Skip to main content
. 2023 Jul 21;14:133. doi: 10.1186/s13244-023-01474-x

Table 2.

Performance metrics of the machine learning algorithms

ROC AUC PR AUC Accuracy Sensitivity Specificity NPV PPV F1 score p value
TE75 0.64 (0.42–0.82) 0.63 (0.40–0.83) 0.62 (0.45–0.79) 0.80 (0.57–1.00) 0.43 (0.15–0.71) 0.67 (0.30–1.00) 0.60 (0.37–0.80) 0.69 (0.48–0.83) 0.092
TE300 0.57 (0.33–0.78) 0.52 (0.28–0.70) 0.42 (0.23–0.62) 0.30 (0.08–0.58) 0.54 (0.27–0.80) 0.44 (0.18–0.69) 0.40 (0.10–0.73) 0.33 (0.10–0.56) 0.312
b0 0.66 (0.46–0.84) 0.73 (0.48–0.89) 0.55 (0.39–0.71) 0.81 (0.60–1.00) 0.26 (0.07–0.50) 0.60 (0.17–1.00) 0.54 (0.35–0.74) 0.65 (0.44–0.81) 0.069
b10 0.53 (0.33–0.74) 0.58 (0.37–0.79) 0.49 (0.31–0.66) 0.68 (0.47–0.89) 0.24 (0.06–0.47) 0.40 (0.09–0.71) 0.52 (0.32–0.71) 0.59 (0.40–0.75) 0.415
b200 0.79 (0.61–0.93) 0.72 (0.51–0.91) 0.68 (0.52–0.84) 0.56 (0.31–0.81) 0.81 (0.57–1.00) 0.63 (0.41–0.84) 0.75 (0.50–1.00) 0.64 (0.40–0.82) 0.002
b800 0.64 (0.44–0.82) 0.74 (0.55–0.88) 0.56 (0.42–0.72) 0.64 (0.40–0.83) 0.47 (0.23–0.71) 0.53 (0.27–0.79) 0.57 (0.37–0.77) 0.59 (0.40–0.76) 0.071
ADC 0.72 (0.50–0.90) 0.75 (0.54–0.94) 0.68 (0.53–0.82) 0.80 (0.60–0.95) 0.54 (0.27–0.78) 0.69 (0.36–0.91) 0.68 (0.50–0.87) 0.74 (0.56–0.87) 0.019