROC=Area under the receiver operating characteristic curve, CRAE=Central retinal arteriolar equivalent, CRVE=Central retinal venular equivalent,
I0P=Intraocular pressure, MOPP=Mean ocular perfusion pressure, RNFL=Retinal nerve fibre layer, DL=Deep learning, SIVA-DLS=Singapore | vessel analyzer DL
system, SBP=Systolic blood pressure, VF=Visual field, NTG=Normal tension glaucoma, Cl=Confidence interval

Who will assume the legal and moral liability in case
of harm or if disease doesn’t occur? Future projections
in healthy suspects thus need evaluation not only from
the statistical and clinical front, but also, from the legal,
social, ethical, economic, and emotional impact these
prediction models can make. 2!

Optical coherence tomography

OCT machines have been widely used across
ophthalmology for structural assessment of the
retina. For glaucoma assessment, the most important
measurements are the RNFL thickness and the ganglion
cell-inner plexiform layer (GCIPL) thickness.**! Previous
studies have evaluated several global measurements
obtained from OCT imaging for diagnosing and
detecting glaucoma progression.**! Depending on the
layer (GCIPL vs. RNFL), location (macula vs. ONH), and
sector (superior vs. inferior), these global measurements
can achieve high accuracy (AUC >0.9) in diagnosing
glaucoma. There are however limitations of these
measurements for predicting disease progression as
they only represent a single domain of retinal structure.
Moreover, progression often occurs subtly without
affecting global thickness parameters in the short
term.P! It has also been noted that while modalities
that measure structural and functional progression
are moderately correlated with each other, both have
their limitations, and several factors confound the
interpretation of progression.*'>?! The strength of the
structure-function relationship however depends on
the sample size, range of glaucoma severity, units of
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measurement, and measurement variability.**¥"! Early
structural changes are however missed on conventional
VF testing due to “functional reserve” and late
functional changes are missed on OCT imaging due
to “floor effect” of the surrounding retinal tissues
(e.g., glial cells and blood vessels).*%*1 To address some
of these limitations and to improve the performance
of diagnostic modalities for progression assessment,
researchers have developed innovative algorithms that
use OCT features for progression assessment.

Feature extraction from optical coherence
tomography scans

Kim et al., demonstrated the use of image processing
methods such as fractal analysis, wavelet-Fourier
analysis, and fast-Fourier analysis for simultaneous
multiclass classification.*”! Later, Christopher et al.
used an unsupervised ML approach based on principal
component analysis (PCA) to predict glaucoma
progression using RNFL thickness maps from wide angle
swept-source OCT.*! In their study, they compared the
performance of the PCA features with conventional
parameters such as standard automated perimetry (SAP)
24-2 VF MD, frequency doubling perimetry (FDT) MD
and circumpapillary retinal nerve fiber layer (cpRNFL)
thickness. RNFL PCA outperformed VFMD (AUC:0.74 vs.
0.58 (P = 0.046), FDT MD (AUC: 0.71 vs. 0.52 (P = 0.007),
and mean cpRNFL (AUC: 0.74 vs. 0.55 (P = 0.044) for
predicting glaucoma progression. Their performance
for the PCA features was even better for glaucoma
detection (AUC = 0.95). However, the study had a limited

Taiwan J Ophthalmol - Volume 13, Issue 2, April-dJune 2023



sample size (56 healthy, 179 glaucomas), majority of the
glaucoma group had mild glaucoma (mean = -3.8 dB
on SAP), and a small progression dataset (progression
numbers: 22/179 (12.3%) by cpRNFL, 16/179 (8.9%)
by VF MD and 13/179 (7.3%) by FDT MD). The results
however indicate that using structural information
extracted by unsupervised ML may be a better alternative
to using conventional parameters for glaucoma detection
and progression assessment. Other researchers have
used a combination of neural networks (e.g., CNN) with
autoencoders, SVM, and latent space linear regression
to predict glaucoma progression using different OCT
machines.'#># These studies are summarized in Table 2.

Upscaling image quality and noise reduction
Lazaridis et al. show another application of DL to
improve the utility of time domain-OCT (TDOCT)
scans using ensemble generative adversarial
networks (GAN) to upscale signal from them to
synthesize spectral domain OCT (SDOCT) images.*!
The agreement between TDOCT RNFL and SDOCT
RNFL measurements significantly improved after
GAN-based image enhancement. GAN is based on an
adversarial process where one network creates artificial
images, while other networks continuously learn to
differentiate between real and synthetic images. These
have also been used to create super-resolution images,
image denoising, dataset augmentation, annotation
sharing, domain transformation, and conditional
image synthesis.*>" This technology has the potential
to revolutionize the “data hungry” Al research based
on medical images, especially in rare and orphan
diseases.! It still remains difficult to access to high
quality reliable annotated data, and GAN can help in
this regard through domain adaptation." It may thus
be possible to compute uniform progression outcomes
using multiple data sources and Al algorithms to have
high-quality ground truth labels.*! However, technical
factors such as lack of robust similarity evaluation
metrics and model collapse along with nontechnical
factors such as ethical /privacy concerns and physician
lack of trust in synthetic images, remain major hurdles
that need to be addressed.*?

Limitations of optical coherence tomography use
for progression outcomes

The studies described in this section are quite
heterogeneous. The usage of a wide variety of OCT
machines, different glaucoma progression definitions,
lack of external validation datasets, and nonuniform
performance evaluation metrics makes these studies
difficult to compare [Table 2]. However, Al modalities
have been shown to have better performance, speed,
and accuracy than conventional progression assessment
methods.**¥ Future efforts to develop consensus
guidelines for uniform testing strategies, consistent
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progression criteria, and standardized evaluation metrics
can help improve the chances of translation for such work
into clinical practice.

Assessment of Functional
Damage (Perimetry) for Progression
Assessment

Functional glaucoma progression is usually defined on
the basis of perimetric (VF) parameters.® Methods for
the detection of VF progression include clinical judgment,
event-based analysis (GPA), and trend-based analysis
for VF metrics (pointwise linear regression: PLR).[5+%
When compared with each other agreement between
GPA and experts is reported to be fair (Kappa [k] = 0.52,
95% CI = 0.35-0.69), and the agreement increases
when experts are provided additional information
like GPA printout (k = 0.62, 95% CI = 0.46-0.78).15
Similar agreement results have also been shown by
other groups.”!”! However, the integration of multiple
methods of progression analysis together has been
demonstrated to provide superior results.[*>*%5] Major
clinical trials such as Advanced Glaucoma Intervention
Study (AGIS), the Collaborative Initial Glaucoma
Treatment Study (CIGTS), and the Early Manifest
Glaucoma Trial (EMGT) have also used specific VF
scoring systems to define progression.”®*! It is important
to note that these methods require large amounts of
longitudinal data for accurate analysis.®”! The World
Glaucoma Association (WGA) recommends four to six
VF in the first 24 months of diagnosis.”! Conventional
regression models have been shown to require at least
10-14 VF to accurately predict progression.l®*®? As this
amount of data would require significant time, effort,
and resources to collect, more efficient alternatives to
predict progression are needed.

Using both spatial and temporal information from
visual fields

ML models have been explored by several researchers
to address the limitations of conventional models and
VF progression scoring systems./®*®l Models such as
variational Bayesian independent component analysis
mixture (VIM) and Gaussian mixture model-expectation
maximization (GEM) have been shown to outperform
conventional methods based on GPA, MD, and VFI.[63¢]
Other approaches that use models to learn spatial
patterns of VF loss such as archetypal analysis!®®! and
deep archetypal analysis!®! have also been shown to
have concordance with expert-identified patterns and
perform better than linear models (permutation of PLR)
and scoring systems based on AGIS and CIGTS.!"7"!
Several methods of assessment can also be integrated
as a “dashboard” for monitoring progression using a
combination of linear (PCA) and nonlinear (t-distributed
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stochastic neighbor embedding) modeling.”"! Other
popular ML classifiers such as random forest (RF), extreme
gradient boosting, support vector classifier, support
vector machine, ANN, and naive Bayes classifier have
also been demonstrated to work better than conventional
methods with AUC range from 0.72-0.68 and accuracy
from 91% to 87%.[0¢71 Shon et al., also demonstrated the
utility of CNN models in the creation of VE-3D tensors
for future progression prediction.”? They demonstrate
significant improvement in performance with “VF
blocks” (AUC: 0.864) as compared to the conventional
regression approach (AUC: 0.611). A summary of these
studies is shown in Table 3.

Forecasting visual fields

With the use of Al techniques like DL, it is also possible
to forecast future progression and VF changes using
baseline data or a single VF.I'®l This possibility opens up
exciting avenues to create efficient glaucoma monitoring
capabilities, as currently a significant amount of resources
are spent on VF testing, which is often a frustrating
experience for the patients and the care providers due
to the inherent limitations of VF testing.["¢%!

Variational autoencoders

Berchuck et al. suggested using a generalized
variational autoencoder (VAE) to learn low dimensional
features of SAP using a dataset of 3832 patients
(29,161 fields).”” The VAE used dual-mapping from the
original VF to lower dimensional latent features and then
back to a reconstructed high dimensional VF. VAE has the
advantage of other techniques that learn latent features
such as probabilistic principal components, factor
analysis, or independent components analysis as VAE
allows nonlinear mappings.”*””! They also demonstrated
that, while the PLR method for Humphrey VFs (HVFs)
interpretation was highly susceptible to local variability,
the VAE produced stable (i.e., smooth) predictions. Thus,
the longitudinal rate of change through the VAE method
detected a higher proportion of progression than HVF
MD at two (25% vs. 9%) and four (35% vs. 15%) years
from baseline. VAE has additional utility as it can be
used for future progression projections by modeling a
patient’s longitudinal VF series in latent space. Synthetic
glaucomatous VF may also be generated using VAE
similar to generative adversarial networks (GAN), that
can then be used for research purposes./7>8081

Convolutional neural network approach

Wen et al. used an alternative approach using the
CascadeNet-5 CNN model that can predict future VF,
5.5 years in the future using a single VF.I'"] Their method
involves using a large dataset collected over 20 years
(1998-2018) from the University of Washington having
32,443 VF from 4875 patients. The inputis 2 x 8 x 9 tensor
with the first 8 x 9 array encoding the raw perimetry

Taiwan J Ophthalmol - Volume 13, Issue 2, April-dune 2023

sensitivities and the second 8 x 9 array with every cell
value set to the age, while the output is 8 x 9 target VF.
They reported an overall PMAE of 2.47 dB (95% CI:
2.45-2.48 dB) and root mean square error (RMSE) of
3.47 dB (95% CI: 3.45-3.49 dB). The algorithm can be used
to generate predictions on HVFs at a point-wise level from
0.5to 5 years. The dataset used in the study was unfiltered
and even included VF with changes due to neurological
causes. While most researchers have used manicured
data with strict inclusion criteria for Al-related research,
this study uses a dataset that closely mirrors real-world
use. Although glaucoma is a slow disease, longer periods
need to be accounted for progression assessment using
perimetric outcomes, especially in patients that are
undergoing treatment.’825

Recurrent neural network approach

Park et al. demonstrated that a recurrent neural
network (RNN) long short-term memory (LSTM) can
also be used to forecast future fields.” The input in
this case for a single layer of six-LSTM cells comprised
of 52 total deviation values (TDV), 52 pattern deviation
values, reliability data (false-negative rate, false-positive
rate, and total fixation loss rate), and time displacement
values (definition: number of days from most recent VF).
The six cells included five previous VF exams with
negative time value and one blank data with a positive
time value for prediction. The final output in this case
is the 52-point TDV. The RNN outperformed ordinary
linear regression (OLR) and gave an overall prediction
error (RMSE) of 4.31 + 2.54 dB versus 4.96 + 2.76 for
the OLR model (P < 0.001). However, due to the nature
of the model, the dataset included subjects with a
minimum six consecutive VF thereby limiting widespread
generalizability. The authors also evaluated the impact
of VF reliability parameters on prediction accuracy,
showing that prediction error had a moderate to a strong
relationship with false-negative rate (Spearman’s rho:
0.442, P < 0.001) and VF MD (Spearman’s rho: —0.734,
P < 0.001), indicating that the prediction error became
greater as the false negative rate or VF MD became worse.
However, the prediction error had no or weak correlation
with fixation loss (Spearman’s rho: —0.026, P = 0.664) and
false-positive rate (Spearman’s rho: -0.23, P < 0.001).
These results indicate that false-negative rate may be the
most important VF reliability index that affects variability
when considering filtering criteria for dataset curation for
research. Similar results have also been reported previously
for reliable VF assessment.® However, when translation
to real-world use is the end goal, it makes more sense to
include all types of VFs for algorithm development.!'”5

Convolutional neural network versus recurrent neural
network

It is also important to understand that even though Al
models may have impressive statistical performance,
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Mean
Variational

Positive predictive value,

Confidence interval

Convolutional neural

Variational auto-encoder, VIM

Artificial intelligence, PPV:

Principal component analysis, MAE

was 1656 (95% Cl: 1638—1674), 903 (95% Cl: 884-922)

and 636 (95% Cl: 625-646) for the entire cohort, the
expert-identified patterns. Most prevalent expert-identified
patterns included partial arcuate, paracentral and nasal

step defects and most prevalent machine-identified
CNN: AUROC: 0.864, SN: 0.42, SP: 0.95; PLR: AUROC:

patterns included temporal wedge, partial arcuate, nasal
0.611, SN: 0.28, SP: 0.84

and effect size of 30%, the number of patients required
subgroup and the model-selected patients, respectively
18 machine-identified patterns of VF loss similar to 13
step and paracentral VF defects

identifying those with worsening and failed to outperform
13% progressed over 5 years, for a trial length of 3 years

CNN: 2.21-2.24 dB, RNN: 2.56—-2.61 dB, large errors in
no change model

Results
Total deviation values, VAE:

Humphrey VF, Al
t-distributed stochastic neighbor embedding, CI

Collaborative initial glaucoma treatment study scoring, CNN

Ordinary linear regression, PCA:

Pattern of loss

52-point VF

Sample size
age, gender, required for

appropriate trial

effect size

over 3 years

Output
values

Three VF as VF progression

3D tensor
Mean deviation, OLR
Support vector machine, TDV

Input

VF

First VF,
laterality,
and MD at
baseline
VF

Permutation of pointwise, HVF:

Specificity, SVM

regression model

CNN and RNN
Elastic-net cox
Deep archetypal
analysis(®®!

VF block: CNN

Model
Pointwise linear regression, tSNE

Visual field index, POP

Ocular hypertension treatment study, PLR:

Glaucoma progression analysis, MD
Sensitivity, SP:

Recurrent neural network, SN

Area under the receiver operating characteristic curve, CIGTS:

Visual field, VFI

24,430, 1809 subjects

24-4 VJF CNN: 54,373,

7472 subjects RNN:
VF progression Progression 7428 eyes, 3871

2231 VF, 205 eyes,

176 OHTS subjects

over 16 years

9212 eyes, 6047

subjects >4 years

Dataset
patients

Outcome
PMAE
yes/no
loss

estimating VF

VF progression Pattern of
VF progression AUROC
by Al versus

Pointwise MAE, RNN

changes

linear models
Advanced glaucoma intervention study scoring, AUC/AUROC:

CNN/RNN for

Aim

Gaussian mixture model-expectation maximization, GPA:

Root mean square error, OHTS:

First
author
2022 Eslami
et al.l"®
et al.l"
et all’l
et al.l”d

Bayesian independent component analysis mixture model, VF:

Table 3: Contd...
RMSE

2022 Chen

2022 Yousefi
2022 Shon
network, GEM
absolute error, PMAE

Year
AGIS:
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they need to be critically evaluated for actual
clinical performance using external validation
datasets. Eslami et al. reimplemented the CNN and
RNN models described by Wen ef al.'! and Park
et al." earlier in this section, using a large dataset
collected from the Massachusetts Eye and Ear
Glaucoma Service comprising 90,684 VF from 21120
subjects.!”¥! They confirmed low range of PMAE values
(CNN: 95% CI 2.21-2.24 and RNN: 95% CI 2.56-2.61)
reported by the original studies, however, they also
demonstrated that both models severely underpredict
worsening of VF loss. This study also highlights
the impact of class imbalance on training data and
the need for more balanced datasets for algorithm
development and testing. However, adding cases
with advanced VF loss to the dataset may introduce
variability and bias into the models, resulting in
lower overall performance but improved accuracy
for cases with actual progression.'**! The authors
also highlighted how current algorithms with small
statistical errors (CNN model lowest PMAE: 2.05 dB,
95% CI: 2.03-2.07 dB) may lead to significant errors if
deployed in clinical care. This is because median rates
of VF loss in glaucoma patients under clinical care
range from —-0.05 dB/year to -0.62 dB/year, while
rates of fast progression that require intervention range
from —1dB/year to -2 dB/year which are similar to error
rates of current state of art algorithms.287%1 Algorithms
that leverage multimodal data for progression
modeling and forecasting VF loss may thus be the
solution to this conundrum.

Limitations of visual fields use for progression
outcomes

A major limitation for the adoption of the novel
approaches described in this section is the lack of
open-source data available to test these proposed
models. While hospitals may have a large collection
of perimetry data, these are available only as image
files, limiting their use in statistical ML models. While
instrument-based extraction of raw data is possible,
licensing requirements from manufacturers are
difficult to navigate for small centers and early-career
researchers. The introduction of deidentified large
open datasets, like UWHVF from the University of
Washington, and the availability of open source tools
like Python-based HVF extraction script, however,
ensures that the future of glaucoma progression
research has a possibility of more inclusivity, diversity,
and collaborations.[®! An example of the utility of
UWHVF data is demonstrated by Chen et al.”! They
showed how progression outcomes derived using ML
from this dataset can be used to model ideal number of
participants (sample size) for appropriate effect size in
prospective drug trials.
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Combination of Investigational Modalities:
Using Both Structural and Functional Tests

The assessment of glaucoma progression often requires
the demonstration of both structural and functional
damage before interventions are initiated in routine
clinical care.P’! Researchers have also realized that the
incorporation of multimodal data for progression
assessment performs better than the conventional
use of a single diagnostic modality. These studies are
summarized in Table 4.

Combining multiple input types for progression
assessment

Liu et al. demonstrated that 2D continuous time-hidden
Markov models can be used along with structure and
function data to predict glaucoma progression.*! They
demonstrate how structure initially degenerates faster
and then function degenerates faster over the glaucoma
continuum indicating that different strategies may be
required to address these two phases of glaucomatous
damage.”! Yousefi et al. build on previous work and
demonstrated that different ML classifiers may have
better performance with different input types as each
technique focuses on a certain domain of glaucomatous
damage.”" Garcia ef al., used Kalman filtering (KF) based
models to demonstrate that ML can be used to make
future predictions about IOP, MD, and PSD values up to
5 years in the future.” Subsequently, they also validated
this modeling technique in a separate cohort of Japanese
subjects with normal tension glaucoma (NTG).™ These
studies also confirm as prediction time and disease
severity increases, the errors in prediction become
larger in magnitude, indicating how ground truth
variability may be affecting prediction results in cases
with advanced disease.!"*!78l

Improving model understanding: Explainable Al
Other approaches include the use of CNN and
RNN models to multimodal data for progression
predictions.”**l To improve the explainability of Al
models, researchers have incorporated heatmaps and
algorithms like the Shapely Additive Explanation (SAE)
to understand how models use data for prediction.!**’]
Lee et al., demonstrated how intuitive clinical factors
such as higher IOP (>26.5 mmHg), greater laminar
curvature (>13.95), and thinner peripapillary
choroid (<117.5 um) were factors that were significantly
affecting model predictions.” These kinds of “explainable
Al” analysis helps clinicians uncover the “black box”
associated with algorithm performance and help increase
trust and confidence in the predictions.?*

It is also possible to design algorithms that have
additional discrimination ability, like prediction of

176

diabetic retinopathy in the same pipeline to increase
the utility of the algorithm, especially in screening
deployment settings.®! This is especially important in
the context of the recent US Preventive Services Task
Force Recommendation Statement, which mentions that
“evidence is insufficient to assess the balance of benefits
and harms of POAG screening for glaucoma in adults.”!"®!
The WGA also recommends that cost-effectiveness and
value proposition of POAG screening may be increased,
if done with other diseases that cause visual impairment,
like uncorrected refractive error, cataract, diabetic
retinopathy, and age-related macular degeneration.*!

Progression Assessment Using Electronic
Health Records (EHR)

Electronic health records (EHR) offer a plethora of
information about the complex relationship between
glaucoma progression and systemic risk factors
(e.g., systemic diseases, medications, vital parameters,
and laboratory results). This clinical information
however is unstructured and needs to be extracted and
processed to be used successfully. Different approaches
such as custom structured query language (SQL) codes,
CNN models, and Bidirectional Encoder Representations
from Transformers (BERT) have been described to allow
the integration of ophthalmology clinical data into Al
models.?11%1 The studies are summarized in Table 5.

Validation of model performance: Reliable
artificial intelligence

Baxter ef al. used a combination of multivariable
logistic regression (MVLR), RFs, and artificial neural
networks (ANN) to predict surgical progression in
a single center cohort of 385 subjects out of which
174 underwent glaucoma surgery in the next six
months.?! The predictors included structured data
pertaining to patient demographics, medications,
information about admissions/hospitalizations, social
history, vital signs, laboratory results, disease diagnoses,
and procedures/surgeries. The MVLR model had
the highest AUC: 0.67, while ANN and RF followed
closely with AUC of 0.65. In order to evaluate their
model’s performance, the authors used a separate
dataset from the All of Us Research Program.!"l In
this study, out of the 242,070 subjects available in the
community-based cohort, 1231 adults were selected
using the systematized nomenclature of medicine and
ICD-9/ICD-10 codes for primary open-angle glaucoma.
The overall AUC of the original model in this dataset
was 0.49. This result prompted the authors to retrain
the models using the new data. After retraining the
models demonstrated higher AUC (MVLR: 0.80, ANN:
0.93, RF: 0.99) and accuracy (MVLR: 0.87, ANN: 0.92,
RF: 0.97). This highlights the importance of retraining

Taiwan J Ophthalmol - Volume 13, Issue 2, April-dJune 2023
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Central
Mean absolute
Pattern
Support vector

Ganglion cell

Cup disc ratio, CCT:

Gradient boosted machine, GCC

long short term memory, MAE

Pointwise linear regression, PSD:

models were 0.075, 0.115 and 0.128. Based on

the decision tree, higher IOP (>26.5 mmHg),
greater laminar curvature (>13.95) and thinner

peripapillary choroid (<117.5 pm) were the 3
most important determinants affecting the rate

of RNFL thinning
Multilayer perceptron and RF have >90%

predict DR in glaucoma patients

Results

Relevance vector machine regressor, SVM

evolution and accuracy. The same pipeline can additionally

Rate of RNFL MAEs for the RF, regression, and decision tree
progression

Glaucoma

progression

Output
Classification and regression tree, CDR

Ocular hypertension study, PLR:

Diabetic retinopathy, GBM

Lamina cribrosa curvature index, LSTM

Recurrent neural network, RVM

Axial length, CART:

during the initial 6 months, mean

LCCI, global peripapillary CT,
global RNFL, VF mean deviation
(MD), VF pattern standard
(HbA1C) for glaucoma evolution
VFI, MD, PSD, and RNFL for

deviation (PSD), AXL, and CCT
glaucoma progression

Age, gender, systemic history
+ ocular measurements (IOP,

random tree, C4.5, CDR, CCT) + lab values

kNN, SVM and
NNGE

Eleven features were selected
as input variables: age, sex,
6 months, glaucoma surgery

highest IOP during the initial

Input
Nonnested generalized exemplars , OHTS:

Continuous time hidden Markov model, DR
Linear trend based estimation, LCCI

RF + Shapley
additive
explanation
Multilayer
perceptron, RF,

Model
Retinal nerve fibre layer thickness, RNN

Dataset
712
participants

50 subjects
k-nearest neighbour, LTBE:

Choroidal thickness, CT-HMM

Machine learning regressor, NNGE

Hemoglobin

Outcome
Accuracy

MAE
=Root mean square error, RNFL:

Area under the area under the receiver operating characteristic curve, AXL

Kalman filtering , kNN

Machine learning, MLR

Visual field index, Hb

Convolutional neural network, CT:

Predict RNFL
thinning
Random forest, RMSE

classification

algorithms

Aim

Intraocular pressure, KF

Visual field, VFI

Mean deviation, ML.

author
2022 Lee et al.l®®

et all®
Alternating decision tree, AUC/AUROC

2022 Tarcoveanu Evaluate
corneal thickness, CNN

complex, IOP

error, MD
standard deviation, RF:

Table 4: Contd...
machine VF

Year First
AD

-
-
©

models with intended target audience data (e.g., change
in gender/ethnic distribution, single-center versus
community/population-based cohort) to improve
algorithm generalisability and performance. It is well
known that while Al models which had demonstrated
excellent performance in controlled settings tend to
perform poorly in external validation or real-world
settings due to several factors.'1%! Thus, researchers
should perform adequate validation experiments in a
variety of deployment environments and large diverse
cohorts to address potential issues of transparency,
generalizability, and performance drop.

Artificial intelligence versus traditional clinical
chart review

Wang et al. also demonstrated the additional advantage that
Al algorithms offer over the traditional review of clinical
records for progression assessment.”"'® They developed a
CNN model using free text clinical and structured EHR data
of 4512 patients from the Stanford Clinical Data Warehouse
database.' The model with both structured EHR
data + features from free text notes (AUC: 73%, F1: 40%,
accuracy: 0.60, specificity: 0.57) outperformed models based
only on structured data (AUC: 66%; F1: 34%, accuracy: 0.56,
specificity: 0.53) and free-text notes (AUC: 70%; F1: 42%,
accuracy: 0.74, specificity: 0.77). However, the overall
accuracy (0.79), specificity (0.90), and precision (0.34) were
best for a glaucoma specialist’s clinical prediction but the
F1 was the worst (F1 = 0.29).

Hu and Wang also demonstrated another NLP approach
using Bidirectional Encoder Representations from
Transformers (BERT)-based models using the same
Stanford Clinical Data Warehouse database.!"®!%! The
different BERT models gave a range of AUC from 70.1%
to 73.4%, F1 score of 41.7% to 45%, specificity of 0.92
to 0.67, sensitivity of 0.69-0.40 and accuracy of 0.83 to
0.71. They also compared performance to a glaucoma
specialist who had F1 score of 0.29, specificity of 0.90,
sensitivity of 0.25, and accuracy of 0.79.

These studies show the trade-off between sensitivity
and specificity associated with Al algorithms and
real-world clinical application. However, Al models
can be tuned to provide the most efficient estimates for
a particular performance metric threshold (F1 score in
the above studies),?'®! while specialist predictions are
dependent on expertise, practice patterns, and individual
preferences. Ideally, multiple expert graders should
be used when evaluating an algorithm to account for
individual-level differences and reduction of bias.!"”!

Current challenges and future prospects

Al has been demonstrated to have potential utility in
assessing and forecasting glaucoma progression [Figure 1].
However, glaucoma progression is a complex and
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Table 5: Summary of studies using electronic health records for predicting the need of glaucoma surgery

Year First author Aim Outcome Dataset Model Input Output Results
2019 Baxter Predict AUC, OR 385POAG MVLR, EHR Surgical MVLR: AUC: 0.67. Factors identified with
et al.”d surgical subjects ANN, progression higher and lower chances of surgery.
progression random Higher mean systolic BP increased odds
forest surgery (OR=1.09, P<0.001). Ophthalmic
medications (OR=0.28, P<0.001), nonopioid
analgesic medications (OR=0.21, P=0.002),
anti-hyperlipidaemic medications (OR=0.39,
P=0.004), macrolide antibiotics (OR=0.40,
P=0.03) and calcium blockers (OR=0.43,
P=0.03) decreased odds of glaucoma
surgery
2021 Baxter Predict Accuracy, 1231 POAG MVLR, EHR Surgical Accuracy: 0.69, AUC: 0.49 with the original
et al"o surgical AUC subjects ANN, progression model. However better performance with
progression fromallof  random retraining with new data, 0.80 (logistic
us research forest regression) to 0.99 (random forests)
program
2022 Wang Predict AUC,F1 748 CNNo8l EHR Surgical Structured clinical features + clinical notes:
et al 2 surgical underwent progression AUC 73%, F1: 40%, only clinical features:
progression surgery, AUC 66%, F1: 34%, only notes: AUC
4512 70%, F1 42% glaucoma specialist: F1:
subjects 29.5%. However clinical predictions highest
specificity (0.90), accuracy (0.79), and PPV
(0.34)
2022 Huand Predict AUROC 4512 BERT EHR Surgical Original BERT model had the highest AUROC
Wang!'e3! surgical subjects progression (73.4%; F1=45.0%), RoBERTa, with an
progression over 12 AUROC of 72.4% (F1=44.7%), DistilBERT,
years with an AUROC of 70.2% (F1=42.5%);

and BioBERT, with an AUROC of 70.1%
(F1=41.7%). All models had higher F1 scores
than an ophthalmologist’s review of clinical
notes (F1=29.9%)

AUC/AUROC: Area under the receiver operating characteristic curve, ANN=Artificial neural network, BERT=Bidirectional encoder representations from
transformers, CNN=Convolutional neural network, EHR=Electronic health records, MVLR=Multivariable logistic regression, OR=0dds ratio, PPV=Positive
predictive value, POAG=Primary open-angle glaucoma

TOOLS TO ASSESS GLAUCOMA PROGRESSION
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ARTIFICIAL INTELLIGENCE BASED APPROACH FOR GLAUCOMA PROGRESSION ASSESSMENT

Al: artificial intelligence, ANN: artificial neural network, CNN: convolutional neural network, DL: deep learning, EHR: electronic health records,
EN: ElasticNet, GCIPL: ganglion cell-inner plexiform layer thickness, GEM: Gaussian mixture model-expectation maximization, LSTM: long short

ML approach like VIM, GEM, ANN, RF, EN, SVM, VAE for
consecutive fields to predict progression. DL approach like
transformers, RNN (LSTM), CNN (Cascade5) can also be used
for forecasting future fields using baseline data.

ML for OCT parameters like RNFL and GCIPL can be used to
predict progression. DL approach like RNN, CNN can also be
used for forecasting future progression using baseline data.

DL assisted feature extraction from fundus photos can be
used for M2M predictions that can be used as progression
outcomes.

NLP and DL assisted feature extraction from EHR can be
used for progression assessment and forecasting future
progression.

Combination of Al tools can be used to leverage clinical
data for progression assessment.

term memory, M2M: machine to machine, MD: mean deviation, ML: machine learning, NLP: natural language processing, OCT: optical

coherence tomography, ONH: optic nerve head, PSD: pattern standard deviation, RF: Random Forest, RNN: recurrent neural network, RNFL:
retinal nerve fibre layer thickness, SVM: support vector machine, VAE: variational auto encoder, VF: visual field, VFI: visual field index, VIM:

variational Bayesian independent component analysis mixture model

Figure 1: Summary of tools and modalities available for assessment and forecasting of glaucoma progression using artificial intelligence
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controversial topic. Consensus progression criteria and
uniform testing strategies need to be defined so that
ground truth definitions can become robust. This will
also facilitate efficient comparison between different
studies. The lack of availability of large diverse datasets
with complete longitudinal clinical and imaging data is
another major issue that needs attention. Nonetheless,
as computational power increases and novel algorithms
become available, different types of data generated from
clinical care and large population-based cohorts can
be leveraged through techniques like M2M to provide
accurate progression labels and predictions.
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