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Abstract

In this work, we propose a longitudinal quantile regression framework that enables a 

robust characterization of heterogeneous covariate-response associations in the presence of 

high-dimensional compositional covariates and repeated measurements of both response and 

covariates. We develop a globally adaptive penalization procedure, which can consistently identify 

covariate sparsity patterns across a continuum set of quantile levels. The proposed estimation 

procedure properly aggregates longitudinal observations over time, and ensures the satisfaction 

of the sum-zero coefficient constraint that is needed for proper interpretation of the effects 

of compositional covariates. We establish the oracle rate of uniform convergence and weak 

convergence of the resulting estimators, and further justify the proposed uniform selector of the 

tuning parameter in terms of achieving global model selection consistency. We derive an efficient 

algorithm by incorporating existing R packages to facilitate stable and fast computation. Our 

extensive simulation studies confirm the theoretical findings. We apply the proposed method to a 

longitudinal study of cystic fibrosis children where the association between gut microbiome and 

other diet-related biomarkers is of interest.
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1. Introduction

Compositional data have been frequently encountered in a variety of research fields. 

Examples include household expenditure compositions in economics, geochemical 

compositions of rocks in geology, and human microbiome compositions in medical studies. 

Compositional data consist of proportions bounded between zero and one and summed up 

to one, and are often high-dimensional. For instance, human microbiome data are usually 

captured by percentages (or relative abundance) of gene sequencing reads (Tyler et al., 2014) 

at a certain taxonomy level, and the number of operational taxonomy units (OTU) (e.g. 

phyla or genus) can range over hundreds, thousands, or even millions. With technology 

advancement, an increasing number of studies have collected such compositional data 

repeatedly over time. A common question of substantive interest is how these longitudinal 

compositional measurements are associated with other longitudinal biomarkers or clinical 

outcomes. This poses a regression problem subject to multi-fold complications, including 

a large number of covariates, positiveness and unit-sum constraints to the covariates, and 

within-subject dependence of longitudinal observations.

To deal with the high-dimensionality of covariates, a notable line of research has been 

established in the penalization framework (for example, Meinshausen and Buhlmann, 2006; 

Zhang and Huang, 2008; Kim et al., 2008; Lv and Fan, 2009; Fan and Lv, 2011). Extensions 

to longitudinal settings have been developed (for example, Wang et al., 2012; Zheng et al., 

2018). When covariates are compositional, given the unit-sum constraint, an increase in one 

covariate must induce a decrease in another covariate. Applying the traditional penalization 

regression methods without accounting for the compositional nature of covariates may 

lead to results that are difficult to interpret. A common strategy for accommodating 

compositional covariates is to apply a sensible operation to the compositional proportions 

before incorporating them into a regression model, as in the linear log-contrast model and 

logistic normal multinomial regression model (Aitchison, 1982; Aitchison and Bacon-shone, 

1984; Aitchison, 2003; Xia et al., 2013). Many efforts have also been devoted to deal with 

covariates that are both compositional and high-dimensional. For example, Lin et al. (2014) 

proposed Lasso-penalized method for the linear log-contrast regression model that properly 

accounts for the compositional nature of covariates. Shi et al. (2016) studied an extension of 

Lin et al. (2014)’s model with a set of linear constraints. Lu et al. (2019) further generalized 

the model to a generalized linear log-contrast model and proposed a l1-penalized likelihood 

estimation procedure.

Methods for addressing high-dimensional compositional covariates in a longitudinal setting, 

however, has been scarce. Moreover, existing approaches are mostly based on mean-based 

linear regression, which typically confine covariate effects to be location-shifts and thus can 

be restrictive for real data. Quantile regression (Koenker and Bassett, 1978), as characterized 

by its flexibility to assess covariate effects across different quantile levels, has demonstrated 

promising utility to identify and depict dynamic covariate-response associations that often 

shed useful scientific insight. The modeling strategy of quantile regression has been 

incorporated to the analysis longitudinal data under various perspectives (Koenker, 2004; 

Wang and Fygenson, 2009; Ma, Peng, and Fu, Ma et al., for example). In the present of 

high-dimensional covariates, many authors (Li et al., 2007; Zou and Yuan, 2008; Wang et 
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al., 2012; Zheng et al., 2013; Fan et al., 2014, among others) have studied penalized quantile 

regression methods. These methods model a single or multiple pre-specified quantiles of 

the response; in other words, are locally concerned. The locally concerned methods are 

subject to inherent issues such as undesirable variability in variable selection results across 

neighboring quantile levels, and potential failure to detect some important variables due 

to an off-target selection of quantile levels. To address these limitations, Zheng et al. 

(2015) proposed the perspective of globally concerned quantile regression, which allows for 

simultaneously examining regression quantiles over a continuum set of quantile levels and 

thus reflects the underlying scientific interest in a more robust way. While demonstrating 

improved stability and “power” of variable selection compared to locally concerned quantile 

regression approaches, Zheng et al. (2015)’s method is not suitable for handling either 

longitudinal data or compositional covariates.

In this work, we develop a globally concerned longitudinal quantile regression framework, 

which is tailored to evaluate the effects of high-dimensional longitudinal compositional 

covariates on longitudinal responses. We consider a longitudinal linear log-contrast quantile 

regression model, where quantiles of the longitudinal response are linked to the log contrasts 

of the corresponding compositional covariates. To avoid the shortfall associated with 

selecting an irrelevant covariate as the reference in log-contrasts, we reformulate the model 

into a symmetric form with zero-sum constraint of coefficients, which ensures sensible 

interpretations of the effects of compositional covariates. We propose a regularization 

method, where a globally adaptive Lasso penalty is imposed to the longitudinal quantile loss 

function that appropriately aggregates the repeated measurements from the same subject. 

We further adapt the rq.fit.fnc() function in the existing R package quantreg to facilitate the 

estimation in the presence of the zero-sum constraint of coefficients.

We conduct theoretical studies for the proposed method in the ultra-high dimensional 

setting, where the number of covariates p may increase exponentially with sample size n 
(i.e. log p = o(nb) for some b > 0) and the number of relevant covariates s also increases with 

n. We attain the uniform convergence rate of the proposed estimator as Op( s log n/n), which 

is fastest possible. Because the longitudinal quantile loss function is not differentiable, to 

attain this result, we cannot adapt the existing work on linear regression based methods 

for high-dimensional compositional data, such as Lin et al. (2014), which penalizes a 

smooth least-squares loss function. Instead, we employ theoretical techniques, including 

chaining theory (Talagrand, 2005), contraction inequality (Ledoux and Talagrand, 1991), 

and empirical process (van der Vaart and Wellner, 1996), like in Zheng et al. (2015), which 

however did not address the longitudinal data structure and the compositional constraint for 

high dimensional covariates. In this work, we develop new lines of arguments to account 

for these special data features. A notable effort is that we properly formulate and establish a 

crucial Karush-Kuhn-Tucker (KKT) condition tailored to compositional data, which is new 

in literature. In addition, we thoroughly justify that penalizing the proposed longitudinal 

quantile loss function, which adopts the simple working independence assumption, is 

capable of accommodating longitudinal data with dependent repeated measures.

Our theoretical studies confer some useful results that were not discussed in existing work 

that handles high-dimensional compositional covariates based on log-contrast models, such 
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as Lin et al. (2014) and Shi et al. (2016). For example, our theoretical investigation reveals 

that the asymptotic behavior of the globally adaptive estimator based on a constrained linear 

log-contrast quantile regression model is asymptotically equivalent to its unconstrained 

counterpart as long as the reference variable for the latter is a truly relevant variable, which 

however would not be known in advance. In addition, we establish the weak convergence of 

any linear combination of the proposed estimator to a Gaussian process. We develop a GIC-

type uniform tuning parameter selector. We show that the proposed estimation and tuning 

parameter procedures can correctly identify all globally relevant variables with probability 

tending to one (i.e. global model selection consistency).

The rest of this article is outlined as follows. In Section 2, we introduce a globally 

concerned framework built upon a longitudinal linear log-contrast quantile regression model. 

Then we propose a globally adaptive regularization procedure based on a symmetric 

model representation with the zero-sum coefficient constraint. In Section 3, we present 

the asymptotic studies for the proposed estimation procedure. In Section 4, we investigate 

the finite sample performance of proposed method through simulation studies. Finally, our 

methodology is illustrated by an application to a longitudinal observational study of cystic 

fibrosis children.

2. Methodology

2.1 Longitudinal Linear Log-contrast Quantile Regression Model

Consider a longitudinal study with n subjects. Let Yi(t), Xi(t), and Wi(t), respectively, 

denote the longitudinal response, r × 1 vector of regular covariates including 1 as the 

first component, and p × 1 vector of compositional covariates at time t for subject i (i 
= 1, …, n). A component of Xi(t) may flexibly represent the value of a time-dependent 

covariate measured at time t or a summary of the covariate history up to time t. We 

consider the setting where r is fixed and p increases with n satisfying log p = o(nb) 

for some b > 0. At each time point t, the compositional covariates in Wi(t) are subject 

to the unit-sum constraint. That is, Wi(t) is belong to the (p − 1)-dimensional positive 

simplex Sp − 1 = w1, …, wp :wj > 0, j = 1, …, p;   ∑j = 1
p wj = 1 . Suppose Yi(t), Xi(t), and Wi(t) 

are observed at mi time points, denoted by ti
(k), k = 1, …, mi . Define a counting process for 

the observation time as Ni(t) = ∑k = 1
mi I ti

(k) ≤ t .

To gain a comprehensive and flexible view of how covariates influence the response, we 

adopt quantile regression modeling to formulate covariate effects on the τth conditional 

quantile of Y(t) given X(t) and W(t), which is defined as QY(t){τ|X(t),W(t)} = inf{y : 

Pr{Y(t) ≤ y|X(t), W(t)} ≥ τ}. However, directly plugging in W(t) into a regression model 

would be problematic because the components of W(t) can not change freely due to the 

unit-sum constraint, and thus interpreting the coefficients for W(t) would be difficult. 

To deal with the unit-sum constraint, we apply Aitchison and Bacon-shone (1984)’s 

log-contrast (or log-ratio) transformation that transforms the compositional Wi(t) from 

Sp − 1 to Zi
p(t) ≐ log W i1(t)/W ip(t) , …,  log W i, p − 1(t)/W ip(t) ⊤, where Wij(t) denotes the jth 

component of Wi(t). The transformation from W(t) to Zi
p(t) is one-to-one and Zi

p(t) is freely 
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ranged in Rp−1 without any constraint. A log-contrast transformation requires selecting a 

reference covariate. For Zi
p(t), the p-th component of W(t), Wip(t), serves as the reference.

We consider the following longitudinal linear log-contrast quantile regression model:

QY i(t) τ ∣ Xi(t), Wi(t) = Xi(t)⊤α0(τ) + Zi
p(t)⊤β0, \p(τ)    for    τ ∈ Δ, (2.1)

where α0(τ) is a r × 1 vector of regression coefficients for Xi(t), β0,\p(τ) ≐ {β0,1(τ), …, 

β0,p−1(τ)}⊤ is a (p − 1) × 1 vector of regression coefficients for Zi
p(t), and Δ ⊂ (0, 1) is a set 

of quantile levels, pre-specified to align with the scientific problem of interest. For example, 

if the interest is to identify variables influencing the center of the response distribution, one 

may choose Δ = [0.4, 0.6]. If the interest lies in the upper tail of the response distribution, 

one may choose Δ = [0.75, 0.9]. One subtle drawback of model (2.1) is that any variable 

selection based on model (2.1) would automatically include Wip(t) as a relevant covariate, 

even when Wip(t) is not a relevant variable.

Following the strategy employed in the setting of linear regression with compositional 

covariates (Lin et al., 2014; Shi et al., 2016), we define β0, p(τ) = − ∑j = 1
p − 1 β0, j(τ), and re-express 

model (2.1) as

QY i(t) τ ∣ Xi(t), Zi(t) = Xi(t)⊤α0(τ) + Zi(t)⊤β0(τ),  subject to  ∑
j = 1

p
β0, j(τ) = 0,

   for   τ ∈ Δ .
(2.2)

Here Zi(t) = {log{Wi1(t)}, … log{Wip(t)}}⊤ and β0(τ) = {β0,1(τ), …, β0,p−1(τ), β0,p(τ)}⊤ 

with β0,j(τ) denoting the jth component of β0(τ). Unlike model (2.1), model (2.2) takes a 

symmetric form and does not involve a choice of the reference covariate. The symmetric 

form of model (2.2) also enables estimation that possesses the desirable properties including 

scale invariance, permutation invariance and selection invariance (Aitchison, 1982; Lin et 

al., 2014).

Many longitudinal quantile regression models studied in literature (for example, Lipsitz et 

al., 1997; Wang and Fygenson, 2009; Sun et al., 2016; Cho et al., 2016; Gao and Liu, 

2019) bear similar forms to model (2.1) or (2.2) but do not involve the zero-sum coefficient 

constraint. In addition, they were investigated under the locally concerned perspective.

We study a globally concerned framework based on the longitudinal quantile regression 

model (2.2), where a covariate is considered as relevant if it has nonzero effects on the 

conditional quantiles of Y(t) at some, not necessarily all, quantile levels in Δ. That is, the set 

of relevant (or active) compositional covariates is defined as

SΔ = j ∈ 1, …, p : ∃τ ∈ Δ, β0, j(τ) > 0 .

It is clear that Sτ ≐ S{τ} ⊂ SΔ when τ ∈ Δ. The globally concerned perspective warrants a 

global sparsity assumption, i.e. s ≐ |SΔ| = o(n), for the model identifiability purpose, where | 

· | denotes the cardinality.
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2.2 Globally adaptive L1 penalized estimation

The observed longitudinal data can be generally formulated as {(Yi(t)dNi(t), Xi(t)dNi(t), 
Zi(t)dNi(t)), i = 1, …, n}. When p is fixed, model (2.2) without the zero-sum coefficient 

constraint can be estimated by minimizing the longitudinal quantile loss function,

Q(α, β; τ) = 1
n ∑

i = 1

n ∫
0

∞
ρτ Y i(t) − Xi(t)⊤α − Zi(t)⊤β dNi(t),

where ρτ(t) = t(τ − I{t ≤ 0}) is the τth quantile loss function. By the definition, Q(α, β; 

τ) takes equal weight summation of the quantile loss function assessed at all within-subject 

observation time points. This mimics the idea of constructing a generalized estimating 

equation (GEE) for longitudinal under the working independence assumption (Liang and 

Zeger, 1986). The same strategy has also been adopted by existing work on longitudinal 

quantile regression (Wang and Fygenson, 2009; Sun et al., 2016, for example). Estimation 

based on Q(α, β; τ), like GEE approach, can properly accommodate longitudinal data with 

correlated repeated measures.

We propose to apply the adaptively weighted L1 regularization to Q(α, β; τ) to address 

the high-dimensionality of Zi(t). This renders a regression coefficient estimator γ(τ) as a 

solution to the following constrained minimization problem,

γ(τ) ≐ α(τ)⊤, β(τ)⊤ ⊤ = argminα, β, ∑j = 1
p βj = 0 Q(α, β; τ) + λ ∑

j = 1

p
ωj(τ) βj . (2.3)

Aligning with the perspective of globally concerned quantile regression, λ is a tuning 

parameter which is a constant over τ and controls for the global sparsity over τ ∈ Δ, namely, 

SΔ. Here ωj(τ) is a nonnegative adaptive weight function that gauges the impoFance of 

Zij(t), the j-th component of Zi(t), j = 1, …, p. The adaptive weights may take the following 

forms:(w1) ωj(τ) = 1/ βj(τ) ; (w2) ωj(τ) = 1/ supτ ∈ Δ βj(τ) ; (w3) ωj(τ) = 1/∫Δ βj(τ) dτ, where β(τ)

is a uniformly consistent estimator of β0(τ). As discussed in Zheng et al. (2015), (w2) and 

(w3) are two globally adaptive weights that capture the global impact of a covariate, and 

may be theoretically and empirically preferable. A uniformly consistent estimator β(τ) can 

be obtained from directly adapting Belloni and Chernozhukov (2011)’s approach to high-

dimensional longitudinal compositional data (i.e. solving the minimization problem (2.3) 

with the penalty term and tuning parameter selector presented Belloni and Chernozhukov 

(2011)). This can be justified by slightly modifying the proof of Theorem 1 (in Section 3), 

combined with the techniques of Belloni and Chernozhukov (2011).

To solve the constrained minimization problem in (2.3), we first write the objective function 

as a classical quantile loss function. Let ej be a p–dimensional vector with the jth component 

equal to 1 and all others equal to 0, j = 1, …, p. Besides, for any integer m ≥ 2, denote the 

m-vector of ones and zeros by 1m and 0m, respectively. Since ρτ(u) + ρτ(−u) = |u|,
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λ ∑
j = 1

p
ωj(τ) βj = ∑

j = 1

p
ρτ Y j

* − Xj
* ⊤ α − Zj

* ⊤ β + ρτ Y p + j
* − Xp + j

* ⊤α − Zp + j
* ⊤β ,

where Y j
*, Xj

*, Zj
* = 0, 0r, λωj(τ)ej  and Y p + j

* , Xp + j
* , Zp + j

* = 0, 0r, − λωj(τ)ej . Letting γ = (α⊤, 

β⊤)⊤, we then formulate the equality constraint ∑j = 1
p βj = 0 as two inequality constraints 

∑j = 1
p βj ≥ 0 (or expressed as 0r

⊤, 1p
⊤ ⊤γ ≥ 0 in matrix form) and −∑j = 1

p βj ≥ 0 (or expressed 

as 0r
⊤, − 1p

⊤ ⊤γ ≥ 0 in matrix form). Then the quantile regression problem in (2.3) with 

linear inequality constraints can be solved by the existing function rq.fit.fnc() in R package 

quantreg, using the augmented dataset Y i ti
(k) , Xi ti

(k) , Zi ti
(k) , k = 1, …, mi; i = 1, …, n , coupled 

with Y j
*, Xj

*, Zj
* , Y p + j

* , Xp + j
* , Zp + j

* , j = 1, …, p .

The set of relevant compositional covariates, SΔ, is estimated by

SΔ ≐ j ∈ 1, …, p : ∃τ ∈ Δ, β j(τ) > 0 .

2.3 Tuning parameter selection

Tuning parameter selection plays an important role in variable selection. In the globally 

concerned setting, a critical idea is to set λ as a common tuning parameter across all τ ∈ Δ 

as a means to control the overall model complexity and avoid overall fitting. We adapt the 

generalized information criterion (GIC) (Nishii, 1984; Fan and Tang, 2013) to the problem 

setting of globally concerned longitudinal quantile regression with compositional covariates.

Specifically, we propose the following uniform selector of tuning parameter by minimizing

GIC(λ) = ∫
Δ

log σλ(τ)dτ + Sλ − 1 ϕn,

where Sλ = j ∈ 1, …, p : supτ ∈ Δ β j, λ(τ) ≠ 0 ,

σλ(τ) = 1
n ∑

i = 1

n ∫
0

∞
ρτ Y i(t) − Xi(t)⊤αλ(τ) − Zi(t)⊤βλ(τ) dNi(t),

and ϕn is a sequence converging to 0 with n. Here β j, λ(τ), αλ(τ), and β λ(τ) stand for the 

proposed estimates for βj(τ), α(τ), and β(τ), respectively, with the tuning parameter fixed at 

λ. A popular choice of ϕn is n−1 log(p) log(log(n)). Note that the model size pertaining to the 

compositional covariates is Sλ − 1 due to the zero-sum constraint.

As shown in Theorem 3, with a properly chosen ϕn and a reasonable upper bound imposed 

to the model size, the proposed tuning parameter λ, which is the minimizer of GIC(λ) with 

respect to λ, can consistently identify the true model SΔ. In other words, with probability 

tending to 1, Sλ = SΔ.
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2.4 Grid-based Approximation

With finite sample sizes, minimizing (2.3) for all τ ∈ Δ would yield estimates that 

are exactly piecewise constant functions of τ. While the exact breakpoints of these 

piecewise constant functions can be identified by adapting Koenker and d’Orey (1987) 

and Portnoy (1991)’s procedure, the computation expense can be overwhelming in the ultra-

high dimensional cases. Therefore, we approximate α( ⋅ ) and β ( ⋅ ) by piecewise constant 

functions that only jump at the grid points of a pre-specified sufficiently fine τ-grid in Δ to 

alleviate the computation burden. Let Sn denote the τ-grid in Δ, τ0 < τ1 < … < τM(n), and 

define the size of Sn as Sn = max τk − τk − 1:k = 1, …, M(n) . The grid-based approximations 

are given by αSn( ⋅ ) = ∑k = 1
M(n) α τk I τk − 1 < τ ≤ τk , and β Sn( ⋅ ) = ∑k = 1

M(n) β τk I τk − 1 < τ ≤ τk . With 

certain smoothness assumption for α0(·) and β0(·), we can show that the αSn( ⋅ )⊤, β Sn( ⋅ )⊤
⊤

and α( ⋅ )⊤, β ( ⋅ )⊤ ⊤
 have the same convergence rate and asymptotic distribution if Sn

converges to 0 at the rate o((ns)−1/2).

3. Theoretical Results

Without loss of generality, we assume that r, the number of usual covariates, is finite. 

Let SΔ = {1, …, s} and we use SΔ
c = s + 1, …, p  to denote the collection of all irrelevant 

compositional variables. We allow the number of compositional covariates pn ≐ p and the 

true model size sn ≐ s to increase with the sample size n. To ease the presentation, we often 

omit the subscript n, when it is clear from the context.

Let Vi(t) = (Xi(t)⊤, Zi(t)⊤)⊤ and γ(τ) = (α(τ)⊤, β(τ)⊤)⊤ satisfying ∑j = 1
p βj(τ) = 0. Thus, 

γ0(τ) = (α0(τ)⊤, β0(τ)⊤)⊤. We decompose Zi(t) into (Zia(t)⊤, Zib(t)⊤)⊤ and Vi(t) into 

(Via(t)⊤, Vib(t)⊤)⊤, where Zia(t) = (Zi,1(t), …, Zi,s(t))⊤, Via(t), = (Xi(t)⊤, Zia(t)⊤)⊤ and 

Vib(t) = Zib(t) = (Zi,s+1(t), …, Zi,p(t))⊤. Likewise, β(τ) = (βa(τ)⊤, βb(τ)⊤)⊤ and γ(τ) = 

(γa(τ)⊤, γb(τ)⊤)⊤, where βa(τ) = (β1(τ), …, βs(τ))⊤, γa(τ) = α(τ)⊤, βa(τ)⊤)⊤, and γb(τ) 

= βb(τ) = (βs+1(τ), …, βp(τ))⊤. Regularity conditions (C1)–(C5) are stated in Section S1 of 

the Supplementary Materials.

In Theorem 1, we show that the proposed estimator is uniformly consistent over Δ, with 

the convergence rate, Op( (r + s) log n/n), which is fastest possible and is as good as that of 

Zheng et al. (2015)’s globally adaptive estimator. Concerning a single τ or a finite number of 

τ’s, we establish a faster convergence rate, Op( (r + s)/n), as stated in Corollary 1.

Theorem 1. Suppose conditions (C1)–(C5) (stated in the Supplementary Materials) hold. 

Furthermore, we assume that n/((r + s)3 log2 max{n, r + p}) → ∞ and

sup
j > r + s, δ ∈ Rr + s − 1

E ∫0
∞ V ij(t)Vi(t)⊤δ 2dNi(t)

∥ δ ∥2 = o log max n, r + p
(r + s) log n .

If r + s = o(n1/3), supj ∈ SΔ, τ ∈ Δλwj(τ) = Op( n log n), λ/( r + s log max n, r + p ) ∞ and 

infj > r + s, τ ∈ Δwj(τ) −1 n/ (r + s) log max n, r + p = Op(1) then the proposed estimator satisfies
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sup
τ ∈ Δ

∥ γ(τ) − γ0(τ) ∥ = Op( (r + s) log n/n) .

Corollary 1. Suppose the conditions in Theorem 1 hold. Then the proposed estimator 
satisfies

∥ γ τ0 − γ0 τ0 ∥ = Op( (r + s)/n) .

In Theorem 2, we establish the weak convergence of the proposed estimator.

Theorem 2. Suppose the conditions in Theorem 1 hold. If (r + s)3 log4 n = o(n), for any 
given ξ ∈ Rr+s−1 and ∥ξ∥ = 1, we have the following results:

a. If n/ (r + s) log n  inf1 ≤ j ≤ s, τ ∈ Δ β0j(τ) ∞, then

n1/2ξ⊤ Hτ γ(τ) − γ0(τ) + λ
n ϖ(τ)

converges weakly to a mean zero Gaussian process with covariance

Σ τ, τ′ = E ℎn, ξ, τ(V(t), Y )ℎn, ξ, τ′(V(t), Y ) − E ℎn, ξ, τ(V(t), Y ) E ℎn, ξ, τ′(V(t), Y ) ,

where ℎn, ξ, τ(V(t), Y ) = ∫0
∞ξ⊤V(t)ψτ Y (t) − V(t)⊤γ0(τ) dN(t), ψτ(u) = τ − I(u < 0),

Hτ = E ∫
0

∞
ft, τ 0 ∣ Vi(t) Via(t)Via(t)⊤dNi(t) 0

0 0
,

ϖ(τ) = 0r
⊤, ω(τ) ∘ sign β0(τ) ⊤, 0p − s

⊤ ⊤
, ○ denotes the Hadamard product, and ω(τ) 

= (ω1(τ), …, ωp(τ))⊤;

b. If supτ ∈ Δ n−1/2 ∑j ∈ Sτ λwj
2(τ) 1/2 = op(1), then n1/2ξ⊤Hτ γ(τ) − γ0(τ)  converges 

weakly to a mean zero Gaussian process with covariance Σ(τ, τ′).

To establish the asymptotic properties of the GIC tuning parameter selector, we assume 

the following condition (C5+), which is an enhanced version of (C5) presented in the 

Supplementary Materials:

(C5+) (a)

0 < Λmin: = inf
δ ∈ Rℓ, ℓ ≤ r + κ, δ ≠ 0

δ⊤E ∫0
∞Vi(t)Vi(t)⊤dNi(t) δ

∥ δ ∥2

≤ sup
δ ∈ Rℓ, ℓ ≤ r + κ, δ ≠ 0

δ⊤E ∫0
∞Vi(t)Vi(t)⊤dNi(t) δ

∥ δ ∥2 : = Λmax < ∞ .
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(b)

q′: = sup
δ ∈ Rℓ, ℓ ≤ r + κ, δ ≠ 0

E ∫0
∞ Vi(t)⊤δ 2dNi(t)

3/2

E ∫0
∞ Vi(t)⊤δ 3dNi(t)

> 0,

where Rℓ = δ = δx
⊤, δz

⊤ ⊤:δx ∈ ℝr, ∑j = 1
p δzj = 0, δz 0 ≤ ℓ − r  with ∥ · ∥0 denoting the L0 

norm.

In addition, we set a model size upper bound, denoted by κ, with s < κ < p.

ξn = min min
1 ≤ j ≤ r∫Δ

α0j(τ) dτ, min
1 ≤ j ≤ s∫Δ

β0j(τ) dτ ,

which measures the minimal overall effect of usual and compositional relevant variables 

upon the conditional distribution. Theorem 3 and Corollary 2 present results on the 

consistency of tuning parameter selection based on GIC.

Theorem 3. Suppose the conditions in Theorem 1 and (C5+) hold. Further, 

log(r + p)/n = o ϕn , ϕn = o ξn
5/2 , and κn−1 log max n, r + p = o ξn

3 , then

P inf
S ≠ SΔ, S ≤ κ

GIC(S) > GIC SΔ 1.

Corollary 2. Under the same conditions as in Theorem 3, if

inf
j > r + s, τ ∈ Δ

wj(τ)
−1

n/ (r + s) log max n, r + p = Op(1)

and supτ ∈ Δ, j ∈ Sτ wj(τ) = Op( n/( r + slog max n, r + p )), then P Sλ = SΔ 1.

For any 1 ≤ l ≤ s, we use Zi
l(t) to denote the log-ratio transformed Wi(t) when the reference 

is the lth component, i.e. Zi
l(t) is the vector Zi(t) − Zi,l(t)1p with the lth component removed. 

We also define Vi
l(t) = Xi(t)⊤, Zi

l(t)⊤ ⊤
. Let γ\l(τ) = (α(τ)⊤, β\l(τ)⊤)⊤ where β\l(τ) = (β1(τ), 

…, βl−1(τ), βl+1(τ), …, βp(τ))⊤, Let γ \l(τ) be the solution of the following unconstrained 

minimization problem

1
n ∑

i = 1

n ∫
0

∞

ρτ Y i(t) − Vi
l(t)⊤γ\l dNi(t) + λ ∑

j = 1, j ≠ l

p
ωj(τ) βj , (3.4)

where γ\l = (α1, ⋯, αr, β1, ⋯, βl−1, βl+1, ⋯, βp)⊤. Then the globally 

adaptive unconstrained estimator γ l
u(τ) with the lth component as the reference is 
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γ 1, \l(τ), ⋯, γ r, \l(τ), γ r + 1, \l(τ), ⋯, γ r + l − 1, \l(τ), − ∑k = 1, k ≠ l
p γ r + k, \l(τ), γ r + l + 1, \l(τ), ⋯, γ r + p, \l(τ) ⊤. We state 

the asymptotic properties of γ l
u(τ) in the following theorem:

Theorem 4. Under the same conditions as in Theorem 2, if (r + s)3 log4 n = o(n) and 

supτ ∈ Δ, j ∈ Sτ n−1/2λwj(τ) = op(1), then for any given ξ ∈ Rr+s−1, ∥ξ∥ = 1, and 1 ≤ l ≤ s, we have

a. n1/2ξ⊤Hτ γ l
u(τ) − γ0(τ)  converges weakly to a mean zero Gaussian process with 

covariance Σ(τ,τ′) and P supτ ∈ Δ ∥ γb, l
u (τ) ∥ ∞ = 0 1;

b. n1/2ξ⊤ γ l
u(τ) − γ0(τ)  and n1/2ξ⊤ γ(τ) − γ0(τ)  are asymptotically equivalent.

Theorem 4 indicates that the proposed constrained estimator is asymptotically equivalent to 

an unconstrained estimator that uses a relevant variable as the reference. The latter approach 

however requires preliminary knowledge about truly relevant variables, which may not be 

available in real applications.

By our theorems, the technical constraints for s include (r + s)3 log2 max{n, r + p} = o(n) 

and (r + s)3 log4 n = o(n). When p = O(na) (a > 0), we can allow s to be close to but 

smaller than o(n1/3), which is the fastest model size growth rate derived in Welsh (1989) and 

He and Shao (2000) for an unpenalized quantile regression estimator to achieve asymptotic 

normality. Theorem proofs are provided in the Supplementary Materials (Section S4).

4. Simulation Studies

In this section, we carry out simulation studies to evaluate the finite sample performance 

of the proposed method. We consider the sample size n = 100 and generate Y(t) based on 

the assumed quantile regression model with r = 4 and p = 400. Specifically, we generate 

the longitudinal observation times ti
(k), k = 1, …, mi, from a standard Poisson process, 

where mi is the integer part of 2+Ui with Ui ~ Uniform(0, 2). With r = 4, we generate 

Xi1 from Uniform(0, 1) and Xi2 from Bernoulli(0.5). For each observed time point t = ti
(k), 

we first generate a p-dimensional vector Zi(t) = Zi1(t), …, Zip(t) ⊤ from a multivariate normal 

distribution Np(0, Σ), where Σ = (ρ|i−j|) with ρ = 0.5. Next, we set Zij(t) = Φ Zij(t)  for j ≠ 

7 and Zi7(t) = − Φ Zi7(t) , and then standardize Zij(t) so that its second moment equals 1, 

where Φ(·) is the standard normal distribution function and j = 1, …, p. The standardized 

Zij(t)’s (j = 1, …, p) form the covariate vector Zi(t).

To generate the longitudinal responses, we consider the following four setups: Setup (I): 

Data are generated from a longitudinal linear model with independent homogeneous errors,

Y i(t) = − Xi1 + Xi2 − t + Zi(t)⊤b + ϵi(t),

where b = (1, 0.8, 0.9, 1, 2, −1.5, −4.2, 0, …, 0)⊤, ϵi(t) ~ N(0, 1) for any t > 0, and ϵi(t) and 

ϵi(t′) are independent for t > 0, t′ > 0 and t ≠ t′.

Setup (II): Data are generated from a longitudinal linear model with dependent 

homogeneous errors,
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Y i(t) = − Xi1 + Xi2 − t + Zi(t)⊤b + ai + ϵi(t),

where b = (1, 0.8, 0.9, 1, 2, −1.5, −4.2, 0, …, 0)⊤, ai ~ N(0, 1/2) ϵi(t) ~ N(0, 1/2) for t > 0, 

ϵi(t) and ϵi(t′) are independent for t > 0, t′ > 0 and t ≠ t′, and ai and ϵi(t) are independent for 

t > 0.

Setup (III): Data are generated from a longitudinal linear model with independent 

heterogeneous errors,

Y i(t) = − Xi1 + Xi2 − t + Zi(t)⊤b1 + Xi1 + Zi(t)⊤b2 ϵi(t),

where b1 = b = (1, 0.9, 0.75, 0.5, 0.8, 1, −4.95, 0, …, 0)⊤, b2 = (0, 0.25, 0, 1, 0, 0, −1.25, 0, 

…, 0)⊤, ϵi(t) ~ N(0, 1) for any t > 0, and ϵi(t) and ϵi(t′) are independent for t > 0, t′ > 0 and t 
≠ t′.

Setup (IV): Data are generated from a longitudinal linear model with dependent 

heterogeneous errors,

Y i(t) = − Xi1 + Xi2 − t + Zi(t)⊤b1 + Xi1 + Zi(t)⊤b2 ai + ϵi(t) ,

where b1 = b = (1, 0.8, 0.9, 1, 2, −1.5, −4.2, 0, …, 0)⊤, b2 = (0, 0.2, 0, 0.1, 0, 0, −0.3, 0, …, 

0)⊤, ai ~ N(0, 1/2) and ϵi(t) ~ N(0, 1/2) for t > 0, ϵi(t) and ϵi(t′) are independent for t > 0, t′ 
> 0 and t ≠ t′, and ai and ϵi(t) are independent for t > 0.

Under Setups (I) and (II), we can show that

QYi(t) τ ∣ Xi(t), Zi(t) = Qe(τ) − Xi1 + Xi2 − t + Zi(t)⊤b,

where Qe(τ) is the τ–th quantile of standard normal distribution. Under Setups (III) and 

(IV), we can show that

QYi(t) τ ∣ Xi(t), Zi(t) = −1 + Qe(τ) Xi1 + Xi2 − t + Zi(t)⊤ b1 + b2Qe(τ) .

In all setups, the true regression coefficients for Zi(t) satisfy the zero-sum constraint at each 

τ.

We evaluate the finite-sample performance of the proposed globally adaptive Lasso 

estimators with weights (w2) and (w3), denoted by AW2 and AW3 respectively. We set 

Δ = [0.1, 0.9] and the τ-grid Sn as {0.1 < 0.125 < … < 0.9}. We select the tuning parameter 

λ by a GIC criterion with ϕn = log(log n) log p/n, except for that in the initial estimator. 

The candidate values for λ include N/4 equally-spaced grid points between N/150 and N/15, 

where N = ∑i = 1
n mi is the total number of longitudinal observations. We adapt Belloni and 
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Chernozhukov (2011)’s method over Δ to get the estimator β(τ) for calculating the adaptive 

weight functions.

We compare AW2 and AW3 to the locally concerned adaptive Lasso estimator at a single 

predetermined quantile level τ = 0.2, 0.5, or 0.8, denoted by SS(τ), as well as the pointwise 

approach, which simply combines the estimates from SS(τ) over τ ∈ Δ, denoted by PS. We 

also consider four other benchmark estimation procedures, ALasso (i), ALasso (ii), ALasso 

(iii), and ALasso (iv). The ALasso (i) estimators are the unconstrained estimator obtained by 

minimizing (3.4) with the reference, the lth component, randomly chosen. The ALasso (ii) 

estimators are the globally adaptive estimators derived from model (2.2) without considering 

the zero-sum constraint. That is, the ALasso (ii) estimators, α(τ)(ii), β (τ)(ii) , are obtained as

argminα, β
1
n ∑

i = 1

n ∫
0

∞
ρτ Y i(t) − Xi(t)⊤α − Zi(t)⊤β dNi(t) + λ ∑

j = 1

p
ωj(τ) βj .

ALasso (iii) estimator is obtained from fitting the log-contrast model based on the relevant 

variables selected by ALasso (ii) approach. ALasso (iv) estimator is obtained by solving the 

minimization problem (2.3) without including the zero-sum constraint, using the selected 

relevant variables to fit a log-contrast model, and then selecting the tuning parameter based 

on the GIC criterion and determining the final estimator.

We assess the variable selection performance of the different methods described above in 

terms of mean number of correctly identified relevant variables (NCN), mean number of 

incorrectly selected variables (NIN), percentage of under-fitted models (PUUF), percentage 

of correctly fitted models (PCF), and percentage of over-fitted models (POF). To evaluate 

the global estimation accuracy over τ ∈ Δ, we consider three different types of average 

estimation errors, AEEℓ1, AEEℓ2 and AEEℓ∞, where

AEEℓq ≐ 1
Δ ∫

Δ
∥ β(τ) − β*(τ) ∥ qdτ .

For SS(τ), we calculate the average estimation errors by extrapolating the coefficient 

estimate as the constant value of the whole coefficient function over τ ∈ Δ. To assess 

how well the estimated coefficients satisfy the zero-sum constraint, we adopt the criterion, 

SUM, which is defined as SUM = ∑j = 1
p βj τ* , where βj(·) stands for the estimated coefficient 

function and τ* = argmaxτ ∈ Δ ∑j = 1
p βj(τ) . Better performance would be indicated by NCN 

closer to 7, the true number of relevant covariates, PCF closer to 100%, NIN, PUF and 

POF closer to 0, smaller AEEℓ1, AEEℓ2 and AEEℓ∞, and SUM closer to or equal to 0.

The simulation results for setups (I)–(IV) are presented in Table S1, Table S2, Table S3, 

and Table 1 respectively, where Tables S1–S3 are provided in the Supplementary Materials. 

Simulation results are summarized based on 300 replicates. As seen from these tables, 

the proposed estimators with the globally adaptive weights, AW2 and AW3, perform well 

in all setups where the error terms can be homogeneous or heterogeneous, and can be 

independent or dependent across different time points. In all setups, the PCFs based on 
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these estimators are around or above 85% and the zero-sum constraint is always met by 

the estimated coefficient functions. As shown by additional simulations reported in the 

Supplementary Materials (see Table S4–S5), the PCFs can further increase as the variance of 

the longitudinal error deceases. In setups (I) and (II) where the effects of Z(t) are constant 

over τ, the estimation accuracy is comparable between the proposed globally adaptive 

estimators and the locally concerned estimators, SS(τ), τ = 0.2, 0.5, 0.8. However, variable 

selection based on SS(τ) is more likely to miss relevant variables, as reflected by the higher 

PUFs, particularly when τ = 0.2 or 0.8. In setups (III) and (IV) where the effects of Z(t) are 

not constant over τ, SS(τ) has much worse performance of variable selection than AW2 and 

AW3. This may lead to the deterioration in the average estimation errors for SS(τ) observed 

in setup (III) and (IV). In all setups, PS method produces average estimation errors similar 

to those of AW2 and AW3. However, PS method tends to overfit with POF equal to 31.7% in 

setup (I), 26.3% in setup (II), and 23% in setup (III) and setup (IV).

When examining the results from the globally adaptive estimators under ALasso (i), 

we note a common overfitting problem associated with adopting the unconstrained log-

contrast model. This is because ALasso (i) procedure automatically includes the reference 

compositional covariate, which may not be a truly relevant covariate. The results under 

ALasso (ii) suggest that the underlying zero-sum constraint of coefficients would not be 

satisfied if it is not carefully accounted for in the estimation procedure. In such a situation, 

interpreting the resulting coefficient estimates as the effects of compositional covariates 

would be problematic. ALasso (iii) approach renders satisfactory rates of correct fitting but 

yields larger estimation errors compared to the proposed method. ALasso (iv) method tends 

to overfit with the percentages of overfitting above 25%. The enlarged estimation errors 

or the overfitting behavior reflect the disadvantage of handling the zero-sum constraint 

separately from model estimation and variable selection. In summary, the simulation results 

suggest the importance of the proposed globally adaptive estimators as well as their 

satisfactory empirical performance.

5. A real data example

We applied the proposed method to a longitudinal dataset from the Feeding Infants Right… 

from the STart (FIRST) study. The FIRST study is an ongoing perspective observational 

study, which has enrolled and followed up children with cystic fibrosis (CF) from the 

neonatal period. In this study, various diet-related biomarkers have been collected repeatedly 

at pre-specified CF care visits. For example, fecal specimens were collected approximately 

at 2, 4, 6, 8, and 12 months of age for each child. The gut microbiome composition data 

were extract from fecal specimen by 16S rRNA gene pyrosequencing and comprise of 

relative abundances of 364 unique genera subject to the unit-sum constraint. The levels of 

calprotectin, a biomarker for the inflammation in the gastrointestinal (GI) tract, were also 

tracked over time and recorded in the unit of microgram per gram of stool. In our analysis of 

the FIRST dataset, the specific question of interest is how the gut microbiome composition 

is associated with the calprotectin level over time. Identifying the subcompositional bacterial 

taxa that are linked to the variations in calprotectin can shed useful insight about the early 

CF disease mechnisam.
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The final dataset includes 135 subjects and a total of 328 longitudinal records after 

the exclusion of 7 children with low birth weight. Table S6 in the Supplementary 

Materials presents basic summary statistics for gender, number of longitudinal records, and 

calprotectin levels. It is shown that 56% of subjects are boys, and about 50% of subjects 

have 3 or 4 longitudinal records. It is also noted that the calprotectin levels present a skewed 

distribution with median (= 64.5) considerably smaller than mean (= 111.2). In this case, 

adopting longitudinal quantile regression modeling can deliver a more comprehensive and 

robust view about how the gut microbiome composition influences calprotectin levels.

In our analysis, we implement the proposed globally adaptive methods with the adaptive 

weights (w2) and (w3) and Δ = (0.2, 0.8] (denoted by AW2 and AW3 respectively), the 

locally concerned adapive-Lasso method SS(τ) with τ = 0.2, 0.3, …, 0.8, and the pointwise 

method (denoted by PS), which is a union set for SS(τ) with τ = 0.2, 0.225, …, 0.8. 

We include gender as a regular covariate. The compositional covariates are the relative 

abundances of 364 genera measured from the gut microbiome samples. We exclude six 

genera that have relative abundance below the detection limit in all samples. In addition, we 

replace all non-detectable relative abundance by an extremely small constant 10−20, which 

is much smaller than the minimum nonzero relative abundance captured in our dataset, 

4.418 × 10−6. For the tuning parameter selection, the candidate values of λ include N/4 

equally-spaced grid points between N/150 and N/15, where N = 328. To avoid selecting 

boundary λ’s, ϕn in GIC criteria is chosen as log(log n) log p/(20n) for globally concerned 

quantile regression and locally concerned quantile regression. The estimates below 10−4 are 

shrunk to zero.

To evaluate each method, we compute prediction errors as follows. We first randomly split 

the 135 subjects into a training set of size 120 and a testing set of size 15. We apply the 

method to the training data set and obtain the estimator of (α0(τ)⊤, β0(τ)⊤)⊤, denoted by 

αtrain(τ)⊤, β train(τ)⊤
⊤

. Then we calculate the prediction error in the testing set as

PE(Δ) =
∑i ∈ T ∫Δ∫0

∞ρτ Y i(t) − Xi(t)⊤αtrain(τ) − Zi(t)⊤βtrain(τ) dNi(t)dτ

∑i = 1
n 1 i ∈ T

,

where T denotes the test set. For SS(τ), we calculate PE(Δ) by treating the coefficient 

estimate as a constant valued function over τ ∈ Δ.

Table 2 lists the genus sets selected by different methods. The averages prediction errors 

(PE) along with the corresponding standard deviations (within parentheses) are also 

presented. The calculations of PE are based on 200 random splitting of training and test sets. 

From Table 2, we observe that the selected genus sets vary considerably across the locally 

concerned methods, SS(τ) with different choices of τ. These observations suggest that some 

genera may have varying influences on different quantiles of calprotectin level, and in part, 

may also reflect the variable selection instability associated with SS(τ) (Zheng et al., 2015). 

For example, the genus “g115” may only affect median calprotectin but not the other lower 

or upper quantiles of calprotectin. In contrast, the proposed globally concerned methods give 
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robust and yet parsimonious selection of genus sets. For example, the selected genus sets 

are almost identical between AW2 and AW3. The selected genera are mostly also selected 

by one of SS(τ)’s. Naively pooling the results from SS(τ)’s, as shown by PS method, lead 

to select an excessive number of genera (i.e. 26 genera). Some genera selected by SS(τ) but 

not by AW2 or AW3 are possibly“false positive” as suggested by the apparent overfitting 

behavior of PS method demonstrated in the simulation studies. Moreover, it is noted that 

the proposed method AW3 yields the smallest prediction error. The prediction error of AW2 

is close to the second smallest one. The locally concerned SS(τ) methods produce larger 

prediction errors because they would neglect important genera that do not show effects at the 

τ-th quantile but are relevant to other quantiles. In summary, the proposed globally adaptive 

methods strikes the best balance between parsimonious variable selections and accurate 

predictions, while retaining sensible interpretations via the satisfaction of the zero-sum 

constraint of coefficients.

6. Discussions

In this work, we develop a globally concerned longitudinal quantile regression framework 

which accommodates high-dimensional compositional covariates. The proposed method can 

achieve the oracle convergence rate as well as the global model selection consistency, while 

enjoying interpretative advantages.

The longitudinal quantile regression model adopted in this work assumes all covariate 

effects do not change over time. To accommodate temporal covariate effects, model (2.1) or 

(2.2) can be extended with regression coefficients formulated as bivariate functions of τ and 

t. An intuitive approach to tackle this extension is to combine the proposed method with the 

strategy of Park and He (2017). That is, the longitudinal loss function may be modified by 

incorporating spline approximations to the regression coefficient functions with the penalty 

term adjusted accordingly. Nevertheless, this approach may be computationally prohibitive 

provided the additional high-dimensional layer induced by spline approximations. More 

specifically, suppose there are L spline basis functions, and L = O(n1/5). Based on the 

proposed estimation for model (2.1), the computational complexity is about O(n2 · p · M(n)), 

according to Klee and Minty (1972)’s result for simplex algorithm. When considering the 

spline based estimation for the extended model with time-varying coefficient coefficients, 

we expect that the computational intensity would be roughly equivalent to that of fitting a 

quantile regression model for a dataset with sample size nM(n) and covariate dimension pL, 

which is about O(n2M(n)2pL). Given M(n) = O(n), as suggested by Zheng et al. (2015), 

tackling the more flexible model with time-varying coefficients would require O(n6/5) times 

the computational effort needed for the proposed model (2.1), which can be computationally 

prohibitive for high-dimensional applications. How to address such an obstacle merits future 

research.

After applying the proposed method to a real dataset, assessing the adequacy of model (2.1) 

with the pre-specified quantile index set Δ and the selected relevant variables may be of 

practical interest. To this end, we can adapt the model checking strategy of Peng and Huang 

(2008), and consider the stochastic process
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Kn(τ) = n−1/2 ∑
i = 1

n ∫
0

∞
W Vi(t) ψτ Y i(t) − Xi(t)⊤α(τ) − Zi(t)⊤β(τ) dNi(t),

as an analogue of the martingale based diagnostic process employed by Peng and Huang 

(2008), where ψτ(u) = τ − I(u < 0). Here W(·) is a known bounded function and Vi(t) = 

(Xi(t)⊤, Zi(t)⊤)⊤. A lack-of-fit test statistic may be constructed based on supτ∈Δ |Kn(τ)|. 

Following the lines of Peng and Huang (2008), the corresponding p value can be obtained by 

using a properly designed resampling scheme to approximate the distribution of Kn(·) under 

model assumption (2.1).

Following the idea of weighted GEE (Liang and Zeger, 1986) and the quasi-likelihood 

approach for median regression (Jung, 1996), we may incorporate within-subject correlation 

of repeated measures to further improve estimation efficiency of the proposed method. 

Specifically, we may consider a weighted penalized estimating equation,

n−1/2 ∑
i = 1

n
Vi

⊤Qi(τ; α, β)−1Si(τ; α, β) + λ ∑
j = 1

p
ωj(τ)sign βj = 0,

subject to constraint ∑j = 1
p βj = 0, where 

Vi = Vi ti
(1) …, Vi ti

mi ⊤
, Si(τ; α, β) = Si1(τ; α, β), …, Si, mi(τ; α, β) ⊤ with 

Sik(τ; α, β) = I Y i ti
(k) − Xi ti

(k) ⊤α − Zi ti
(k) ⊤β ≤ 0 − τ, and Qi(τ; α, β) is a working covariance 

matrix that approximates the covariance of Si(τ; α, β). When Qi(τ; α, β) is an identity 

matrix Imi, solving this estimating equation is equivalent to minimizing (2.3) which adopts 

the working independence assumption. However, we note that the weighted estimating 

equation loses the nice monotonicity property possessed by the unweighted version. In 

addition, the covariance of Qi(τ; α, β) is often unknown in practice and its empirical 

estimate may not be stable when sample size is not large, like in the FIRST dataset. 

As suggested by a referee, one possible solution to alleviate the computational issue is 

to adopt an iterative algorithm where one first solves the weighted estimating equation 

with the parameters α and β in the weight function Qi(τ; α, β)−1 fixed and then updates 

the weight function with the resulting parameter estimates. In this case, the estimating 

equation involved in each iteration is still monotone. Applying this strategy may lead to an 

approach that improves estimation efficiency while being computationally viable. It is of 

future research interests to investigate this weighted method in more details.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1:

Simulation results under Setup (IV) with dependent heterogeneous errors

AEEℓ1 AEEℓ2 AEEℓ∞ NCN NIN PUF
(%)

PCF
(%)

POF
(%)

SUM

Proposed

AW2 2.261 1.024 0.694 6.923 0.040 7.7 88.3 4.0 0.000

AW3 2.297 1.041 0.707 6.877 0.017 12.0 86.7 1.3 0.000

SS(0.2) 2.828 1.275 0.841 6.110 0.007 57.3 42.0 0.7 0.000

SS(0.5) 1.908 0.863 0.577 6.670 0.017 29.0 69.3 1.7 0.000

SS(0.8) 2.623 1.206 0.829 6.273 0.023 43.3 54.7 2.0 0.000

PS 2.277 1.034 0.702 6.970 0.257 3.0 74.0 23.0 0.000

ALasso (i)

AW2 2.456 1.067 0.706 6.917 1.030 8.0 0.7 91.3 0.000

AW3 2.491 1.084 0.718 6.860 1.010 13.3 0.7 86.0 0.000

ALasso (ii)

AW2 2.326 1.064 0.725 6.913 0.033 8.7 88.3 3.0 1.916

AW3 2.352 1.076 0.734 6.857 0.017 14.0 84.3 1.7 −2.315

ALasso (iii)

AW2 2.549 1.146 0.770 6.913 0.033 8.7 88.3 3.0 0.000

AW3 2.668 1.199 0.811 6.857 0.017 14.0 84.3 1.7 0.000

ALasso (iv)

AW2 2.294 1.030 0.685 6.963 0.380 3.7 63.7 32.7 0.000

AW3 2.305 1.035 0.690 6.957 0.347 4.3 65.0 30.7 0.000
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Table 2:

Analysis of the FIRST dataset

τ Method Selected Genus Sets PE

[0.2, 0.8] AW2 g50 g93 g115 g137 g147 g152 g162 g178 g184 g197 g204 g210 g213 g219 g297 g319 g370 0.5279 (0.0837)

AW3 g50 g93 g115 g147 g152 g162 g178 g197 g204 g210 g213 g219 g297 g319 g370 0.5271 (0.0837)

PS g14 g32 g50 g64 g93 g115 g119 g137 g147 g152 g153 g162 g178 g183 g184 g188 g193 g197 g199 
g204 g210 g213 g219 g297 g319 g370

0.5278 (0.0826)

0.2 SS g147 g153 g213 0.7893 (0.1420)

0.3 SS None 0.6833 (0.1206)

0.4 SS g50 g93 g119 g147 g162 g183 g197 g199 g204 g213 g297 0.6135 (0.1038)

0.5 SS g14 g115 g137 g147 g193 g197 g204 g213 g219 g297 g319 0.5855 (0.0976)

0.6 SS None 0.5960 (0.0981)

0.7 SS g147 g152 g178 g184 g197 g204 g213 g297 g319 g370 0.6621 (0.1025)

0.8 SS g32 g147 g152 g162 g178 g197 g204 g213 0.7926 (0.1235)
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