Skip to main content
. 2023 Jun 1;13(2):184–190. doi: 10.4103/tjo.TJO-D-22-00178

Table 3.

Performance in papilledema detection and grading

Author (year) AUC (95% CI) Sensitivity (%) Specificity (%) Accuracy (%) Secondary results
Papilledema detection
Fatima et al.[12] (2017) - 83.94 88.39 85.89
Akbar et al.[13] (2017) - 90.01 96.39 92.86
Milea D et al.[9] (2020) 0.96 (0.95–0.97) 96.4 84.7 87.5
Biousse V et al.[10] (2020) 0.96 (0.94–0.97) 83.1 not statistically different from Expert 1and 2 94.3 significantly better than expert 1 (P<0.001), identical to Expert 2 91.5 not statistically different from Expert 1and 2 Time needed: DLS: 25 s Expert 1: 61 min Expert 2: 74 min
Saba T et al.[14] (2021) - 98.63 97.83 99.17
Papilledema grading
Akbar S et al.[13] (2017) - 97.32 96.90 97.85
Saba T et al.[14] (2021) - 99.82 98.65 99.89
Vasseneix C et al.[11] (2021) 0.93 (0.89–0.96) 91.8 comparable to neuro-ophthalmologists 91.8 (P=1) 82.6 comparable to neuro-ophthalmologists 73.9 (P=0.09) 87.9 comparable to neuro-ophthalmologists 84.1 (P=0.19)

AUC: Area under the curve, CI=Confidence interval, DLS=Deep learning systems