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Abstract

Accurate prediction of damaging missense variants is critically important for interpreting a 

genome sequence. Although many methods have been developed, their performance has been 

limited. Recent advances in machine learning and the availability of large-scale population 

genomic sequencing data provide new opportunities to considerably improve computational 

predictions. Here we describe the graphical missense variant pathogenicity predictor (gMVP), 

a new method based on graph attention neural networks. Its main component is a graph with 

nodes that capture predictive features of amino acids and edges weighted by co-evolution 

strength, enabling effective pooling of information from the local protein context and functionally 

correlated distal positions. Evaluation of deep mutational scan data shows that gMVP outperforms 

other published methods in identifying damaging variants in TP53, PTEN, BRCA1 and MSH2. 

Furthermore, it achieves the best separation of de novo missense variants in neuro developmental 

disorder cases from those in controls. Finally, the model supports transfer learning to optimize 

gain- and loss-of-function predictions in sodium and calcium channels. In summary, we 

demonstrate that gMVP can improve interpretation of missense variants in clinical testing and 

genetic studies.
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Missense variants are major contributors to genetic risk of cancers1,2 and developmental 

disorders3–5. Missense variants have been used, along with protein-truncating variants, 

to implicate new risk genes and are responsible for many clinical genetic diagnoses; 

however, the majority of rare missense variants are probably benign or only have minimal 

functional impact. As a result of the uncertainty of the functional impact, most rare 

missense variants reported in clinical genetic testing are classified as variants of uncertain 

significance6, leading to ambiguity, confusion, overtreatment and missed opportunities for 

clinical intervention. In human genetic studies to identify new risk genes by rare variants, 

pre-selecting damaging missense variants on the basis of computational prediction is a 

necessary step to improve statistical power4,5,7,8. Computational methods are therefore 

critically important to interpret missense variants in clinical genetics and disease gene 

discovery studies.

Numerous methods such as Polyphen9, SIFT10, CADD11, REVEL12, MetaSVM13, M-

CAP14, Eigen15, MVP16, PrimateAI17, model predictive control (MPC)18 and correct 

classification rates (CCR)19 have been developed to address the problem. These methods 

differ in several aspects such as the prediction features, how the features are represented 

in the model, the training datasets and how the model is trained. Sequence conservation or 

local protein structural properties are the main prediction features for early computational 

methods such as GERP20 and PolyPhen. The MPC and CCR methods estimate sub-genic 

coding constraints from large human population sequencing data, providing additional 

information not captured by past methods. PrimateAI learns the protein context from 

sequences and local structural properties using deep representation learning. A number of 

studies have reported evidence that functionally damaging missense variants are clustered 

in three-dimensional protein structures21–23. Co-evolution captures the functional correlation 

between positions. Recent studies24,25 have shown that co-evolution helps to improve the 

prediction accuracy.

Here we present the graphical missense variant pathogenicity predictor (gMVP), a graph 

attention neural network model designed to effectively represent or learn the representation 

of all of the information sources to improve prediction of the functional impact of missense 

variants. gMVP uses a graph to represent a variant and its protein context, with node 

features describing sequence conservation and local structural properties; it also uses a 

graph attention neural network to learn the representation of a large protein context and 

uses the co-evolution strength as edge features that can potentially pool information about 

conservation and coding constraints of distant but functionally correlated positions. We 

trained gMVP using curated pathogenic variants and random rare missense variants in the 

human population. We then benchmarked the performance using datasets that have been 

curated or collected by entirely different approaches, for example: cancer somatic mutation 

hotspots26; functional readout datasets from deep mutational scan studies of well-known 

risk genes27–30; and de novo missense variants (DNMs) from studies of autism spectrum 

disorder (ASD)4 and neurodevelopmental disorder (NDD)5. Finally, we investigated the 

potential utility of transfer learning for classifying gain-of-function (GOF) and loss-of-

function (LOF) variants in specific gene families based on the generic model trained across 

all genes.
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Results

Model architecture and prediction features

gMVP is a supervised machine learning method for predicting functionally damaging 

missense variants. The functional consequence of missense variants depends on both the 

type of amino acid substitution and its protein context. gMVP uses a graph attention 

neural network to learn representation of protein sequence and structure context and context-

dependent impact of amino acid substitutions on protein function.

The main component of gMVP is a graph that represents a variant and its protein context 

(Fig. 1 and Supplementary Fig. 1). Given a variant, we define the 128 amino acids flanking 

the reference amino acid as protein context. We note that the average length of a protein 

domain annotated in the UniProt database is about 110 amino acids (Supplementary Fig. 

8). We build a star-like graph with the reference amino acid as the centre node and the 

flanking amino acids as context nodes and connect the centre node and every context 

node with edges. We use co-evolution strength between the centre node of the variant 

and the context node as edge features. The co-evolution strength is highly correlated with 

functional interactions and protein residue–residue contact that captures the potential three-

dimensional neighbours in folded proteins24,25,31,32. This architecture therefore allows the 

model to directly represent interactions between the position of interest and each flanking 

position in a wide context window. For the centre node, we include the amino acid 

substitution, evolutionary sequence conservation, and predicted local structural properties, 

such as secondary structures, as features (Methods). For context nodes, in addition to 

primary sequence, sequence conservation and local structure features, we also include the 

expected and observed number of rare missense variants in the human population to capture 

the selection effect of damaging variants in humans18,19. Let x, ni  and f i  denote input 

feature vectors for the centre node, neighbour nodes and edges, respectively. We first use 

three one-depth dense layers to encode x, ni  and f i  to latent representation vectors h, ti

and ei , respectively. We then use a multi-head attention layer to learn the attention weight 

wi for each neighbour and to learn a context vector c by weighting the neighbours. Attention 

scores play a key part in attention-based neural networks33,34. Our attention scores account 

for both the node features and the edge features. Specifically, we use tanh W h, ti, ei  as 

attention scores, where tanh denotes a hyperbolic tangent activation function, and W is the 

weight matrix to be trained. We next used a gated recurrent layer35—which is widely used 

to leverage sequence context in natural language modelling—to integrate vectors c and h of 

the variant. Finally, we use a linear layer and a sigmoid layer to perform classification and 

output the damaging scores.

Model training and testing

We collected likely pathogenic and benign missense variants from curated databases 

(HGMD36, ClinVar37 and UniProt38) as training positives and negatives, respectively, and 

excluded the variants with conflicting evidence in the databases (Methods). To balance the 

positive and negative sets, we randomly selected rare missense variants observed in human 

population sequencing data DiscovEHR as additional negatives for training. In total there are 

59,701 positives and 59,701 negatives, which cover 3,463 and 14,222 genes, respectively. 
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We used a stochastic gradient descent algorithm39 to update the model’s parameters at an 

initial learning rate of 1 × 10−3 and applied early stopping with validation loss as a metric 

to avoid overfitting. We implemented the model and training algorithms using TensorFlow40. 

The whole training process took ~4 h on a Linux workstation with one NVIDIA Titan RTX 

GPU. When benchmarking the performance using a range of datasets, we compared gMVP 

with other widely used methods in genetic studies such as PrimateAI17, M-CAP14, CADD11, 

MPC18, REVEL12, MVP16, ClinPred41 and BayesDel42.

Human-curated pathogenic variants have hidden false positives that are probably caused 

by systematic biases and errors, which can be picked up by deep neural networks; 

therefore, conventional approaches for performance evaluation, using testing data randomly 

partitioned from the same source as the training data, usually lead to an inflated performance 

measure. To objectively evaluate the performance of the model, we compiled cancer somatic 

mutations that are unlikely to share the same systematic errors as the training datasets. We 

included missense mutations located in inferred hotspots on the basis of statistical evidence 

from a recent study26 as positives and randomly selected rare variants from the DiscovEHR 

database43 as negatives. The gMVP score distributions of cancer hotspot mutations and 

random variants have distinct modes (Fig. 2a). We selected a threshold of 0.75 to indicate a 

binary prediction for other downstream analyses that can best separate the score distributions 

of the positives and negatives. When compared with other published methods, gMVP 

achieved the best performance with an area under the receiver operating characteristic curve 

(AUROC) of 0.88 (Fig. 2b and Supplementary Table 2). REVEL is close with an AUROC of 

0.86.

gMVP can identify damaging variants in known disease genes

Missense variants that occur in different protein contexts—even in the same gene—can 

have different impacts. This is the core problem in interpreting variants from known risk 

genes in clinical genetic testing and the discovery of new disease genes. As performance 

evaluation using variants across genes is confounded by gene-level properties, here we 

aim to evaluate the ability of gMVP and other methods to distinguish damaging variants 

from neutral variants in the same genes. To this end, we obtained functional readout data 

from deep mutational scan assays of four well-known disease risk genes, TP5330, PTEN29, 

BRCA128 and MSH227, as benchmark data. The data include 432 damaging (positives) 

and 1,476 neutral (negatives) variants for BRCA1; 262 positives and 1,632 negatives for 

PTEN; 540 positives and 1,108 negatives for TP53; and 414 positives and 5,439 negatives 

for MSH2, respectively. We note that all variants in these four genes were excluded during 

gMVP training to avoid inflation in performance evaluation.

We first investigated the gMVP score distributions of damaging and neutral variants. 

Damaging variants clearly have different score distribution compared with the neutral 

variants in each gene (Supplementary Fig. 2). gMVP scores are also highly correlated 

with functional scores from the deep mutational scan assays, with a Spearman correlation 

coefficient of 0.67 (P = 1 × 10–246), −0.48 (P = 8 × 10–122), −0.53 (P = 7 × 10–51) and 0.29 

(P = 7 × 10–117) in TP53, PTEN, BRCA1 and MSH2, respectively (Supplementary Fig. 3 

and Supplementary Table 3–6).
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We then used functional readout data as the ground truth to estimate precision–recall 

and compared gMVP with other methods. The areas under the precision–recall curves 

(AUPRCs) of gMVP are 0.78, 0.85, 0.81 and 0.39 for PTEN, TP53, BRCA1 and MSH2, 

respectively (Fig. 3), whereas the AUPRCs of the second-best method (REVEL) are 0.63, 

0.74, 0.73 and 0.35, respectively. PrimateAI, a recent deep representation learning-based 

method, has AUPRCs of 0.32, 0.68, 0.45 and 0.20, respectively. A comparison using 

receiver operating characteristic (ROC) curves shows similar patterns (Supplementary Fig. 

4).

Prioritizing rare DNMs using gMVP

To further evaluate the utility of gMVP in new risk gene discovery, we compared the gMVP 

scores of DNMs from cases with developmental disorders with those from controls. We 

obtained published DNMs from 5,924 cases in an ASD study4, from 31,058 cases in an 

NDD study5 and from 2,007 controls (unaffected siblings from the ASD study)4. Although 

there is no ground truth because most of these DNMs were not previously implicated 

with diseases, there is a substantial excess of such variants in cases compared with the 

controls3,44,45, suggesting that a substantial fraction of variants in cases are pathogenic. 

We therefore tested whether the predicted scores of variants in cases and controls are 

significantly different and used significance as a proxy of performance (Fig. 4a). gMVP 

achieves a P-value of 38 × 10–9 and 28 × 10–40 for ASD or NDD versus controls, 

respectively, whereas the second-best method PrimateAI achieves a P-value of 38 × 10–6 

and 28 × 10–38, respectively (Supplementary Fig. 5).

We then calculated the enrichment rate of predicted damaging DNMs of a method with 

a certain threshold in cases compared with the controls, and then estimated the precision 

and the number of true risk variants (Methods), which is a proxy of recall because the 

total number of true positives in all cases is a (unknown) constant that is independent of 

the methods. The estimated precision and recall values are directly related to the power of 

detecting new risk genes5,46. We also calculated the estimated precision and number of true 

risk variants on all missense variants (denoted as All Mis) in the dataset, without using any 

predictor. We compared the performance of gMVP with other methods by the estimated 

precision and recall–proxy curves (Fig. 4b,c). The optimal threshold of the gMVP rank score 

in cancer hotspots is 0.75; with this, we observed an enrichment rate of 2.7 and 1.5 in NDD 

and ASD, respectively (Supplementary Tables 7 and 8), which corresponds to an estimated 

precision–recall of (0.62, 4,818) and (0.35, 328), respectively. Furthermore, when using a 

lower threshold of 0.7, gMVP can still keep the precision as high as 0.34, and achieved 

a recall of 377 in ASD. PrimateAI achieves overall second-best estimated precision and 

recall under different thresholds in both ASD and NDD. MPC, with a threshold of 0.8, can 

reach a high precision at 0.65 and 0.36 in NDD and ASD, respectively, but overall it has 

substantially lower recall than gMVP and PrimateAI.

Classifying mode of action of variants via transfer learning

In many genes, the functional impact of missense variants is complex and cannot be 

simply captured by a binary prediction. Heyne et al.47 recently investigated the pathogenetic 

variants that alter the channel activity of voltage-gated sodium and calcium channels and 
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inferred LOF and GOF variants on the basis of clinical phenotypes of variant carriers 

and electrophysiology data. The study also described a computational model (funNCion) 

to predict LOF and GOF variants using a large number of human-curated features on 

electrophysiological properties. Here we sought to classify LOF and GOF variants using 

the gMVP model through transfer learning without additional curated prediction features. 

Transfer learning allows us to further train a model for a specific purpose using a limited 

number of training points by only exploring a reasonable subspace of the whole parameter 

spaces guided by previously trained models.

We obtained 1,517 pathogenetic and 2,328 neutral variants in ten voltage-gated sodium 

and ten calcium channel genes, in which 518 and 309 variants were inferred as LOF and 

GOF variants, respectively, from the work by Heyne and colleagues47. To benchmark the 

performance, we used the same training and testing sets (90/10% breakdown) as funNCion.

We first evaluated the performance of gMVP and previous methods in distinguishing LOF or 

GOF from neutral variants. gMVP and REVEL both achieved the best AUROC of 0.94 (Fig. 

5a and Supplementary Table 9). FunNCion47, which was trained specifically on the variants 

of the ion-channel genes, achieved a nearly identical AUROC of 0.93. We next sought to 

improve the performance using transfer learning. Starting with the weights from the original 

gMVP model, we trained a new model, gMVP-TL1, with both LOF and GOF variants in 

these genes as positives, and neutral variants as negatives (Methods). gMVP-TL1 achieved 

an AUROC of 0.96, outperforming the original gMVP and published methods. Furthermore, 

to distinguish LOF and GOF variants, we trained another model, gMVP-TL2, also starting 

with the weights of the original gMVP model, but with different output labels for training 

(LOF versus GOF; Methods). The training set includes 465 LOF and 279 GOF variants, 

whereas the testing set comprises 51 LOF and 30 GOF variants. gMVP-TL2 achieved an 

AUROC of 0.95, substantially better than funNCion (AUROC, 0.84), which trained on the 

same variants set with manually curated prediction features (Fig. 5b and Supplementary 

Table 10). This demonstrates that the gMVP model aided by transfer learning technique 

can accurately predict GOF and LOF variants in channel genes with a very limited training 

dataset.

gMVP captures conservation, structure and selection in humans

We calculated the correlation between predicted scores of gMVP and other methods on 

DNMs from ASD and NDD cases and controls (Fig. 6a). gMVP has the highest correlation 

with REVEL (Spearman ρ = 0.78), followed by a few other widely used methods such as 

BayesDel, MPC, CADD and PrimateAI (ρ > 0.6).

We then performed principal component analysis (PCA) on the DNMs from cases and 

controls to investigate the contributing factors that separate the variants (Fig. 6b and 

Supplementary Fig. 6). The input of the PCA is a score matrix in which rows represent 

variants and columns represent predicted scores by gMVP and other methods. We included 

two additional columns with gene-level gnomAD constraint metrics o/e-LoF and o/e-Mis 

(observed number over expected number for LOF and missense)48 to represent selection 

effect in humans. The first component (PC1) captures the majority of the variance of 

the data and best separates the DNMs in cases and the ones in controls. All methods 
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have large loadings on PC1 (Fig. 6b). The second component (PC2) is largely driven 

by the gene-level gnomAD constraint metrics (Fig. 6b). The joint distribution of PC1/2 

scores of DNMs from controls has a single mode at the centre. The joint distributions of 

scores of DNMs from cases have two modes (Fig. 6b and Supplementary Fig. 6b) that 

represent mixtures of likely pathogenic variants and random DNMs. Notably, gnomAD 

metrics have near orthogonal loadings on PC1/2 with GERP, which is purely based on cross-

species conservation, suggesting that selection effect in humans provides complementary 

information to evolutionary conservation about genetic effect of missense variants. All 

methods (PolyPhen, eigen, CADD, VEST and REVEL) that do not use human or primate 

population genome data have loadings close to GERP on PC1/2. MPC and M-CAP, which 

use sub-genic or gene-level mutation intolerance metrics similar to gnomAD metrics, have 

the closest loadings as gnomAD metrics on PC1/2. gMVP and PrimateAI have similar 

loadings that are in the middle of GERP and gnomAD metrics.

We inspected the BRCT2 domain of BRCA1 to show how the gMVP model captures 

context-dependent functional impact. We observed that most damaging variants predicted 

by gMVP (>0.75) are located in the core region of BRCT2 domain (Fig. 6c). 

Furthermore, gMVP scores are highly correlated with evolutionary conservation (Fig. 6d and 

Supplementary Fig. 7a; ρ = 0.57). Variants in the β-sheets are much more damaging than the 

ones in α-helix regions, and the ones in α-helix regions are more damaging than the ones 

in coil regions (Fig. 6d and Supplementary Fig. 7b), consistent with past discoveries21,49,50. 

Finally, amino acids mutated to proline (P) in helix regions are predicted to be highly 

damaging, even in positions not well conserved (Fig. 6d). This is consistent with the fact that 

proline rarely occurs in the middle of an α-helix51.

Discussion

We developed gMVP—a new method based on graph attention neural networks—to predict 

functionally damaging missense variants. gMVP uses attention neural networks to learn 

representations of protein sequence and structure context through supervised learning trained 

with large number of curated pathogenic variants. The graph structure allows co-evolution-

guided pooling of predictive information of distal amino acid positions that are functionally 

correlated or potentially close in three-dimensional space. We demonstrated the utility of 

the gMVP in clinical genetic testing and new risk gene discovery studies. Specifically, we 

showed that gMVP achieves better accuracy in identification of damaging variants in known 

risk genes based on functional readout data from deep mutational scan studies. Furthermore, 

gMVP achieved better performance in prioritizing DNMs in cases with autism or NDD, 

suggesting that it can be used to pre-select damaging variants or weight variants to improve 

statistical power of new risk gene discovery. Finally, we showed that with transfer learning 

technique, gMVP model can accurately classify GOF and LOF variants in ion channels even 

with a limited training set without additional prediction features.

gMVP learns a representation of protein context from training data, whereas previous 

ensemble methods such as REVEL, M-CAP, MetaSVM and CADD used scores from 

other predictors or other human-engineered features as inputs. With recent progress of 

machine learning in protein structure prediction52–55, neural network representations could 
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capture latent structure beyond common linear representations of understanding of the 

biophysical and biochemical properties. We showed that representation learning allows 

gMVP to capture the context-dependent impact of amino acid substitutions on protein 

function. PrimateAI is a recently published method that also uses deep representation 

learning. gMVP achieved better performance than PrimateAI in identification of damaging 

variants in known disease risk genes in comparisons that use functional readout data as 

well as in prioritizing rare DNMs from ASD and NDD studies. Although both models used 

evolutionary conservation and protein structural properties as features, the two methods have 

entirely different model architecture and training data. gMVP uses a graph attention neural 

network to pool information from both distal and local positions with co-evolution strength, 

whereas PrimateAI uses a convolutional neural network to extract local patterns from a 

protein context. For training data, gMVP used expert-curated variants and random variants 

in population as training positives and negatives, respectively. By contrast, PrimateAI used 

common variants in primates as negatives and unobserved variants in the population as 

positives. Based on functional readout data of the four well-known risk genes, only 15–

25% of random variants have discernible impact on protein function. The positives used 

in PrimateAI training may therefore contain a large fraction of false positives. PrimateAI’s 

training strategy does have advantages. It avoids human interpretation bias and errors in 

curated databases of pathogenic variants, the positives used in gMVP training. It also can 

cover almost all human protein-coding genes, whereas curated databases such as ClinVar 

only cover hundreds of genes. Additionally, common variants in primates are probably all 

true negatives, whereas random observed rare variants in human population could have a 

non-negligible fraction of damaging variants. Making a new model that can use all of these 

datasets in training could further improve the prediction performance.

Several past studies have shown that the functional impact of missense variants is correlated 

among three-dimensional neighbours21,22,56. Pooling information from three-dimensional 

neighbours could therefore improve predictions of functional impact. However, directly 

considering three-dimensional distances is limited by the fact that most human proteins 

have no solved tertiary structures with considerable coverage. gMVP addresses this issue by 

taking a large segment of the protein context that include both local and distant positions 

that are potential neighbours in folded proteins, and then uses co-evolution strength to 

effectively pool information from potential three-dimensional neighbours. Used as edge 

features in a graph attention model, co-evolution strength allows more precise pooling 

of information from distant residues than the convolutional layer without prior structure. 

Co-evolution information has been used by previous methods for predicting functional 

impact of missense variants, such as PIVOTAL25, a supervised ensemble predictor that 

combines scores from existing methods and EVmutation, an unsupervised method that 

learns co-evolution and conservation using Markov random fields from multi-sequence 

alignments (MSAs). Moreover, co-evolution information has been used in ab initio protein 

structure prediction extensively32,54,57. The extraordinary performance of AlphaFold55,58 in 

CASP14 shows that it contains critical information about physical residue–residue distances 

for accurate structure prediction of most proteins in the human proteome. The language 

model Transformer33 has more recently been applied on protein sequences and MSAs to 

improve the performance of co-evolution strength estimation and protein residue–residue 
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contacts prediction59–61. gMVP could be further improved by integrating components of 

Transformer and protein three-dimensional structures in the model. On the other hand, 

MSA-based methods are limited for the proteins with no or few homologous sequences 

and could be improved by integrating the learned representations on large-scale unlabelled 

sequence data using sequence language modelling60.

With transfer learning, the trained gMVP model can be further optimized for more specific 

tasks in genetic studies. The idea is to transfer the general knowledge learned from large 

training datasets to a new related and more specific task with only limited training data. 

The trained model can set the initial values of the weights in the model to be updated by 

further training to explore only a subspace of the whole parameter space. We have shown 

its feasibility in classifying GOF and LOF variants in the ion-channel genes using a limited 

number of training data points without additional prediction features. We expect that with 

transfer learning, gMVP can potentially improve variant interpretation by training gene 

family-specific models62 and identifying disease-specific damaging variants63.

Functional readout data from deep mutational scan provides strong evidence of classifying 

variants as damaging or neutral27–30,64,65. However, these in vitro functional readout assays 

usually reveal only one aspect of a protein’s function in a limited number of cell types; 

therefore, they are often not completely correlated with the functional impact of the 

variants in vivo. We expect that more comprehensive deep mutational scan assays will 

become available and facilitate substantial improvement in the training and evaluation of 

computational methods.

Finally, we showed that although evolutionary conservation remains one of the most 

informative sources for computational methods, selection in humans can provide 

complementary information for prediction. The selection coefficient is correlated with allele 

frequency, especially for variants under strong negative selection46,66–68. Larger population 

genome datasets can further improve estimation of allele frequency of rare variants. We 

anticipate large69 and diverse70 population genome data released in the future will improve 

estimation of selection effect in human and in turn improve gMVP.

Methods

Training datasets

For the positive training set, we collected: 22,607 variants from Clin-Var database37 under 

the pathogenic and likely pathogenic categories with a review status of at least one star; 

48,125 variants from the Human Gene Mutation Database Pro v.2013 (HGMD) database36 

under the disease mutation category; and 20,481 variants from UniProt labelled as disease-

causing. For the negative training set, we collected 41,185 variants from ClinVar under 

the benign and likely benign categories, and 33,387 variants from SwissVar38 labelled as 

polymorphism. After excluding 3,751 variants with conflicting interpretations from the three 

databases, we have 63,304 and 66,102 unique positives and negatives, respectively. We 

next excluded 36,499 common variants (653 positives and 35,846 negatives) with an allele 

frequency >1 × 10–3 in gnomAD (all populations)48 and 3,080 overlapping variants (2,680 

positives and 400 negatives) with testing datasets from the training dataset, resulting in 
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a dataset of 59,701 positives and 29,856 negatives. To balance the positive and negative 

training samples, we randomly selected 29,845 rare missense variants from the DiscovEHR 

database43 that are not already covered by previously selected training data as additional 

negative training points. In the end we have 59,701 and 59,701 unique positive and 

negative training variants (Supplementary Table 1), which cover 3,463 and 14,222 genes, 

respectively.

Testing datasets

1. Cancer somatic mutation hotspots: we obtained 878 missense variants located in 

somatic missense mutations hotspots in 209 cancer driver genes from a recent 

study26 as positives, and randomly selected twofold more rare missense variants 

(N = 1,756) from the population sequencing data DiscovEHR43.

2. Functional readout data from deep mutational scan experiments: we compiled 

variants in BRCA128, PTEN29, TP5330 and MSH227. Findly and colleagues30 

applied genome editing to measure the functional consequences of all possible 

single nucleotide variants (SNVs) in key regions of BRCA1, where the 

functional scores measured the SNV effects on the cell survival of the cloned 

cells. Mighell et al.29 used a yeast model to systematically evaluate the effect 

of PTEN mutations on lipid phosphatase activity in vivo. Kotler et al.30 created 

a synthetically designed library and measured the functional impact of the DNA-

binding domain p53 variants in human cells in culture and in vivo. Jia et al.27 

developed a human cell line model for MSH2 to measure the chemical selection 

for mismatch repair dysfunction. The functional scores for PTEN and BRCA1 
correlate negatively, whereas the functional scores for TP53 and MSH2 correlate 

positively, with the pathogenicity of the variants, respectively. We used the 

suggested thresholds of the functional scores to label the positives and negatives 

for the variants. We only include the SNVs for comparison as most published 

methods do not provide scores for the non-SNVs. There are 432 positives and 

1,476 negatives in BRCA1; 258 positives and 1,601 negatives in PTEN; 540 

positives and 1,108 negatives in TP53; and 414 positives and 5,439 negatives in 

MSH2.

3. DNMs: to evaluate utility in new risk gene discovery, we used published rare 

germline DNMs from 5,924 cases and 2,007 controls in an ASD study4 and 

31,058 cases in a neural developmental study5.

To fairly compare our methods with published methods, we excluded the overlapping 

variants with testing datasets from the training datasets. We further excluded all variants 

in PTEN, TP53, BRCA1 and MSH2 in training to avoid inflation in performance evaluation.

Past published methods included for comparison

We compared gMVP with PrimateAI, MPC, REVEL, M-CAP, MVP, ClinPred, BayesDel, 

EVmutation, SIFT, PolyPhen2, SIFT, phastCons71 and GERP. We calculated scores 

of EVmutation using its public software package (https://github.com/debbiemarkslab/

Zhang et al. Page 10

Nat Mach Intell. Author manuscript; available in PMC 2023 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/debbiemarkslab/EVmutation


EVmutation). We used the pre-computed scores of other methods compiled by dbNSFP. We 

annotated the variants in the testing test with these scores using VEP plug-in for dbNSFP.

The graph attention neural network model

gMVP uses a graph to represent a variant and its protein context. We first defined the 128 

amino acids flanking the reference amino acid as protein context. We next built a star-like 

graph with the reference amino acid as the centre node and the flanking amino acids as 

context nodes, and with edges between the centre node and each context node (Fig. 1 and 

Supplementary Fig. 1).

Let x, ni and f i denote input feature vectors for the centre node, each context node and each 

edge, respectively. We first used three one-depth dense layers to encode x, ni and f i to latent 

representation vectors h, ti and ei, respectively. We used RELU72 as the activation function 

and 512 neurons for each dense layer.

We then used a multi-head layer adapted from the attention layer in the Transformer model33 

to pool information from context nodes and finally to learn a context vector c. Specifically, 

for the kth head, we first calculated the value vectors for each context node by vi
(k) = W(k)ti. 

We next calculated attention scores for each context node through si
k = tanh W(k) h, ei, ti + pi, 

where tanh denotes a hyperbolic tangent activation function and pi is a position bias, which 

is a simplified positional encoding73. We note here that pi allows the model to capture local 

protein sequence context. Attention weights are calculated by applying a softmax operation 

on the attention scores, w0
(k), …wi

(k), … = softmax s0
(k), …si

(k), … .

The context vector c(k) for the kth head is calculated as c(k) = ∑wi
(k)vi

(k). The final context 

vector is obtained by a linear projection on the concatenation vector of the context vectors 

from each head,

c = Wp c(0), …, c(i), …, c(K − 1) .

Here K denotes the number of heads and we used four heads in our model. And we note that 

in the model, W(k), W
(k)

 and Wp are weight matrices to be trained.

We next used a gated recurrent unit layer35 to leverage the context vector c and the latent 

vector h of the given variant where the relative importance of the whole context can be 

determined. We used 512 neurons and a hyperbolic tangent activation function for the gated 

recurrent unit layer. We finally used a linear projection layer and a sigmoid layer to perform 

classification.

Input features

The centre node, which represents the variant, has the following features: reference and 

alternate amino acids, evolutionary conservation and predicted local structural properties. 

The context nodes have the following features: reference amino acids, evolutionary 

conservation, predicted local structural properties and observed and expected missense 
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alleles in gnomAD48. The feature of edges is co-evolution strength between the position 

of variant and other positions, estimated from multiple sequence alignments of homologous 

sequences.

Reference and alternate amino acids (40 values): we used one-hot encoding with a 

dimension of 20 to represent reference and alternate amino acids.

Protein primary sequence (20 values): we also used one-hot encoding to represent each 

amino acid in the protein primary sequence.

Evolutionary conservation (42 values): we estimated the evolutionary conservation from 

two sources: (1) we searched the homologous of the protein of interest against SwissProt 

database74 with three iterations of search and then built the MSAs with HHblits suite75; (2) 

we downloaded the MSAs of 200 species from Ensembl website for each human protein 

sequence76. We then calculated the frequencies of 20 amino acids and the gap for each 

position for the two MSAs separately and concatenated the two frequency vectors.

Predicted protein structural properties (five values): we predicted the protein secondary 

structures (three values), solvent accessibility (one value) and the probability of a residue 

participating in interactions with other proteins (one value) using NetsurfP77.

Observed number of missense alleles in gnomAD and expected number (two values): to 

capture selection effect in human, we obtained the observed number of rare missense 

variants in gnomAD48 and the expected number of rare missense variants estimated using a 

background mutation model48.

Co-evolution strength (442 values): we extract pairwise statistics from the MSA as co-

evolution strength. It is estimated based on the covariance matrix constructed from the input 

MSA. First, we compute one- and two-site frequency counts fi(A) = 1
M ∑m = 1

M δA, Xi, m and 

fi, j(A, B) = 1
M ∑m = 1

M δA, Xi, mδB, Xj, m, where A and B denote amino acid identities (20 + gap); δ 

is the Kronecker delta; i and j are position indexes on the aligned protein sequence; m is 

the sequence index of the MSA with a total of M aligned sequences; and Xi, m indicates the 

amino acid identity of position i on sequence m. We then calculate the sample covariance 

(21 × 21) matrix ci, j
A, B = fi, j(A, B) − fi(A)fj(B) and flatten it into a vector with 441 elements. 

We also convert the covariance matrix to a single value by computing its Frobenius norm 

si, j = ∑A = 1
20 ∑B = 1

20 ci, j
A, B 2 and then concatenate the norm and the flattened vector as the 

edge features.

We built these features only for canonical transcripts defined by Ensembl78 v.92. We 

annotated the variants using VEP79.

Training algorithm

We used cross-entropy loss as the training loss. We used the Adam algorithm39 to update the 

model parameters with an initial learning rate of 1 × 10–3 and decayed the learning rate with 

a polynomial decay schedule80. We randomly selected 10% of training samples as validation 
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set and early stopping was applied with validation loss as a watching metric. We trained 

five models by repeating the above training process five times, and for testing, we averaged 

the outputs of the five models as prediction scores. The model and training algorithm were 

implemented using TensorFlow40.

Classifying GOF and LOF variants using transfer learning.

To investigate the potential for transfer learning, we further trained gMVP to classify 

GOF and LOF variants in ion-channel genes with additional training data but without 

new features. We collected 1,517 pathogenetic and 2,328 neutral variants in SCNxA genes, 

which encode voltage-gated sodium and calcium channel proteins, in which 518 and 309 

variants are inferred as LOF and GOF variants, respectively, from a recent study47.

We first trained a model, gMVP-TL1, to classify pathogenetic and neutral variants in 

SCNxA genes. We used the same dataset as funNCion47, including 3,466 variants for 

training and 379 variants for testing. We randomly selected 10% variants from training set 

as validation set. We used the same model architecture with gMVP and initialized weights 

of the new model with the weights of original gMVP model. In the new model training, 

we used Adam to update the parameters at an initial learning rate of 1 × 10–3 and used the 

validation loss as stopping criteria. We trained five gMVP-TL1 models, starting from each of 

the five trained gMVP models, and for testing, we averaged the outputs of these models as 

prediction scores.

We next trained another model gMVP-TL2 to classify GOF versus LOF variants in SCNxA 
genes. We used 744 variants as training set and 81 variants as testing set, which are the 

same sets used by funNCion47. Like gMVP-TL1, gMVP-TL2 were also trained starting 

from the weights of gMVP model previously trained using all genes. We used the same 

hyperparameter settings with gMVP-TL1 in training.

Normalization of scores using rank percentile

For each method, we first sorted predicted scores of all possible rare missense variants 

across all protein-coding genes and then converted the scores into rank percentiles. The 

higher rank percentile indicates more damaging, for example, a rank score of 0.9 indicates 

the missense variant is more likely to be damaging than 90% of all possible missense 

variants.

Precision–recall–proxy curves

As there are no ground-truth data to benchmark our performance on DNMs, we estimate 

precision and recall at various thresholds based on the enrichment of predicted damaging 

variants in cases compared to controls.

Let S1 be the rate of synonymous variants in cases and S0 be the rate of synonymous variants 

in controls. Then the synonymous rate ratio α is defined as

α = S1
S0
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Denote the total number of variants in cases as N1, the number of variants in controls as N0, 

the number of variants predicted as pathogenic in cases as M1 and the number of variants 

predicted as pathogenic in controls as M0. We assume that for there to be no batch effect, the 

rate of synonymous variants should be the same in the cases and controls. So, we estimate 

the enrichment of predicted pathogenic variants in cases compared to controls by:

R =
M1
N1

M0
N0

× α

The true number of pathogenic DNMs M1
′ is then estimated by

M1
′ = M1(R − 1)

R

And the estimated precision is

Precision = M1
′

M1

Reporting summary

Further information on research design is available in the Nature Portfolio Reporting 

Summary linked to this article.

Data availability

Pre-computed gMVP scores for all possible missense variants in canonical 

transcripts on human hg38 can be downloaded from https://www.dropbox.com/s/

nce1jhg3i7jw1hx/gMVP.2021–02-28.csv.gz?dl=0. The training data of the main 

model were downloaded from http://www.discovehrshare.com/downloads (DiscovEHR), 

http://www.hgmd.cf.ac.uk/ac/index.php (HGMD), https://www.uniprot.org/docs/humpvar 

(UniProt) and https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/ (ClinVar). Other 

datasets supporting the findings of this study are available in the paper and the 

Supplementary Information.

Code availability

The codes for the model design and training and testing procedure are available on GitHub 

(https://github.com/ShenLab/gMVP/) and Zenodo81.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Zhang et al. Page 14

Nat Mach Intell. Author manuscript; available in PMC 2023 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.dropbox.com/s/nce1jhg3i7jw1hx/gMVP.2021-02-28.csv.gz?dl=0
https://www.dropbox.com/s/nce1jhg3i7jw1hx/gMVP.2021-02-28.csv.gz?dl=0
http://www.discovehrshare.com/downloads
http://www.hgmd.cf.ac.uk/ac/index.php
https://www.uniprot.org/docs/humpvar
https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/
https://github.com/ShenLab/gMVP/


Acknowledgements

This work was supported by NIH grants (nos. R01GM120609, R03HL147197, U01HG008680 and K99HG011490) 
and the Columbia University Precision Medicine Joint Pilot Grants Program. We thank Y. Zhao, G. Zhong, M. 
AlQuraishi and D. Knowles for helpful discussions.

References

1. Boettcher S et al. A dominant-negative effect drives selection of TP53 missense mutations in 
myeloid malignancies. Science 365, 599–604 (2019). [PubMed: 31395785] 

2. Huang KL et al. Pathogenic germline variants in 10,389 adult cancers. Cell 173, 355–370.e14 
(2018). [PubMed: 29625052] 

3. Jin SC et al. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease 
probands. Nat. Genet. 49, 1593–1601 (2017). [PubMed: 28991257] 

4. Satterstrom FK et al. Large-scale exome sequencing study implicates both developmental and 
functional changes in the neurobiology of autism. Cell 180, 568–584.e23 (2020). [PubMed: 
31981491] 

5. Kaplanis J et al. Evidence for 28 genetic disorders discovered by combining healthcare and research 
data. Nature 586, 757–762 (2020). [PubMed: 33057194] 

6. Rehm HL, Berg JS & Plon SE ClinGen and ClinVar—enabling genomics in precision medicine. 
Hum. Mutat. 39, 1473–1475 (2018).

7. He X et al. Integrated model of de novo and inherited genetic variants yields greater power to 
identify risk genes. PLoS Genet. 9, e1003671 (2013).

8. Nguyen HT et al. Integrated Bayesian analysis of rare exonic variants to identify risk genes 
for schizophrenia and neurodevelopmental disorders. Genome Med. 9, 114 (2017). [PubMed: 
29262854] 

9. Adzhubei I, Jordan DM & Sunyaev SR Predicting functional effect of human missense mutations 
using PolyPhen-2. Curr. Protoc. Hum. Genet. 10.1002/0471142905.hg0720s76 (2013).

10. Carter H, Douville C, Stenson PD, Cooper DN & Karchin R Identifying Mendelian disease genes 
with the variant effect scoring tool. BMC Genom. 14, S3 (2013).

11. Kircher M et al. A general framework for estimating the relative pathogenicity of human genetic 
variants. Nat. Genet. 46, 310–315 (2014). [PubMed: 24487276] 

12. Ioannidis NM et al. REVEL: an ensemble method for predicting the pathogenicity of rare missense 
variants. Am. J. Hum. Genet. 99, 877–885 (2016). [PubMed: 27666373] 

13. Dong C et al. Comparison and integration of deleteriousness prediction methods for 
nonsynonymous SNVs in whole exome sequencing studies. Hum. Mol. Genet. 24, 2125–2137 
(2015). [PubMed: 25552646] 

14. Jagadeesh KA et al. M-CAP eliminates a majority of variants of uncertain significance in clinical 
exomes at high sensitivity. Nat. Genet. 48, 1581–1586 (2016). [PubMed: 27776117] 

15. Ionita-Laza I, McCallum K, Xu B & Buxbaum JD A spectral approach integrating functional 
genomic annotations for coding and noncoding variants. Nat. Genet. 48, 214–220 (2016). 
[PubMed: 26727659] 

16. Qi H et al. MVP predicts the pathogenicity of missense variants by deep learning. Nat. Commun. 
12, 510 (2021). [PubMed: 33479230] 

17. Sundaram L et al. Predicting the clinical impact of human mutation with deep neural networks. 
Nat. Genet. 50, 1161 (2018). [PubMed: 30038395] 

18. Samocha KE et al. Regional missense constraint improves variant deleteriousness prediction. 
Preprint at bioRxiv 10.1101/148353 (2017).

19. Havrilla JM, Pedersen BS, Layer RM & Quinlan AR A map of constrained coding regions in the 
human genome. Nat. Genet. 51, 88–95 (2019). [PubMed: 30531870] 

20. Davydov EV et al. Identifying a high fraction of the human genome to be under selective constraint 
using GERP plus. PLoS Comput. Biol. 6, e1001025 (2010).

Zhang et al. Page 15

Nat Mach Intell. Author manuscript; available in PMC 2023 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



21. Iqbal S et al. Comprehensive characterization of amino acid positions in protein structures reveals 
molecular effect of missense variants. Proc. Natl Acad. Sci. USA 117, 28201–28211 (2020). 
[PubMed: 33106425] 

22. Hicks M, Bartha I, di Iulio J, Venter JC & Telenti A Functional characterization of 3D protein 
structures informed by human genetic diversity. Proc. Natl Acad. Sci. USA 116, 8960–8965 
(2019). [PubMed: 30988206] 

23. Sivley RM, Dou XY, Meiler J, Bush WS & Capra JA Comprehensive analysis of constraint on 
the spatial distribution of missense variants in human protein structures. Am. J. Hum. Genet. 102, 
415–426 (2018). [PubMed: 29455857] 

24. Hopf TA et al. Mutation effects predicted from sequence co-variation. Nat. Biotechnol. 35, 128–
135 (2017). [PubMed: 28092658] 

25. Liang S, Mort M, Stenson PD, Cooper DN & Yu H PIVOTAL: prioritizing variants of 
uncertain significance with spatial genomic patterns in the 3D proteome. Preprint at bioRxiv 
10.1101/2020.06.04.135103 (2021).

26. Chang MT et al. Accelerating discovery of functional mutant alleles in cancer. Cancer Discov. 8, 
174–183 (2018). [PubMed: 29247016] 

27. Jia X et al. Massively parallel functional testing of MSH2 missense variants conferring Lynch 
syndrome risk. Am. J. Hum. Genet. 108, 163–175 (2021). [PubMed: 33357406] 

28. Findlay GM et al. Accurate classification of BRCA1 variants with saturation genome editing. 
Nature 562, 217–222 (2018). [PubMed: 30209399] 

29. Mighell TL, Evans-Dutson S & O’Roak BJ A saturation mutagenesis approach to understanding 
PTEN lipid phosphatase activity and genotype–phenotype relationships. Am. J. Hum. Genet. 102, 
943–955 (2018). [PubMed: 29706350] 

30. Kotler E et al. A systematic p53 mutation library links differential functional impact to cancer 
mutation pattern and evolutionary conservation. Mol. Cell 71, 178–190.e8 (2018). [PubMed: 
29979965] 

31. de Juan D, Pazos F & Valencia A Emerging methods in protein co-evolution. Nat. Rev. Genet. 14, 
249–261 (2013). [PubMed: 23458856] 

32. Morcos F et al. Direct-coupling analysis of residue coevolution captures native contacts across 
many protein families. Proc. Natl Acad. Sci. USA 108, E1293–E1301 (2011). [PubMed: 
22106262] 

33. Vaswani A et al. Attention is all you need. In 31st Conference on Neural Information Processing 
Systems 5998–6008 (NeurIPS, 2017).

34. Veličković P et al. Graph attention networks. In 6th International Conference on Learning 
Representations (Univ. Cambridge, 2018).

35. Cho K et al. Learning phrase representations using RNN encoder–decoder for statistical machine 
translation. In Proc. 2014 Conference on Empirical Methods in Natural Language Processing 
(Association for Computational Linguistics, 2014).

36. Stenson PD et al. Human gene mutation database (HGMD (R)): 2003 update. Hum. Mutat. 21, 
577–581 (2003). [PubMed: 12754702] 

37. Landrum MJ et al. ClinVar: public archive of relationships among sequence variation and human 
phenotype. Nucl. Acids Res. 42, D980–D985 (2014). [PubMed: 24234437] 

38. Mottaz A, David FP, Veuthey AL & Yip YL Easy retrieval of single amino-acid polymorphisms 
and phenotype information using SwissVar. Bioinformatics 26, 851–852 (2010). [PubMed: 
20106818] 

39. Kingma DP & Ba J Adam: a method for stochastic optimization. In 2015 International Conference 
on Learning Representations (ICLR, 2015).

40. Abadi M et al. TensorFlow: large-scale machine learning on heterogeneous distributed systems. 
Preprint at https://arxiv.org/abs/1603.04467 (2016).

41. Alirezaie N, Kernohan KD, Hartley T, Majewski J & Hocking TD ClinPred: prediction tool to 
identify disease-relevant nonsynonymous single-nucleotide variants. Am. J. Hum. Genet. 103, 
474–483 (2018). [PubMed: 30220433] 

42. Feng BJ PERCH: a unified framework for disease gene prioritization. Hum. Mutat. 38, 243–251 
(2017). [PubMed: 27995669] 

Zhang et al. Page 16

Nat Mach Intell. Author manuscript; available in PMC 2023 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://arxiv.org/abs/1603.04467


43. Dewey FE et al. Distribution and clinical impact of functional variants in 50,726 whole-exome 
sequences from the DiscovEHR Study. Science 354, aaf6814 (2016).

44. Iossifov I et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature 
515, 216–221 (2014). [PubMed: 25363768] 

45. De Rubeis S et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515, 
209–215 (2014). [PubMed: 25363760] 

46. Zuk O et al. Searching for missing heritability: designing rare variant association studies. Proc. 
Natl Acad. Sci. USA 111, E455–E464 (2014). [PubMed: 24443550] 

47. Heyne HO et al. Predicting functional effects of missense variants in voltage-gated sodium and 
calcium channels. Sci. Transl. Med. 12, eaay6848 (2020).

48. Karczewski KJ et al. The mutational constraint spectrum quantified from variation in 141,456 
humans. Nature 581, 434–443 (2020). [PubMed: 32461654] 

49. Abrusán G & Marsh JA Alpha helices are more robust to mutations than beta strands. PLoS 
Comput. Biol. 12, e1005242 (2016).

50. Gao M, Zhou H & Skolnick J Insights into disease-associated mutations in the human proteome 
through protein structural analysis. Structure 23, 1362–1369 (2015). [PubMed: 26027735] 

51. Li S-C, Goto NK, Williams KA & Deber CM Alpha-helical, but not beta-sheet, propensity of 
proline is determined by peptide environment. Proc. Natl Acad. Sci. USA 93, 6676–6681 (1996). 
[PubMed: 8692877] 

52. Senior AW et al. Improved protein structure prediction using potentials from deep learning. Nature 
577, 706–710 (2020). [PubMed: 31942072] 

53. Yang JY et al. Improved protein structure prediction using predicted interresidue orientations. Proc. 
Natl Acad. Sci. USA 117, 1496–1503 (2020). [PubMed: 31896580] 

54. Wang S, Sun S, Li Z, Zhang R & Xu J Accurate de novo prediction of protein contact map by 
ultra-deep learning model. PLoS Comput. Biol. 13, e1005324 (2017).

55. Jumper J et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 
(2021). [PubMed: 34265844] 

56. Kumar S, Clarke D & Gerstein MB Leveraging protein dynamics to identify cancer mutational 
hotspots using 3D structures. Proc. Natl Acad. Sci. USA 116, 18962–18970 (2019). [PubMed: 
31462496] 

57. Anishchenko I, Ovchinnikov S, Kamisetty H & Baker D Origins of coevolution between residues 
distant in protein 3D structures. Proc. Natl Acad. Sci. USA 114, 9122–9127 (2017). [PubMed: 
28784799] 

58. Tunyasuvunakool K et al. Highly accurate protein structure prediction for the human proteome. 
Nature 596, 590–596 (2021). [PubMed: 34293799] 

59. Rao R et al. MSA transformer. In Proc. 38th International Conference on Machine Learning 8844–
8856 (PMLR, 2021).

60. Rives A et al. Biological structure and function emerge from scaling unsupervised learning to 250 
million protein sequences. Proc. Natl Acad. Sci. USA 118, e2016239118 (2021).

61. Rao R, Meier J, Sercu T, Ovchinnikov S & Rives A Transformer protein language models are 
unsupervised structure learners. In 2015 International Conference on Learning Representations 
(ICLR, 2015).

62. Lal D et al. Gene family information facilitates variant interpretation and identification of 
disease-associated genes in neurodevelopmental disorders. Genome Med. 12, 28 (2020). [PubMed: 
32183904] 

63. Zhang X et al. Disease-specific variant pathogenicity prediction significantly improves variant 
interpretation in inherited cardiac conditions. Genet. Med. 23, 69–79 (2021). [PubMed: 33046849] 

64. Starita LM et al. Variant interpretation: functional assays to the rescue. Am. J. Human Genet. 101, 
315–325 (2017). [PubMed: 28886340] 

65. Brnich SE et al. Recommendations for application of the functional evidence PS3/BS3 criterion 
using the ACMG/AMP sequence variant interpretation framework. Genome Med. 12, 3 (2019). 
[PubMed: 31892348] 

66. Hartl DL & Clark AG Principles of Population Genetics 4th edn (Sinauer Associates, 1989).

Zhang et al. Page 17

Nat Mach Intell. Author manuscript; available in PMC 2023 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



67. Cassa CA et al. Estimating the selective effects of heterozygous protein-truncating variants from 
human exome data. Nat. Genet. 49, 806–810 (2017). [PubMed: 28369035] 

68. Charlesworth B & Hill WG Selective effects of heterozygous protein-truncating variants. Nat. 
Genet. 51, 2 (2019). [PubMed: 30478439] 

69. Bycroft C et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 
203–209 (2018). [PubMed: 30305743] 

70. Mulder N et al. H3Africa: current perspectives. Pharmgenomics Pers. Med. 11, 59–66 (2018). 
[PubMed: 29692621] 

71. Siepel A et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. 
Genome Res. 15, 1034–1050 (2005). [PubMed: 16024819] 

72. Glorot X, Bordes A & Bengio Y Deep sparse rectifier neural networks. In Proc. 14th International 
Conference on Artificial Intelligence and Statistics 315–323 (JMLR, 2011).

73. Ke G, He D & Liu T-Y Rethinking positional encoding in language pre-training. In 2021 
International Conference on Learning Representations (ICLR, 2021).

74. Bateman A Uniprot: a universal hub of protein knowledge. Protein Sci. 28, 32–32 (2019).

75. Remmert M, Biegert A, Hauser A & Soding J HHblits: lightning-fast iterative protein sequence 
searching by HMM-HMM alignment. Nat. Methods 9, 173–175 (2012).

76. Herrero J et al. Ensembl comparative genomics resources. Database 2016, bav096 (2016).

77. Klausen MS et al. NetSurfP-2.0: improved prediction of protein structural features by integrated 
deep learning. Proteins 87, 520–527 (2019). [PubMed: 30785653] 

78. Armean IM et al. Enhanced access to extensive phenotype and disease annotation of genes and 
genetic variation in Ensembl. Eur. J. Human Genet. 27, 1721–1721 (2019).

79. McLaren W et al. The Ensembl variant effect predictor. Genome Biol. 17, 122 (2016). [PubMed: 
27268795] 

80. Ge R, Kakade SM, Kidambi R & Netrapalli P Rethinking learning rate schedules for stochastic 
optimization. In 2019 International Conference on Learning Representations (ICLR, 2018).

81. Zhang H & Shen Y ShenLab/gMVP: v1.0.0-alpha. Zenodo 10.5281/zenodo.7134878 (2022).

Zhang et al. Page 18

Nat Mach Intell. Author manuscript; available in PMC 2023 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1 |. An overview of gMVP model.
gMVP uses a graph to represent a variant and its protein context defined as 128 amino 

acids flanking the reference amino acid. The amino acid of interest is the centre node 

(coloured orange) and the flanking amino acids are the context nodes (coloured light green). 

All context nodes are connected with the centre node but not each other. The edge feature 

is co-evolution strength. The node features include conservation and predicted structural 

properties. Centre node features also include the amino acid substitution; context node 

features include the primary sequence and the expected and observed number of rare 

missense variants in human population. We use three one-depth dense layers to encode 

the input features to latent representation vectors and used a multi-head attention layer to 

learn context vector c. We then use a recurrent neural layer connected with softmax layer to 

generate prediction score from c and the representation vector h of variant.
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Fig. 2 |. Evaluating gMVP and published methods using cancer somatic mutation hotspots and 
random variants in population.
a, The gMVP score distributions for variants in cancer hotspots (labelled positives) and 

random missense variants in population (labelled negatives). b, Comparisons between the 

ROC curves of gMVP and other published methods. The ROC curves are evaluated on 878 

cancer mutations located in hotspots from 209 genes and 1,756 (that is, a twofold greater 

number of positives) randomly selected rare variants from the DiscovEHR data.
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Fig. 3 |. Evaluating gMVP and published methods in identifying damaging variants in known 
disease genes such as TP53, PTEN, BRCA1 and MSH2.
The precision–recall curves of gMVP and published methods are shown for each gene using 

functional readout data—labelled on the basis of the recommended threshold—as the ground 

truth.
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Fig. 4 |. Evaluating gMVP and published methods in distinguishing rare DNMs in cases with 
neurodevelopmental disorders from those in controls.
a, Distributions of gMVP-predicted scores for rare DNMs from ASD and NDD cases, 

as well as controls. We used a two-sided Mann–Whitney U test to assess the statistical 

significance of the difference between the cases and controls. Controls are unaffected 

siblings from the ASD study. b, Comparisons between gMVP and other published methods 

using DNMs from ASD cases and controls by precision–recall–proxy curves. Numbers 

on each point indicate rank percentile thresholds. The positions of the All Mis points are 

estimated from all missense variants without using any prediction method. c, The same 

comparison using data from NDD cases and controls.

Zhang et al. Page 22

Nat Mach Intell. Author manuscript; available in PMC 2023 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5 |. Evaluating gMVP and other published methods in classifying pathogenetic and neutral 
variants, and in predicting GOF and LOF variants in ion-channel genes.
a, Comparison of ROC curves in classifying pathogenic variants and neutral variants. 

gMVP-TL1 denotes the model further trained on the pathogenetic and neutral variants in 

SCNxA genes starting from the weights of the original gMVP model. b, Comparison of 

ROC curves in classifying GOF and LOF variants. gMVP-TL2 denotes the model further 

trained on GOF and LOF variants starting from the weights of the original gMVP model.
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Fig. 6 |. Interpreting gMVP predictions with conservation, protein structure and genetic coding 
constraints.
a, Spearman correlation between gMVP and other published methods, calculated by scores 

of the DNMs in ASD, NDD and controls. b, PCA on DNMs from ASD and NDD cases 

and controls. Red arrows show the loadings of gMVP and published methods on the first 

two components; the density contour shows the distribution of PC1/2 scores of the variants 

in NDD and controls. The density curves along the axes show the distribution of PC1 or 

PC2 scores of the cases and controls. c, The protein tertiary structure of BRCT2 domain of 

BRCA1. We coloured a residue blue if at least one missense on this position is predicted 

to be damaging (gMVP > 0.75) and orange otherwise. d, gMVP scores of all possible 

missense variants on the BRCT2 domain of BRCA1. The top bar plot shows the predicted 

probabilities of the protein secondary structures, whereas the bar below shows the real 

protein secondary structures calculated by DSSP. The middle heat map shows gMVP scores 

for all possible missense variants on each protein position (the darker the colour, the higher 
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the gMVP score). The bottom histogram shows the evolutionary conservation measured 

with the Kullback–Leibler divergence between amino acid distribution among homologous 

sequences and amino acid distribution in nature.
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