Skip to main content
. 2023 Jul 21;18(7):e0289011. doi: 10.1371/journal.pone.0289011

Table 3. Stability analysis of equilibrium points.

Equilibrium points Eigenvalues Symbols State Conditions
λ 1 λ 2 λ 3
E1(0,0,0) R1-C2-Cr-C1+R2 R4-C3 Rg-Cg (+,+,+) Instability point \
E2(1,0,0) C1+C2+Cr-R1-R2 R4-C3+C1*ω1+C2*ω2-R1*ω1-R2*ω2 Rg-Cg-S1 (-,+,+) Instability point
E3(0,1,0) R1-C2-Cr-C1+R2 C3-R4 Rg-Cg-S2 (+,-,+) Instability point \
E4(0,0,1) R1-C2-Cr-C1+R2+S1 R4-C3+S2 Cg-Rg (+,+,-) Instability point \
E5(1,1,0) C1+C2+Cr-R1-R2 C3-R4-C1*ω1-C2*ω2+R1*ω1+R2*ω2 Rg-Cg-S1-S2 (-,-,+) Instability point
E6(1,0,1) C1+C2+Cr-R1-R2-S1 R4-C3+S2+C1*ω1+C2*ω2-R1*ω1-R2*ω2 Cg-Rg+S1 (-,+,-) Instability point
E7(0,1,1) R1-C2-Cr-C1+R2+S1 C3-R4-S2 Cg-Rg+S2 (+,-,-) Instability point \
E8(1,1,1) C1+C2+Cr-R1-R2-S1 C3-R4-S2-C1*ω1-C2*ω2+R1*ω1+R2*ω2 Cg-Rg+S1+S2 (-,-,-) ESS

①:R4-C3>|C1*ω1+C2*ω2-R1*ω1-R2*ω2|.

②:ESS is the evolutionary stable strategy of the system.