Skip to main content
. 2023 May 16;13(2):142–150. doi: 10.4103/tjo.TJO-D-23-00032

Table 2.

Artificial intelligence in myopia in adults

Tasks Author (year) Main predictors AI model Aims Main findings
Diagnosis and detection Lu et al., 2021[35] Fundus images DL Detection of pathologic myopia AUC - 0.979, accuracy - 0.963
Tan et al., 2021[36] Fundus images DL Detection of high myopia and MMD Detection of high myopia: AUC - >0.913; detection of MMD: AUC - >0.969
Lu et al., 2021[37] Fundus images DL Detection of pathologic myopia, classification of myopic maculopathy AUC - 0.995, accuracy - 97.36%, sensitivity - 93.92%, specificity - 98.19%
Choi et al., 2021[38] OCT images DL Detection of high myopia AUC - 0.86–0.99
Wan et al., 2021[39] Fundus images DL Grade the risk of high myopia AUC - 0.9968 for low-risk high myopia, AUC - 0.9964 for high-risk high myopia
Li et al., 2022[40] OCT images DL Detection of retinoschisis, macular hole, retinal detachment, mCNV AUC - 0.961–0.999, sensitivity and specificity - >90%
Tang et al., 2022[41] Fundus images DL Grade myopic maculopathy, diagnose pathologic myopia, identify and segment myopia-related lesions Grading accuracy - 0.9370, diagnosing pathologic myopia - 0.9980, segmentation model F1 values - 0.80–0.95
Hemelings et al., 2021[42] Fundus images DL Detection of pathologic myopia; fovea localisation; segmentation of optic disc, retinal atrophy and retinal detachment Detection of pathologic myopia: AUC - 0.9867; foveal localisation: 58.27 pixels
Rauf et al., 2021[43] Fundus images DL Detection of pathologic myopia AUC - 0.9845, accuracy - 95%
Du et al., 2021[44] Fundus images DL Detection of pathologic myopia and myopic maculopathy (diffuse atrophy, patchy atrophy, macular atrophy, mCNV) Diffuse atrophy AUC - 0.970, sensitivity - 84.44%; patchy atrophy AUC - 0.978, sensitivity - 87.22%; macular atrophy AUC - 0.982, sensitivity - 85.10%; mCNV AUC - 0.881, sensitivity - 37.07%
Du et al., 2021[45] OCT images DL Detection of myopic maculopathy mCNV AUC - 0.985; MTM AUC - 0.946; DSM AUC - 0.978
Sogawa et al., 2020[46] OCT images DL Detection of myopic macular lesions (mCNV, retinoschisis) AUC - 0.970, sensitivity - 90.6%, specificity - 94.2%
Ye et al., 2021[47] OCT images DL Detection of myopic maculopathy AUC - 0.927–0.974
Prediction Varadarajan et al., 2018[48] Fundus images DL Estimate refractive error MAE - 0.56–0.91 diopters
Yoo et al., 2022[49] Posterior segment optical coherence tomography images DL Estimate uncorrected refractive error; detect high myopia SE prediction: MAE 2.66 diopters; detect high myopia: AUC - 0.813, accuracy - 71.4%
Treatment Shen et al., 2023[50] ICL size, ACD, pupil size, ACA, CT, AL, etc. ML Predict the vault and the EVO-ICL size Random forest R2=0.315, accuracy=0.828, AUC=0.765
Kim et al., 2022[51] Fundus photography, preoperative ACD, planned ablation thickness, age, preoperative CCT ML Identify high-risk patients for refractive regression Combined model AUC=0.753, single model AUC=0.673

DL=Deep learning, ML=Machine learning, AUC=Area under the receiver operating characteristic curve, MMD=Myopic macular degeneration, OCT=Optical coherence tomography, mCNV=Myopia choroidal neovascularization, MTM=Myopic tractional maculopathy, DSM=Dome-shaped macula, MAE=Mean absolute error, ACD=Anterior chamber depth, CCT=Central corneal thickness, ACA=Anterior chamber angle, CT=Corneal thickness, AL=Axial length, AI=Artificial intelligence, ICL=Implantable collamer lens