
Cheng et al. Cell Discovery            (2023) 9:75 Cell Discovery
https://doi.org/10.1038/s41421-023-00582-8 www.nature.com/celldisc

ART ICLE Open Ac ce s s

The STROMICS genome study: deep whole-
genome sequencing and analysis of 10K Chinese
patients with ischemic stroke reveal complex
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Abstract
Ischemic stroke is a leading cause of global mortality and long-term disability. However, there is a paucity of whole-
genome sequencing studies on ischemic stroke, resulting in limited knowledge of the interplay between genomic and
phenotypic variations among affected patients. Here, we outline the STROMICS design and present the first whole-
genome analysis on ischemic stroke by deeply sequencing and analyzing 10,241 stroke patients from China. We
identified 135.59 million variants, > 42% of which were novel. Notable disparities in allele frequency were observed
between Chinese and other populations for 89 variants associated with stroke risk and 10 variants linked to response
to stroke medications. We investigated the population structure of the participants, generating a map of genetic
selection consisting of 31 adaptive signals. The adaption of the MTHFR rs1801133-G allele, which links to genetically
evaluated VB9 (folate acid) in southern Chinese patients, suggests a gene-specific folate supplement strategy. Through
genome-wide association analysis of 18 stroke-related traits, we discovered 10 novel genetic-phenotypic associations
and extensive cross-trait pleiotropy at 6 lipid-trait loci of therapeutic relevance. Additionally, we found that the set of
loss-of-function and cysteine-altering variants present in the causal gene NOTCH3 for the autosomal dominant stroke
disorder CADASIL displayed a broad neuro-imaging spectrum. These findings deepen our understanding of the
relationship between the population and individual genetic layout and clinical phenotype among stroke patients, and
provide a foundation for future efforts to utilize human genetic knowledge to investigate mechanisms underlying
ischemic stroke outcomes, discover novel therapeutic targets, and advance precision medicine.

Introduction
Stroke is the leading cause of mortality and long-term

disability worldwide1. As a complex disease with diverse
risk factors, clinical manifestation, and intermediate
pathogenesis processes, the genetic heritability of stroke
has been estimated to range from 16.1% to 40.3% according
to small or mediate scale twin studies2 and genome-wide
complex trait analysis3. Consequently, characterizing the
relationship between sequence variation and rich stroke
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phenotypes becomes crucial in order to understand the
mechanisms of stroke pathogenesis and prognosis, and to
develop novel therapeutic strategies for disease prevention
and treatment4. Efforts, such as MEGASTROKE5, have
made some progress, revealing 32 stroke risk loci harboring
common genetic variants. The recent GIGASTROKE study
also reported 89 independent loci for stroke risk using the
same meta-analysis strategy6. In addition, several studies
have contributed to revealing genetic risk factors under-
lying post-stroke outcomes7–10. While those studies were
mostly array-based and focused on European popula-
tions5,11–15, challenges remain in a better understanding of
the genetic effects of the complete set of coding and non-
coding variants across the allele frequency spectrum on
well-defined intermediate phenotypes and clinical out-
comes, and the impact of ancestral differences, as well as a
systematic elucidation of the molecular mechanisms
underlying the occurrence and progression of the disease16.
Whole-genome sequencing (WGS) of a well-characterized
patient registry with comprehensive medical records, and
long-term follow-up on stroke outcomes among the
underrepresented East Asian populations provides a
foundation to address these challenges.
Launched in China, the STROMICS study represents the

first and largest endeavor to understand how stroke occurs,
recurs, repairs, and recovers using a multi-omics and sys-
tems biology strategy. Here, we outline the STROMICS
design and resource and report findings from the STRO-
MICS Phase I genome study, following a common thread to
elucidate genetic characteristics and discoveries of a new
genomic resource17. The major findings were achieved
based on the deep WGS (on average 41.17×) and analysis of
10,241 patients recruited from the Third China National
Stroke Registry (CNSR-III)18, a China nationwide pro-
spective registry for patients presented to hospitals with
acute ischaemic cerebrovascular events with long-term
follow-up19. We constructed a high-quality variation dataset
consisting of 135.59 million single-nucleotide variants
(SNVs) and insertions and deletions (indels), including 42%
novel variants not present in dbSNP (Build 155). We dis-
sected the fine-scale genetic structure of the participants,
reported the most comprehensive map to date of genetic
loci under natural selection across the latitudinal and
longitudinal gradients in China, and elaborated on how the
knowledge of population genetic history may impact disease
prevention and medication strategy. We further investi-
gated the genetic-phenotypic associations of 18 stroke-
related traits, including 14 biochemical indicators, 2 neu-
roimaging, and 2 behavioral traits, from both the common
and rare variant perspectives. Finally, based on a complete
variant call set of the NOTCH3, a causal gene for the
autosomal dominant stroke disorder cerebral autosomal
dominant arteriopathy with subcortical infarcts and leu-
koencephalopathy (CADASIL), we systematically analyzed

the phenotypic spectrum of individuals carrying functional
variants in the gene. The genomic resources and knowledge
obtained from this study provide a robust foundation for
further endeavors to investigate undermined mechanisms
for stroke onset and progression, and expedite the
exploration of new targets for stroke primary and secondary
prevention. The STROMICS website is available at http://
www.stromics.org.cn.

Results
The STROMICS design and resource
The STROMICS aims to characterize the mechanisms

underlying the phenotypic spectrum of stroke patients
before and after stroke onset, from the multilayer omics
perspectives. The Phase I study focuses on the genome
study of 10,241 unrelated patients from CNSR-III (Sup-
plementary Fig. S1 and Table S1), a nationwide pro-
spective registry targeting the prognostic outcome of
patients presented to hospitals with acute ischaemic cer-
ebrovascular events between August 2015 and March
2018 in China18,19. A wide variety of phenotypic infor-
mation as well as biological samples (blood and urine)
were collected from each participant (Fig. 1). Acute
ischemic stroke was diagnosed according to the WHO
criteria20 and confirmed by brain magnetic resonance
imaging (MRI) or computed tomography (CT). The geo-
graphical distribution of birthplace among the 10,241
STROMICS participants covered 31 out of the 34 pro-
vincial administrative divisions of China (Fig. 2a; Sup-
plementary Table S2).
The baseline data included prehospital care, pre-stroke

modified Rankin Scale (mRS), National Institutes of
Health Stroke Scale (NIHSS) score, age, blood pressure,
clinical features, duration of symptoms, ABCD2 score,
patient demographics, medical history, family history,
previous medication, physical examination, primary
diagnosis, laboratory tests, risk factor assessment, and
brain imaging (including brain MRI or CT, and at least
one intracranial vascular assessment). Etiology classifica-
tion of ischemic stroke was performed according to the
TOAST (Trial of Org 10172 in Acute Stroke Treatment)
criteria21. At discharge, the research coordinators
extracted the auxiliary examination and recorded stan-
dard etiological evaluation results, medication, vascular-
related operation and surgical procedures, final diagnosis,
NIHSS and mRS score, economic burden, and cere-
brovascular events during hospitalization. Patients were
followed up, interviewed face-to-face at 3 months, and
contacted over the telephone by trained research coor-
dinators at 6 months and 1–5 years annually. Information
including functional status, cardiovascular/cere-
brovascular events, compliance with recommended sec-
ondary prevention medication, and risk factor control was
queried at each follow-up.
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Blood and urine samples were collected within 24 h of
admission, at 3 months, and 12 months. DNA was
extracted from the white blood cells of the participants,
and subjected to deep WGS using 100 bp paired-end
reads to high sequencing depth (41.17× on average),
covering ~96.76% ± 0.17% of the non-N sequence human
genome with an average insert size of 236 bp (Materials
and methods).

135.59 million high-quality genetic variants
After read alignment, variant detection, and a series of

variant-level quality control (Materials and methods), we
identified a call set of 135,589,210 biallelic variants,
including 125,769,898 SNVs with Ts/Tv ratio of 2.06 (Fig.
2b; Supplementary Fig. S2), and 9,819,312 indels ranging
from 1 bp to 50 bp in length (Fig. 2c; Supplementary Table
S3). To assess the accuracy of the variant call set, we
compared the genotypes of the union set of SNVs and
indels in 50 individuals who were also sequenced to
198.03× in a gene panel (Materials and methods). The
false discovery rate (FDR) for the identified SNV and indel
was 1.56% and 1.12%, respectively, indicating robustness
of the variants detected and genotyped in this study
(Supplementary Table S4). To investigate the allele fre-
quency spectrum of the 135.59 million variants, we
categorized the variants into six groups based on the
alternative allele frequency estimated from the 10,241
patients (Fig. 2b; Supplementary Table S5). The majority
of the SNVs and indels were found to be rare, with a

minor allele frequency (MAF) of < 0.1% (SNVs: 114.49
million, 91.03%; indels: 8.92 million, 90.86%; Supple-
mentary Table S3). A total of 51.84 million (41.22%) SNVs
(Ts/Tv= 1.36) and 5.28 million (53.79%) indels were not
cataloged in dbSNP (Build 155), with most of them being
rare variants (Fig. 2b; Supplementary Table S5).
The length distribution of the 1–50 bp indels was

symmetric, with periodical peaks at 2 bp across the gen-
ome, corresponding to the polymerase slippage mechan-
ism of indel generation. Additionally, peaks at 3 bp were
observed specifically in the exonic regions, likely resulting
from purifying selection acting on the frameshift indel in
the coding region (Fig. 2c; Supplementary Fig. S3 and
Table S6)22. While the majority of the 135.59 million
genetic variants were located in the non-coding region
(98.81%), 1.61 million variants (1.19%) were found in the
coding region, including 534,090 synonymous SNVs,
1,001,334 missense, stop-loss, and non-frameshift var-
iants, 14,123 splice-site, and 60,066 loss-of-function (LoF)
variants (Fig. 2d; Supplementary Table S7). The variant
allele frequency tended to decrease with the increasing
deleterious consequences (Fig. 2e; Supplementary Table
S8). Notably, we observed that the frequency of the splice-
site variants declined faster than the LoF variants such as
frameshift, stop-gain, start-loss, and initiator codon var-
iants, suggesting stronger purifying selection against the
splice-site variants.
Compared to all the other four WGS studies among

Chinese and East Asian populations, including China

Fig. 1 Summary of the major components of the STROMICS resource and WGS content. Individuals were recruited from the CNSR-III and
underwent a series of standard diagnostic procedures according to the WHO criteria, and acute ischemic stroke was confirmed by MRI or brain CT. An
electronic data capture (EDC) system was developed and used for data collection. Clinical phenotypes were extracted from EDC, medical records
during hospitalization, biomarker measurement from biological samples, and death registry from the Chinese Center for Disease Control and
Prevention (CDC). Individuals were followed up at 3 months, 6 months, and 1–5 years annually. Blood and urine samples were collected in face-to-
face visits (baseline and follow-ups), and were stored in the Beijing Tiantan hospital. Omics screening is performed on the blood of the individuals.
The number of high-quality genetic variants identified from the WGS is shown. Figure created with BioRender.com.
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Metabolic Analytics Project (ChinaMAP, v1.0; 40.8×;
10,588 genomes)23, Nyuwa (v1.0; 26.2×; 2999 genomes)24,
Genome Aggregation Database (gnomAD) EAS (v3.1;
2604 genomes)25 and Westlake BioBank for Chinese

(WBBC, v20211129; 13.9×; the combination of 4535 WGS
genomes and 5841 arrays)26, the STROMICS genome
study reported here has uniquely contributed 64.77 mil-
lion (20.85%) from the union set of 310.72 million SNV

Fig. 2 Allele frequency spectrum and functional annotation of the 135.59 million genetic variants among 10,241 individuals from
STROMICS. a The geographical distribution of STROMICS samples in China. b The number and allele frequency spectrum of STROMICS variants (SNVs
and indels). Novel and known variants are defined by dbSNP (Materials and methods). AC, allele count. c Length and number distribution of
STROMICS variants. The purple line shows the proportion of novel variants. d The total number of variants observed in each functional class of
genome. e Relationship between alternative allele count and the number of variants among different functional categories. The function
categorization of the genetic variants (All, LoF, splicing, Moderate, Low, ncRNA) was shown in Supplementary Table S8. f Venn diagram showing the
concordance of genetic variants among STROMICS, gnomAD, ChinaMAP, NyuWa Genome resource, and WBBC.
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and indel variants from the five studies (Fig. 2f). As a
sanity check, we compared the allele and genotype fre-
quencies of 89 genetic variants associated with stroke
occurrence from the latest genome-wide association study
(GWAS)5,6 as well as 10 variants associated with response
to three drugs for stroke treatment (clopidogrel, warfarin,
statin) between the STROMICS population and the other
reference populations (Supplementary Tables S9 and
S10). Six out of the 89 stroke risk variants were not
detected in the STROMICS or were detected in less than
two of the reference datasets and were therefore not
discussed (Supplementary Table S9). The remaining 83
loci consisted of 58 variants associated with overall risk of
stroke occurrence and 25 variants associated with the risk
of specific subtypes, including the large artery stroke
(LAS), cardioembolic stroke (CES), or small-vessel
occlusion (SVS). We found that 37 out of the 83 var-
iants associated with stroke risk showed significantly
higher allele frequencies among STROMICS patients
compared to at least two of the other four Chinese WGS
reference datasets (χ2 or Fisher’s exact test P < 0.05). For
the remaining 46 variants, 17 variants showed unexpect-
edly lower frequency in STROMICS compared to the
reference populations (Supplementary Fig. S4), and 29
variants did not show a consistently significant difference.
To understand whether the discrepancy is due to ances-
tral differences, we explored eight of the loci associated
with stroke risk among the East Asian populations. We
found clear evidence for stroke risk for four loci (SH2B3,
FGF5, PITX2, and KCNK3) (Supplementary Fig. S5).
However, the risk allele of the two loci (COL4A2 and
SH3PXD2A) showed lower frequencies in STROMICS
compared to the reference populations. For two loci that
were associated with stroke risk among the South Asians
(SAS, COBL) and Africans (AFR, PITCH1), the PTCH1
locus also showed unexpectedly lower frequency in
STROMICS compared to the reference populations.
Nonetheless, it is worth noting that the unexpected allele
frequency difference observed between the STROMICS
patients and the control datasets may be due to a lack of
correction of population structure and other confounding
factors in the analysis27. Future studies investigating the
genetic determinants of stroke risk among the non-
European underrepresented populations should prioritize
leveraging the STROMICS Phase I resource as a high-
quality patient dataset. For the 10 genetic variants asso-
ciated with pharmacogenetics, one variant rs12248560-T
in CYP2C19 associated with a poorer response to the
antiplatelet clopidogrel therapy consistently showed sig-
nificantly higher allele frequency among STROMICS
compared to the other reference populations (Supple-
mentary Fig. S6 and Table S10).
Furthermore, we compared the genotype frequencies of

the 99 genetic variants between STROMICS and 10

populations from the gnomAD consortium (Supplementary
Tables S11, S12 and Figs. S7, S8). The STROMICS and the
gnomAD East Asian populations share a higher proportion
of stroke risk-associated variants with similar allele fre-
quencies (61 out of the 83 variants, 73.49%, P > 5.62 × 10–4)
compared to the other nine populations (Non-Finnish
European ancestry: 9.64%; Finnish ancestry: 3.61%; South
Asian ancestry: 14.46%; Middle Eastern ancestry: 28.92%;
Ashkenazi Jewish ancestry: 16.87%; Latino ancestry: 8.43%;
Amish ancestry: 16.87%; African/African-American ances-
try: 3.61%; other ancestry: 15.66%; P > 5.62 × 10–4). As an
example, the genotype frequency distributions of the 41
variants displaying the most significant discrepancy
(P < 5.0 × 10–324) between the East Asian and the Non-
Finnish European populations are shown in Supplementary
Fig. S7. These discrepancies in genotype frequencies for the
stroke risk-associated variants among various populations
suggest the presence of a population-specific genetic basis
for stroke risk. We can draw several conclusions from the
genotype frequency distribution of 10 genetic variants rela-
ted to drug response. First, statins, which are commonly
prescribed for cholesterol reduction and stroke prevention,
may have differing effects based on genetic profiles. The
higher frequency of rs4149056-C in SLCO1B1 and
rs2231142-T in ABCG2 among the Chinese and East Asian
populations suggests an increased statin exposure and a
higher risk of myopathy in statin users28. Therefore, clinical
trials for statin therapies for stroke should take into con-
sideration the population- and individual-specific genetic
profile, which can benefit from the genomic resources
provided by STROMICS. Second, for warfarin and clopi-
dogrel, which are widely used as oral anticoagulants
worldwide29, the higher frequency of the VKORC1
(rs9923231-T), CYP4F2 (rs2108622-C), CYP2C9 (rs1057910-
C and rs1799853-T), and CYP2C18 (rs12777823-A) alleles
associated with more sensitive response to warfarin29 and
the CYP2C19 (rs4244285-A, rs4986893-A, and rs12248560-
T)30 alleles associated with poorer clopidogrel metabolism,
suggest that a lower warfarin dose and an alternative anti-
platelet agent other than clopidogrel should be considered
among the Chinese and Asian populations.

Population genetic structure and natural selection
Knowledge of the genetic structure and history provides

essential information for disease study using association
tests31 and has not yet been assessed among the STRO-
MICS patients. We applied genetic methods including
principal component analysis (PCA)32, ADMIXTURE33,
and PC-based selection34 to quantify the population
structure and identify recent positive selection using the
WGS data from STROMICS.
We revealed a fine-scale genetic structure that closely

mirrored the geographical distribution of the patients using
the PCA (Fig. 3a, b; Supplementary Fig. S9). The first two
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principal components, PC1 and PC2, explained a total of
0.13% variance and formed multiple clusters that corre-
sponded to the seven geographic regions of China (Fig. 3a)
and the 31 provincial administrative divisions (Fig. 3b).
Further analysis using linear regression demonstrated that
PC1 was associated with latitude (r= 0.74, P < 2.2 × 10–16),
and PC2 was associated with longitude (r= 0.44,
P < 2.2 × 10–16) (Supplementary Fig. S10). Notably, popula-
tion stratification was more evident when including low-

frequency variants (0.01 <MAF< 0.05) and rare variants
(0.005 <MAF< 0.01) in addition to common variants
(MAF > 0.05) in the PCA analysis (Supplementary Fig. S11).
When comparing the STROMICS patients with 26 popu-
lations from the 1000 Genome Project Phase 3 (1KGP3)
using PCA, as expected, the majority of STROMICS
patients clustered with the 1KGP3 East Asian populations,
while a small proportion of minorities showed evidence of
ancient admixture with European or South Asian

Fig. 3 Population structure and adaptation. a, b PCA of all the individuals in STROMICS (n= 10,241) colored by seven geographical regions (a) and
by 31 provincial divisions (b). Each point represents one participant and is placed according to their eigenvectors. c, d Distribution of the 3 ancestry
components in STROMICS participants (n= 10,241) of geographical region (c) and of provincial divisions (d) as inferred using the ADMIXTURE for
K= 3. Each color reflects one of the three ancestral components. The proportion of ancestral components for each individual was indicated by a
stacked bar. Individuals were organized by provinces along the x-axis. e Genomic signatures under selection along PC1 (upper panel) and PC2 (lower
panel). The nearest gene of the lead SNV for each selection signal is indicated. f A geographical distribution of the A allele frequency of the SNV
rs1801133 (chr1:11796321) in the MTHFR and CLCN6 loci under genetic selection in the STROMICS population. Provinces with a sample size of < 5
were filled in gray. g, h Linear regression of homocysteine and VB9 (folate) on the three genotypes of rs1801133, respectively, with gender, age,
history of stroke, and the day duration between stroke onset and the blood sampling as the covariates.
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populations (Supplementary Fig. S12). We also employed
ADMIXTURE with a model of 3 and 11 hypothetical
ancestral components, selected based on the smallest cross-
validation error, to analyze the STROMICS patients alone
and in combination with the 26 populations from 1KGP3
(Supplementary Fig. S13a, b). Our results showed that the
STROMICS Phase I patients were mainly composed of
three ancestral components, representing northern and
southern Chinese ancestries, as well as a component from
the northwest that likely originated from ancient European
gene flow (Fig. 3c, d). Compared to the CHB, CHS, and
CDX Chinese populations from 1KGP3, the STROMICS
patients showed a higher average percentage of ancestry
from North China, compensating for the missing diversity
in the 1KGP3 study (Supplementary Fig. S13c, d).
We subsequently investigated recent genetic adaptation

by analyzing variants with unusual allele frequency dis-
tribution along each PC against a null model of genetic
drift (See Materials and methods). We identified 17 and
14 loci that showed significant allele frequency differences
across PC1 and PC2, respectively, which correspond to
the latitudinal and longitudinal gradients on the geo-
graphical map of China (adjusted P < 2.5 × 10–8) (Fig. 3e;
Supplementary Figs. S14 and S15). Among these loci, 12
gene loci (MTHFR, CR1, EPAS1, EDAR, ADH1C, FADS2,
ALDH2, GJB2, DOCK9, IGH cluster, and ABCC1) were
previously reported to be under selection in East Asians or
other populations, and 19 were newly identified selection
signals (Supplementary Tables S13 and S14).
Notably, we observed a strong selection signal at

rs1801133, a coding single-nucleotide polymorphism
(SNP) known as Ala222Val or C677T or G677A, in the
methylenetetrahydrofolate reductase gene (MTHFR) on
chromosome 1. The frequency of the A allele of
rs1801133 demonstrated a latitude-dependent gradient
trend across China, with the highest frequency observed
around the latitude of 40 degrees North (Fig. 3f; Supple-
mentary Fig. S16). This pattern of allele frequency dis-
tribution across the 34 administrative divisions across
China has not been reported before but is consistent with
previous findings across Eurasia35,36. The observed
adaptation generally supports a model35 proposing that
individuals with limited access to green vegetables and/or
living in places with high UV radiation would benefit from
the Ala variant (the C or G allele) for elevated folic acid
synthesis, to compensate for an inadequate dietary intake
or the UV photolysis influence on folate36. Despite the
historic limitations in access to green vegetable supple-
ments in North China, the high frequency of the A allele,
rather than the more efficient G allele, among northern
Chinese suggests a weaker effect of dietary supplies than
UV radiation on folate deficiency.
We then combined the rich phenotypic information in

the STROMICS to bridge the selection signal and

potential medical relevance. We found that the G677A
allele frequency was significantly associated with an
increase in homocysteine (P= 5.94 × 10–69, Fig. 3g; Sup-
plementary Fig. S17a, b) and a decrease in serum folate
acid concentration (P= 5.82 × 10–14, Fig. 3h; Supple-
mentary Fig. S17c) among the STROMICS patients. This
was expected, as the G-to-A mutation results in an
alteration of alanine to valine, leading to reduced MTHFR
activity37. We also observed that the A allele showed a
significantly higher frequency in the STROMICS com-
pared with all four Chinese reference datasets, suggesting
an association of the G677A mutation with increased
stroke risk in the Chinese population without adjustment
for population stratification (χ2 test, P < 3.63 × 10–18)
(Supplementary Table S15). When we analyzed the
summary statistics from the recent GIGASTROKE study
on stroke risk, we confirmed that the association of stroke
risk with the variant was present among East Asians but
not in the European population (Supplementary Table
S15), consistent with a previous meta-analysis reporting a
higher odds ratio (OR) of G677A for stroke risk in
populations with a low folate supplementation compared
to populations with folate fortification38. This evidence
suggests that folate nutrition is still insufficient among the
Chinese population for stroke protection. A gene profile-
based prevention strategy can be derived as follows: for
populations in North China where a higher incidence rate
of cardiovascular and cerebrovascular diseases has been
observed39, regularly enhancing folate intake to lower
homocysteine levels among individuals with MTHFR
677A allele and possibly other populations with similar
genetic and environmental conditions may be an effective
prevention strategy to reduce the disease burden. For
populations in southern China where most individuals
have MTHFR 677G allele, protection from high environ-
mental UV radiation may be a more efficient method to
reduce folate deficiency, especially considering that cur-
rent folate intake is more intensive in southern provinces
compared to northern provinces according to the China
CDC40. Future clinical trials will be valuable for validating
these predictions.
In addition to the MTHFR selection signal, we identified

16 additional genetic loci that showed evidence of selec-
tion along the latitude (Fig. 3e; Supplementary Fig. S14).
Among these, nine loci have been previously reported to
be under selection. For instance, the CR1 and TMEM121
loci have been shown to be adapted to pathogen infection
in South China41. The ADH1C and BRAP (ALDH2) loci
are known to be involved in alcohol metabolism and have
been associated with agricultural development in East
Asia42–44. TheMYRF (FADS2) locus has been shown to be
adapted to a diet lacking fatty acid in some populations in
Eurasia41,45. The GJB2 locus has been associated with
recessively inherited forms of deafness and is thought to

Cheng et al. Cell Discovery            (2023) 9:75 Page 7 of 20



have been selected for potential advantage related to
epidermal thickening or increased cell survival46,47. The
DOCK9 locus has been suggested to be adapted to
potential advantages related to bone mineral density41,
and the ABCC1 locus has been associated with adaptation
to cold climates in East Asians41 and other populations48.
Selection signals along the China longitude were first
reported in this study (Fig. 3e; Supplementary Fig. S15).
Among the 14 significant signals identified, the strongest
signal was observed for the BRAP (ALDH2) locus, sug-
gesting that adaptation of the alcohol metabolism to
agricultural development occurs along both the latitude
and longitude in China. The other two selection signals
with evidence from previous studies include the adapta-
tion of erythrocyte abundance to hypoxia in high altitude
(EPAS1 locus), which was first discovered in the Tibetan
population in northwest China49 and a proposed adapta-
tion of mother-to-infant transmission of vitamin D and
fatty acid through breast milk during the last ice age
(EDAR locus)50. Six of the 19 newly identified signals have
functions according to the GWAS catalog (Supplemen-
tary Tables S13 and S14): theMPL locus is associated with
myelofibrosis and amegakaryocytic thrombocytopenia;
the SNX25 locus is associated with hair color measure-
ment; the SLC52A3-FAM110A locus is associated with
prostate cancer; the TCN2 locus is associated with type 2
diabetes; the TBC1D1-LINC01258 locus is associated with
heel bone mineral density; and the CTNNA1 locus was
associated with susceptibility to digestive cancer. Inter-
pretation of the selection signals as well as the 13
remaining signals without functional annotation, requires
further phenomics information and basic experiments.

Genome-wide associations of 18 stroke-related
biochemical, behavioral, and imaging traits
A wide variety of physiological, biochemical, and

behavioral risk factors were documented for patients
recruited in the CNSR-III registry. The STROMICS
genome study enables the discovery of the genetic
determinants of numerous risk factors within a Chinese
patient cohort, providing foundational knowledge for
causal inference on stroke onset and outcome in future
studies. We investigated a set of 18 representative traits
related to stroke risk from both the common and rare
variant perspectives which included 14 biochemical traits
in four categories (lipid-related, homocysteine-related,
inflammation, and kidney function-related biomarkers),
two behavioral (drinking and smoking), and two imaging
traits (diffusion-weighted imaging (DWI)-positive acute
ischemic stroke and symptomatic extra- and intra-cranial
atherosclerotic stenosis, abbreviated as AIS-DWI and
sEICAS, respectively). GWAS studies have not yet been
conducted among the East Asian populations for six of
the traits (Apo-CII, Apo-CIII, Apo-E, PCSK9, AIS-DWI,

and sEICAS). None of the 18 traits have been investigated
among Chinese populations with WGS greater than 10 K
individuals (Supplementary Table S16). Based on the
power analysis, we were able to identify genetic variants
with a power of 80% or more given its MAF ≥ 0.01 and an
effect size of 0.47 or an OR of at least 2.57 providing the
sample size in our study (Supplementary Fig. S18). In case
of the presence of genetic variants with large effect sizes,
we restricted the genome-wide association analyses for
variants with MAF > 0.5% using linear mixed model in
SAIGE47 (see Materials and methods). All analyzed traits
had SNP heritability ranges from 1% to 16%, and GC
lambda close to 1.0 (0.98 < λGC < 1.01), suggesting no
significant inflation in association analysis (Supplemen-
tary Table S17).
In total, we identified 56 independent genetic associations

reaching genome-wide significance for the 18 traits
(P < 2.78 × 10–9), including 32 loci that were not previously
reported for seven traits, such as Apo-B, Apo-CII, Apo-CIII,
VB9 (folate acid), eGFR, and sEICAS (Fig. 4). Additionally,
we summarized 21 genetic loci that reached genome-wide
significance criteria (P < 5 × 10–8) in Supplementary Table
S18. For 29 out of the 77 loci, we found replication data
from the published GWAS analyses in the GWAS catalog51,
Phennoscanner52,53, and OpenGWAS54 (see Materials and
methods). All 29 loci were replicated based on the criteria of
the same direction of effect and a significance level of
P < 1.72 × 10–3 (Supplementary Table S18).
Among the 14 biochemical traits that include lipids

(triglyceride TG and total cholesterol TC), lipoproteins
(LDL-C and HDL-C), apolipoproteins (Apo-A, B, C, and
E), the LDL receptor binding enzyme PCSK9, homo-
cysteine (HCY), vitamin B9 (VB9), hypersensitive
C-reactive protein (hsCRP), and estimated glomerular
filtration rate (eGFR), we identified a total of 33 loci. Ten
were first discovered in this study (P < 2.78 × 10–9) (Fig. 4;
Supplementary Table S18). The 10 newly identified
genetic associations consist of five loci for apolipoprotein
CII and CIII of which GWAS studies were not conducted
before, one locus tagged by an intronic indel at PCLO
associated with Apo-B, one locus tagged by an intronic
SNV at FADS2 for PCSK9 (rs651821), one frameshift
deletion at FOLR3 (rs71891516), one locus tagged by an
intronic SNV at ABO for VB9 (rs9411377) and one locus
tagged by an intergenic SNV associated with eGFR
(rs4715502). A few important discoveries can be sum-
marized below. First, we found that although Apo-CII and
Apo-CIII have different functions in the cholesterol
metabolism pathway — Apo-CII activates LPL and pro-
cesses chylomicrons and VLDL in circulation while Apo-
CIII inhibits lipolysis by hindering the interaction of
VLDL with the LPL complex10, their genetic determinants
were similar (Supplementary Fig. S19). Both apolipopro-
teins were associated with variants near genes encoding
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APOC2 on chromosome 19, APOC3 on chromosome 11,
and GCKR on chromosome 2, suggesting a close biolo-
gical relationship between the two proteins. Secondly, we
found that FADS2 locus was the second most significant
loci following the PCSK9 locus that contributed to the
plasma PCSK9 protein level among STROMICS Phase I
participants. This locus was not previously found likely
due to smaller sample sizes (n < 3290) in four published
GWASs51. The intronic lead SNP rs651821 was an
expression quantitative trait locus (eQTL) for FADS2 and
its G allele increases both mRNA expression of FADS2
according to GTEx55 (beta= 0.76, P= 2.1 × 10–60) and
protein level of PCSK9 in the whole blood according to
STROMICS (beta= 0.10, s.e.= 0.02, MAF= 0.34,
P= 5.99 × 10–11). It is possible that the fatty acid desa-
turase 2 (FADS2), which plays a role in the synthesis of
polyunsaturated fatty acids (PUFAs), may also play a role
in cholesterol metabolism pathway. Further experiments
are warranted to evaluate whether sharing of the genetic
association between FADS2 and PCSK9 was attributed to
causality or pleiotropy. Thirdly, we identified that a 2 bp
frameshift deletion at FOLR3 was the most significant
variant that decreases folate level (rs71891516-C,
beta= –0.25, s.e.= 0.03, MAF= 0.08, P= 1.58 × 10–19).
The folate receptor gamma (FOLR3) was known to play a
role in folate metabolism56. However, six GWAS studies
on folic acid measurements did not find this association in
either European or East Asian populations51. As
rs71891516 was not tagged well by nearby variants (the
largest linkage disequilibrium (LD) r2 in a 1 Mbp window
is 0.496 according to LDlink with the 1KGP3 populations
as the reference panel), we infer that this new discovery
benefits from the WGS design in STROMICS. The
interpretation of the rest of the three newly identified loci
was not immediate as the lead variants were not eQTLs
according to GTEx portal55. Future replication and vali-
dation studies are required to understand these genetic
associations.
We noted that extensive pleiotropy was involved in the

genetic architecture of biochemical traits, especially lipid-
related traits. Based on co-localization analysis for each
significant locus between any two biochemical traits (see
Materials and methods), we found that six loci around the
PCSK9, GCKR, ApoB, LPL, ApoC, and ApoE genes on
chromosomes 1, 2, 8, 11, and 19 showed shared genetic
effect on at least two lipid traits (H4 > 0.8, Fig. 4; Sup-
plementary Fig. S20 and Table S19). For example,
rs151193009 is a missense variant in PCSK9 that simul-
taneously impacts levels of Apo-B, TC, and LDL-C
(Supplementary Fig. S20a). rs13306194 is a missense
variant in APOB that shows shared genetic associations
with Apo-CIII and TG (Supplementary Fig. S20b).
rs6547692 is an intronic variant in GCKR that influences
levels of apo-CII, apo-CIII, and TG (Supplementary Fig.

S20c). rs75551077 is an intergenic variant around LPL
that affects both HDL-C and TG (Supplementary Fig.
S20d). A variant present in 5′ untranslated region (UTR)
of APOA5 affects Apo-CII, Apo-CIII, Apo-E, HDL-C, and
TG (Supplementary Fig. S20e). rs7412 is a missense var-
iant that influences Apo-II, Apo-CIII, Apo-E, TC, LDL-C,
and TG (Supplementary Fig. S20f). As molecules that
partake in lipid metabolism have been regarded as well-
established pharmaceutical targets for cerebrovascular
disease57, sharing of genetic effects observed in STRO-
MICS underscores essentiality of careful examination of
horizontal pleiotropy in mendelian randomization analy-
sis to discriminate true causal risk factors from artifacts.
For the two behavioral traits, we found that a long

region (~2Mbp) crossing the ALDH2 gene on chromo-
some 12 (lead SNP rs671) was strongly associated with
heavy drinking behavior (> 20 g/day) among the stroke
patients (rs671-G, OR= 3.18, 95% CI= 2.83–3.59,
MAF= 0.16, P= 2.43 × 10–83) (Fig. 4; Supplementary
Figs. S19, S21 and Table S18). However, we did not find
any significant genetic signals present in the ADH1B gene,
which suggests that the drinking behavior among the
STROMICS participants was mainly genetically driven by
the ALDH2 gene. We did not identify genetic associations
with current smokers in the STROMICS Phase I patients,
which was reasonable as known smoking genetic variants
in East Asians have an OR between 1.1 and 1.3 and a
MAF > 0.158 and our study did not have enough power for
discoveries (Supplementary Fig. S18d).
We identified 22 strong association signals affecting the

risk of developing sEICAS for the two imaging traits
(P < 2.78 × 10–9), which have not been investigated before
in terms of genetic factors. The most significant gene
locus on chromosome 20 increases at least three times the
risk of developing sEICAS (OR 95% CI= 3.0–4.0). Almost
all loci were present in the intergenic region except for
two intronic SNVs: rs200364330 at PDE5A which reg-
ulates intracellular concentrations of cyclic nucleotides
and plays a role in smooth muscle relaxation in the car-
diovascular system56 and rs938277067 at ZNF804A,
which was associated with schizophrenia and bipolar
disorders56. Although no statistical inflation was observed
(Supplementary Fig. S19 and Table S17) and the identified
genetic associations met the power calculation (Supple-
mentary Fig. S18), we believe that those association sig-
nals were likely false positives due to a lack of robust
functional evidence from GTEx55 and Phennoscanner52,53

and a low MAF (< 0.05) observed for the lead variants.
When all 210 significant principal components were
included in the analysis, the results remained consistent
with those based on the top five principal components.
Therefore, false signals are likely to occur among low-
frequency variants, even when using state-of-the-art
GWAS algorithms with careful control of population
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stratification. Further investigation on the genetic asso-
ciations between a small proportion of patients who were
DWI-negative (1121 out of 8861, 12.65%) and the
majority who were DWI-positive revealed an association
signal tagged by a common intergenic variant (rs6844814-
G, OR= 0.73, 95% CI= 0.66–0.81, MAF= 0.23,
P= 1.95 × 10–8) that acted as an eQTL for MFAP3L in
skin (rs6844814-G, beta= 0.12, P= 1.8 × 10–4). Replica-
tion of this signal in multi-ethnic populations will be
warranted, considering that the DWI phenotype is easily
available in stroke units.
We further investigated the potential genetic influence

of the low-frequency and rare variants (MAF < 0.005) as
well as those present in the coding sequence for the 18
traits using gene-based association tests, including SKAT-
O, SKAT, and burden tests59. In the analysis of variants
with MAF < 0.005, we identified 9 genes that exhibited
distinct genetic burdens for 11 traits (P < 1.5 × 10–7) (Fig.
4; Supplementary Table S20). Notably, 8 out of the 9
genes, namely MTHFR for HCY, PCSK9 for TC, LDL-C
and PCSK9, LPL for HDL-C and TG, APOA1 for Apo-AI,
APOA5 for Apo-CII and TG, FOLR3 for VB9, CETP for
HDL-C and APOE for Apo-CII, TC and Apo-E, over-
lapped with the genetic loci that contain common variant
association signals. When we restricted the analysis to
low-frequency and rare variants in the coding sequence,
the most significant genes are CETP for HDL and PCSK9
for PCSK9 (P < 1.5 × 10–7) (Supplementary Table S21).
The consistent genetic associations observed for 8 out of
the 9 genes in both common and rare variants in the non-
coding sequence, compared to fewer genes found when
restricting the analysis to variants in the coding sequence,
suggest that non-coding variants may also play a causal
role in the traits investigated in this study.

Rare and functional NOTCH3 variants implicate a broad
phenotype spectrum
The extensive phenotypic data gathered in the STRO-

MICS study also provides an opportunity to investigate
the degree of penetrance between functional genetic
variants and phenotypes in a clinical context. To illustrate
this concept, we analyzed the phenotypic spectrum
associated with all the functional variants in the causal
gene NOTCH3 for CADASIL, the most prevalent Men-
delian stroke disorder characterized by autosomal domi-
nant inheritance.
In the initial step, we conducted a review of the ClinVar

database to obtain 4259 variants classified as pathogenic/
likely pathogenic (P/LP) from the WGS call set (Supple-
mentary Fig. S22a and Table S22). Among these, a total of
nine P/LP variants (24 carriers) were identified in the
NOTCH3. These variants all resulted in nonsynonymous
substitutions between cysteine and other amino acids
(Supplementary Table S23). Not considering ClinVar

annotation, we identified 304 LoF, missense, non-
frameshift indel, and splicing-site variants in total
including 89 novel ones that were not documented in the
dbSNP (Build 155) (Supplementary Fig. S22b). Since
alterations in cysteine residues are considered significant
characteristics of causal pathogenic variants in CADA-
SIL60, we further extracted all nonsynonymous SNVs that
resulted in Cys-altering changes (41 SNVs among 78
carriers, including the 24 carriers mentioned earlier), non-
frameshift indels leading to loss or gain of Cys (1 deletion
in 1 carrier), as well as 7 LoF variants including splice site
variants (1 indel with 2 carriers and 1 SNV with 1 carrier),
frameshift indels (4 indels with 4 carriers), and stop-gain
SNVs (1 SNV in 1 carrier). Collectively, these 49 variants
were designated as CADASIL-susceptible variants, and we
further investigated the clinical characteristics of the 87
carriers in the subsequent analysis (Fig. 5a; Supplementary
Tables S23–S25).
Given that CADASIL-susceptible variants may exhibit

varying levels of deleteriousness in different domains of
NOTCH361,62, we categorized the 78 carriers (with 4 of
them lacking MRI data) of Cys-altering SNVs into three
groups based on the location of the variant within the
epidermal growth factor-like repeat (EGFr) domain, and
examined the brain MRI characteristics of these carriers
(Fig. 5b, c; Supplementary Tables S26 and S27). In com-
parison to the 47 carriers of Cys-altering SNVs in EGFr
7–34 (amino acids 274–1373), the 6 carriers of Cys-
altering SNVs in EGFr 1–6 (amino acids 40–272) exhib-
ited more severe cerebral small vessel disease (CSVD)
burden, including increased load of deep white matter
hyperintensity (DWMH) lesions, periventricular hyper-
intensity (PVH) lesions, hyperintensity in the temporal
lobe and external capsule, lacunes, microbleeds, and brain
atrophy. Additionally, these two groups exhibited a hea-
vier CSVD burden compared to the group of 21 carriers of
Cys-altering SNVs in non-EGFr regions. These findings
confirm that the clinical outcomes of the same type of
variants are influenced by the sequence context.
To investigate the clinical heterogeneity among carriers

of the same CADASIL-susceptible variant, the most fre-
quently occurring variant resulting in p.R544C substitu-
tion in the NOTCH3 protein was analyzed. The impact of
p.R544C on the structure of NOTCH3 protein was pre-
dicted using AlphaFold263, which showed that the sub-
stitution of arginine with cysteine at amino acid 544
interferes with the ionic bond formed between p.R544 and
p.E538, as compared to the wild type (Supplementary Fig.
S23). Among the 15 carriers analyzed, varying degrees of
white matter hyperintensity (WMH) load were observed,
ranging from mild to severe (Materials and methods;
Supplementary Fig. S24). There was a trend suggesting
that the severity of WMH load was positively correlated
with age, rather than other risk factors such as smoking
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status, drinking status, stroke history, hypertension, dia-
betes, and family history of stroke (Supplementary Table
S28). However, none of these factors showed a significant
correlation with the severity of WMH load. Since the
p.R544C carriers did not carry additional CADASIL-
susceptible variants, it is likely that the changing severity
of WMH load is not due to additive genetic effects from
variants in NOTCH3.
To explore the clinical features of carriers with other

types of CADASIL-susceptible variants, we analyzed the
remaining 8 variants (9 carriers), including the 7 LoF
variants and 1 non-frameshift indel. All of the LoF var-
iants, including 4 frameshift variants and 1 stop-gain
variant, resulted in truncated proteins (Supplementary
Fig. S25). Interestingly, among these carriers, only the

individual with the stop-gain variant (p.C966X) exhibited
a heavy CSVD load. In contrast, the remaining 8 carriers,
despite carrying validated splice-site or frameshift LoF
variants (see Materials and methods), showed a lower
burden of CSVD compared to carriers of Cys-altering
SNV carriers (Supplementary Fig. S24 and Table S25).
Finally, we made a comparison between the distribution

of CADASIL-susceptible variants among STROMICS, the
UK Biobank, and four Chinese non-stroke populations
(Supplementary Table S23). The distribution of these
variants showed substantial differences compared to the
findings reported in the UK Biobank study64. The most
common deleterious variant (p.R544C) in STROMICS
was not detected in any of the 454,756 participants of the
UK Biobank. Conversely, the most common Cys-altering
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NOTCH3 variant (p.R1231C) identified in the UK Bio-
bank study was found in only one patient in STROMICS.
In the four Chinese or East Asian non-stroke populations
(ChinaMAP, Nyuwa, WBBC, and gnomAD)23–26, a total
of 67 carriers with 16 CADASIL-susceptible variants were
identified. The frequency of carriers with CADASIL-
susceptible variants was more than three times higher in
stroke patients compared to non-stroke populations in
China and East Asia (87/10,241 in STROMICS and 67/
26,567 in ChinaMAP, Nyuwa, WBBC, and gnomAD).

Discussion
The STROMICS genome study presented here is the

first whole-genome study targeting an ischemic stroke
patient registry. Through deep sequencing and analysis of
a cohort of 10,241 patients from CNSR-III, we have
identified a total of 135.59 million genetic variants.
Notably, 57.12 million of these variants are novel, not
previously cataloged in dbSNP (Build 155), and 64.77
million are SNVs and indels that have not been detected
in other genome projects conducted in Chinese and East
Asian populations. Our investigation of the allele fre-
quencies of 89 stroke-associated genetic variants also
revealed unexpectedly lower frequencies of 17 of these
variants among the STROMICS patients, as compared to
four Chinese reference datasets. However, as no correc-
tion of population stratification was applied, this finding
requires further verification. Additionally, we observed
significant differences in genotype frequencies of 41
genetic variants between STROMICS Chinese patients
and European populations, highlighting the importance of
considering ancestral differences when utilizing current
genetic associations for stroke risk to develop novel
therapies for stroke prevention and treatment in under-
represented populations. Analysis of the 10 genetic var-
iants associated with response to three common drugs for
stroke treatment also suggests potential benefits in uti-
lizing genetic profile-based prescription and drug
recommendations for stroke treatment.
Utilizing the common and the low-frequency genetic

variants detected from the WGS dataset, we have dis-
sected the population structure of the 10,241 patients and
constructed a map of 31 genetic selection signals across
the latitudinal and longitudinal gradients in China,
including 12 signals that had been reported in separate
studies previously. Notably, we identified the MTHFR-
c.C677T (G>A, Ala222Val) variant as one of the most
significant signals of adaptation. This variant was asso-
ciated with increased homocysteine concentration,
decreased folate levels, and increased risk for stroke, and
was found to be enriched in the northern Chinese
population. In contrast, the wild-type variant (677C or
677G or 222Ala) was more common in the southern
Chinese population, likely due to adaptation to stronger

UV radiation in southern China. Such genetic predis-
position resulting from historical adaptation to the
environment suggests that fortification of folate in dietary
or medical intake is necessary for individuals in northern
China, while protection from high environmental UV
radiation is a more effective approach to reducing folate
deficiency among those in southern China.
In our GWAS analysis of 18 stroke-related biochemical,

behavioral, and imaging traits, we identified 56 indepen-
dent genetic loci that reach genome-wide significance
after Bonferroni correction (P < 2.78 × 10–9) and 77
reaching a genome-wide significance level (P < 5 × 10–8).
We compared 29 out of the 77 loci with public GWAS
summary statistics data and found that all loci were
replicated. However, we cautiously interpreted the results
of 22 loci associated with sEICAS (P < 2.78 × 10–9) as
likely false positives based on functional annotation and
allele frequency spectrum analysis. After excluding the
sEICAS hits, we identified a total of 34 loci, including 10
newly identified loci for 6 traits that were first reported in
this study. These novel loci included five for Apo-CII and
Apo-CIII, for which the genetic basis had not been
investigated before, one tagged by an indel variant in the
intron of PCLO for Apo-B, one locus at FADS2 for
PCSK9, one locus at FOLR3 for VB9 and one intergenic
locus for eGFR. We found that the genetic determinants
of Apo-CII and Apo-CIII were similar although the two
apolipoproteins function differently in the cholesterol
metabolism pathway. The novel association of the FADS2
locus with plasma PCSK9 protein level and that of the
FOLR3 locus with folate level were functionally plausible,
but had not been previously reported likely due to small
sample sizes in previous studies. Although STROMICS
has provided the most powerful knowledge on the genetic
determinants of those traits and no statistic inflation was
observed, replication and validation are necessary to
understand the mechanism of the newly identified asso-
ciations in the future. For the replicated loci, we also
noticed a discrepancy in effect size for some of the loci
between STROMICS patients and other cohorts (Sup-
plementary Table S18). We infer that this discrepancy
could be attributed to subtle ancestral differences or the
physiological status of the patients. However, as no
GWAS summary replication data from the Chinese
population for the same biomarkers were publicly avail-
able, we are unable to distinguish the two different
sources at the moment. We have made all the GWAS
summary statistic data publicly available from STRO-
MICS, and it will be interesting to investigate whether and
how the patient status may change the genetic effect in
the future. Notably, we identified extensive pleiotropy for
six loci around the PCSK9, GCKR, ApoB, LPL, ApoC, and
ApoE genes on chromosomes 1, 2, 8, 11, and 19. Each of
these loci significantly impacted more than two
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biomarkers involved in lipid metabolism, raising caution
for using Mendelian randomization to investigate the
causal effects of the biomarkers for stroke outcomes, as
horizontal pleiotropy may result in false interpretation.
Interestingly, regardless of the functionality of the var-
iants, loci defined by the rare variants called directly from
the WGS data overlap with those defined by the common
variants. Therefore, we infer that rare non-coding variants
may also contribute to the phenotypic distribution.
Based on the data obtained from WGS, comprehensive

medical records, and digital information, the STROMICS
presents a unique opportunity to systemically investigate
the genetic and neuroimaging landscape of ischemic
stroke patients who carry CADASIL-susceptible variants.
Previous understanding of CADASIL has suggested that it
is an autosomal dominant condition, and individuals with
NOTCH3 variants that alter cysteine residues have been
reported to exhibit a high burden of WMH on brain MRI,
even in those who are not yet clinically symptomatic or
manifesting symptoms65. However, our study has revealed
that these NOTCH3 variants were associated with a broad
phenotypic spectrum in terms of WMH burden. In fact,
only slight neuroimaging abnormalities were observed for
81-year-old patients carrying CADASIL-susceptible var-
iants. Importantly, the severity of the CSVD burden is
closely related to the location of the Cys-altering
NOTCH3 variants. In addition, among carriers with the
LoF and splicing variants, only the patient with stop-gain
mutation (c.C2898A; p.C966X) exhibited the severe form
of CADASIL. The broad phenotypic spectrum observed in
individuals carrying functional variants in the NOTCH3
gene highlights the complexity of genetic and phenotype
correlation in CADASIL. Moreover, carriers of
CADASIL-susceptible variants may have a higher pro-
pensity to develop cerebrovascular diseases, and the dis-
tribution of NOTCH3 deleterious variants in the Chinese
population differs significantly from what has been
reported in the European population.
Stroke is the second leading cause of mortality in the

world and the leading cause of death in China, where a
fifth of the world’s population resides66–68. Despite the
passage of more than 80 years since the first identification
of the connection between carotid artery occlusion and
stroke in 193869, it remains a significant global health
issue with substantial social and economic implications.
The history of stroke research serves as a model for
investigating complex diseases. Unlike microarray geno-
typing, WGS is a rapidly advancing and relatively new
technology for studying patients’ genomes at a population
level. Genomic studies utilizing high-quality disease reg-
istry with comprehensive medical records and digital data
bridges the patients’ genome and phenome. The findings
from such a study enhance our understanding of the
impacts of how population and individual genetic profiles

impact intermediate molecular profiles and clinical out-
comes. Future endeavors following this study will involve
defining appropriate phenotypes and constructing a
phenome-wide association map for more clinical and the
multi-omics phenotypes collected or being collected in
the STROMICS. Additionally, intensive efforts will be
made to investigate the causal impact of the phenome on
stroke outcomes and elucidate and validate the underlying
mechanisms. Building on the genome study presented
here, these efforts will facilitate the translation of genetic
and molecular discoveries from STROMICS to effective
therapeutics.

Materials and methods
Sample collection and study design
DNA samples were obtained from the CNSR-III19,

which was a nationwide prospective registry for patients
presented to hospitals with acute ischemic cere-
brovascular events between August 2015 and March 2018
in China. The CNSR-III involved 201 hospitals that cover
31 out of the 34 provincial administrative divisions in
China, including 163 grade III (central hospitals for cer-
tain districts or cities, usually teaching hospitals) and 38
grade II (hospitals serving several communities) urban
hospitals. The written informed consent was obtained
from all patients or legally authorized representatives
before entering the study. Province of origin was extracted
for each patient from the EDC system of CNSR-III.

Sequencing and WGS data quality control
There is a total of 15,166 patients in CNSR-III cohort, and

10,914 patients in the prespecified genetic substudy were
applied in WGS18. Library construction and WGS were
conducted at BGI Genomics (BGI-Shenzhen) as previously
described18. The WGS data were then processed under the
Genome Analysis Toolkit (GATK) best practice guidance
using Sentieon (release 201808.05)70. All of the reads were
mapped to the non-N reference sequence of genome build
GRCh38. Genetic variants in segmental duplications and
unassigned chromosomes were excluded from analyses.
Duplicated reads were removed, and base quality score
recalibration was conducted.
Data quality control was performed by applying the

filters listed below:
1. failed in library construction (n= 11);
2. microbial contamination (GC content ≥ 45%,

n= 159);
3. 10× coverage < 80% (n= 15);
4. mismatch rate > 0.9% (n= 1);
5. FreeMix alpha > 0.03 (n= 267), which was calculated

by VerifybamID2 to evaluate contamination from
human DNA71;

6. genotype consistency rate < 85% (n= 4) for the 21
common SNVs that were used as a fingerprint for
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each patient and were independently genotyped using
MassARRAY Spectrometry (Agena Bioscience,
CA, USA).

A sex check of the data was performed using the depths of
sex chromosomes. For each patient, the depths of sex
chromosomes were normalized by the depth of the whole
genome and were projected to a two-dimension plot, with
coordinates of two axes indicating the normalized chrX
depth and normalized chrY depth, respectively. After label-
ing each sample according to the reported gender, a margin
naturally occurred (Supplementary Fig. S2c), and a simple
horizontal line of normalized chrY depth of 0.075 was able
to separate the male patients from the female patients, and
thus was chosen as the threshold. Afterward, samples with
inconsistency between inferred sex and recorded gender
(n= 154), suspected sex chromosome aneuploidy (n= 11),
or abnormal X chromosome heterozygosity (n= 13, outlier
of the main clusters formed by male and female on the two-
dimension plot) were excluded. The inferred sex for each
patient was applied in further analyses.
Among the remaining patients, kinship relationship was

inferred using KING v.2.1.8 software72, and 38 patients
who had PI_HAT > 0.125 (indicating first- and second-
degree relationship) with other patients were excluded.
Finally, a total of 10,241 genetically independent WGS

data passed the quality control and were involved in
further analyses (Supplementary Fig. S1).

Variant calling and genotype quality control
Haplotyper of Sentieon was applied to call SNVs and

indels for each individual. Then joint calling was performed
after single-sample GVCF file was generated. Variant
Quality Score Recalibration (VQSR) was performed for
autosomes and sex chromosomes using GATK. First, var-
iants with excessively heterozygous (ExcessHet > 54.69)
were marked according to GATK best practice73. Then, the
GATK bundle resource was used as known sites for the
training step. The VQSLOD value was calculated for each
genetic variant with the annotation including DP, QD,
ReadPosRankSum, MQRankSum, FS, and SOR. The truth
sensitivity levels were set at 99.0 and 98.0 for SNVs and
indels, respectively (Supplementary Fig. S2a, b). Finally,
variants that pass the VQSR filtration and with a QUAL >
30 were included for downstream analyses.
After VQSR, only biallelic SNVs and indels were

retained for further analysis. The indels with length >
50 bp were excluded.
For each variant, the genotype for a patient was quali-

fied if the depth (DP) was ≥ 9 and genotype quality (GQ)
was ≥ 20. For heterozygous variants, allele depth (AD)
should be ≥ 3. Otherwise, the genotype was set to missing
for the corresponding patient. Genetic variants with call
rate (patients with qualified genotypes/10,241) ≥ 85% were
applied in this study.

We also divided the sex chromosome into pseudo-
autosome regions (PAR), X-unique regions, and Y-unique
regions according to the guidance in https://asia.ensembl.
org/info/genome/genebuild/human_PARS.html. In PAR,
the genotypes were extracted only from X chromosome and
were applied in further analysis. Heterozygous variants in
X- and Y-unique regions of male patients were set to
missing genotypes. The call rates for X- and Y-unique
regions were calculated by dividing chromosomes with
qualified genotypes by the total number of chromosomes.
For example, the call rate of qualified genetic variants in
X-unique regions should be ≥ 85% in males (n= 7044, 7044
chromosomes), females (n= 3197, 6394 chromosomes),
and the whole population (n= 10,241, 13,438 chromo-
somes) simultaneously.
The 135,589,210 qualified genetic variants after these

procedures constituted the eventual STROMICS Phase I
variation dataset.

Variant annotation
All of the analyses in this study were conducted using

the SNVs and indels with alternative allele frequency > 0.
The function of these genetic variants was annotated by
ANNOVAR with RefGene definition74. LoF variants
included frameshift, stop-gain, start lost, and initiator
codon variant (resulting in nonsynonymous amino acid
substitution or deletion of the translation initiation codon
in the gene). Splicing-site variants referred to the SNVs
and indels at classical ±1 and ±2 splicing sites in protein-
coding genes. The potential to induce alternative splicing
was predicted using spliceAI for the splicing-site var-
iants75. Variants in non-coding RNA (ncRNA) meant that
the genetic variant was mapped to exonic, intronic, or
UTRs of an ncRNA or non-coding transcript.
To explore whether the SNVs and indels in the

STROMICS dataset had been reported or not, we
downloaded the dbSNP database (https://ftp.ncbi.nih.gov/
snp/.redesign/.archive/b155/VCF/GCF_000001405.39.gz).
A genetic variant in STROMICS dataset would be regar-
ded as a reported variant only if it had the same genomic
coordinate, reference allele, and alternative allele with a
variant that was deposited in dbSNP. Otherwise, the
genetic variant would be regarded as a novel variant.

Evaluation of the accuracy of WGS by comparison with
target-capture next-generation sequencing (NGS)
Among the 10,241 qualified WGS samples, target-

capture NGS was conducted for 50 randomly selected
patients to evaluate the credibility of the WGS data. The
target-capture panel was designed previously76. The panel
covered exons of 446 genes that were implicated in her-
editary cerebrovascular disease. DNA libraries were pre-
pared using KAPA Library Preparation Kit (Kapa
Biosystems, KR0453, Wilmington, MA, USA) following
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the manufacturer’s instructions. Paired-end reads (150 bp)
were obtained from the Novaseq platform (Illumina, San
Diego, CA, USA). The average depth for the covered
regions in autosomes was 196.72× for the 50 patients. To
construct the truth dataset, we generated VCF and GVCF
files for each of the 50 patients using the targe-capture
NGS data of the panel. Joint calling was conducted for all
of the autosomal genetic variants. Both the consolidated
GVCF files of joint calling and individual VCF files for
each patient were subjected to the identical hard filters by
which SNVs with QD < 2.0, FS > 60.0, MQ < 40.0,
MQRankSum < –12.5, or ReadPosRankSum < –8.0, and
indels with QD < 2.0, FS > 200.0, or ReadPosRankSum
< –20.0 were eliminated. All of the multiallelic variants
were eliminated, and genetic variants with GQ < 20,
DP < 9, or heterozygous variants with AD < 3 were also
eliminated. Indels with a length > 50 bp were excluded.
Truth data were obtained after all of the above filtration
procedures.
The query data were constructed from the WGS dataset

after VQSR. For the identical 50 patients, we extracted all
of the autosomal genetic variants in the target regions that
were covered by the panel. Then, multiallelic variants, as
well as variants with GQ < 20, DP < 9, and heterozygous
variants with AD < 3 were also eliminated. The query data
from WGS were compared with truth data using Hap.py
(https://github.com/Illumina/hap.py). The number of true
positive and false positive variants was calculated for each
individual. This information was summarized in Supple-
mentary Table S4.

Comparisons with other large-scale WGS datasets of
Chinese and East Asian populations
The genetic variants in STROMICS were compared

with those from Nyuwa (n= 2999, http://bigdata.ibp.ac.
cn/NyuWa/)24, ChinaMAP (n= 10,588, http://www.
mbiobank.com/)23, WBBC (v20211129; 13.9×; the com-
bination of 4535 WGS genomes and 5841 arrays)26,
gnomAD (v3, n= 2604 for East Asians, http://gnomad-
sg.org/)25. Genetic variants with alternative allele fre-
quency > 0 were applied, and genetic variants that had the
same genomic coordinate, reference allele, and alternative
allele among different datasets were regarded as identical
variants. For each database or genome resource, we
excluded the variants with alternative allele frequency= 0.
We also compared the genotype frequency of stroke-

and ischemic stroke-susceptible genetic variants among
different populations. Although Nyuwa, ChinaMAP,
and gnomAD only provided alternative allele count
(AC) and total allele number (AN) in the databases, we
calculated the alternative and reference allele fre-
quencies and then inferred the frequency for all of the 3
genotypes according to the rule of Hardy-Weinberg
Equilibrium.

Among all the 99 genetic variants associated with stroke
risk or drug response, 6 variants associated with stroke
risk and 2 associated with warfarin response, are absent in
at least one of the STROMICS, ChinaMAP, Nyuwa, or
WBBC call sets likely due to differences in variant calling
criteria (Supplementary Fig. S6 and Table S9).

Population structure analysis
Autosomal SNVs were applied in PCA and admixture

analyses. SNVs with MAF ≥ 1%, call rate ≥ 95%, and P value
for Hardy–Weinburg Equilibrium > 10–6 were extracted.
Then, LD was removed by pruning, and R2 for the
remaining SNVs should be < 0.5 in a sliding window of
500 Kb with 1 SNV as a step. After these processes, for PCA
on 10,241 patients and Han individuals (n= 9947), a total of
887,795 and 887,040 SNVs were applied, respectively (Fig.
3a, b; Supplementary Fig. S9). For PCA on the population
that included both STROMICS and subjects in 1KGP3, the
autosomal SNVs from STROMICS and subjects in 1KGP3
were merged first, and then the SNVs were filtered by MAF,
call rate, and Hardy–Weinburg Equilibrium under identical
criteria as above. Then, SNVs in ±500 Kb of the genomic
regions that were reported to distort population structure
inference were excluded77. Finally, a total of 830,137 SNVs
were obtained (Supplementary Fig. S13). The top 20 prin-
cipal components were calculated for each subject using
smartpca in EIGENSOFT78.
The same datasets of variants were applied in

ADMIXTURE analyses with bootstrap= 20079. The
number of ancestral component K values ranged from 1
to 10 for the population consisting of 10,241 patients in
STROMICS. The K values ranged from 1 to 14 for the
population that included both STROMICS and subjects
in 1KGP3.
In displaying the results of ADMIXTURE analyses, we

applied shuffle_popsample_kws function in geneview
package of python to prevent the imbalance of sample size
among provinces and regions. Thus at most 224 samples
in each province, and at most 386 samples in each geo-
graphical region of China, were randomly selected when
drawing Fig. 3c, d and Supplementary Fig. S13c, d.

Detection of genetic selection along PC coordinates
Identification of loci under selection through GWAS of

eigenvectors was conducted for the 9947 Han individuals
in STROMICS. The eigenvectors and PCs were obtained
by the aforementioned PCA. Genetic variants in the PC-
based selection analysis were SNVs with MAF > 1% and
R2 < 0.9 in a sliding window of 50 SNVs with 5 SNVs as a
step among the population of 9947 Han individuals. First,
the top 10 eigenvalues and their corresponding eigen-
vectors were calculated by ProPCA80, a component of
EigenGWAS34. Second, the SNV effects, which were
nearly equivalent to FST, were estimated by regressing the
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genotypes of each SNV with a selected eigenvector.
Finally, for each SNV, EigenGWAS provided adjusted P
values that were corrected by genomic inflation factor
λGC

81 to control population stratification (i.e., drift) and
avoid false positive signals for ancestry-informative mar-
kers. SNPs with genomic control (GC)-corrected
P < 5 × 10–8 were regarded as loci under selection.

Genome-wide single variant and gene-based association
analysis
We conducted the single-variant and gene-based

GWAS analyses for the 18 traits (including 14 quantita-
tive and 4 binary traits, see Supplementary Table S17)
among the 10,241 patients using SAIGE (v0.42.1)82 and
SAIGE-GENE (v1.0.3)59, respectively. These quantitative
and binary traits were measured as described previously19.
Considering the statistical power, the variants with
MAF > 0.5% were used for single-variant GWAS. Herit-
ability was calculated using Genome-wide Complex Trait
Analysis (GCTA, v1.93) based on the same set of var-
iants83. Gene-based association analysis was performed
using four annotation masks including (1) all the variants
with MAF < 0.005; (2) variants with high impact including
the LoF, and splice-site variants; (3) variants with high or
moderate impact including the LoF, splice-site variants
and the inframe-indel/substitution, missense, and stop-
loss variants; and (4) variants with high or moderate or
low impact including the LoF, splice-site variants, the
inframe-indel/substitution, missense variants, stop-loss
variants, the synonymous, UTR, and stop retained var-
iants in each gene (Supplementary Table S3). For (2)–(4),
three rounds of gene-based association analyses were
conducted by applying variants with MAF < 1%, 0.1%, and
0.01%. Aggregated P-value of the nine combinations of
tests (three annotation masks and three MAF settings)
were computed using the Cauchy combination method
implemented in SAIGE-GENE.
For the 14 quantitative traits (10 lipid traits, VB9, HCY,

HCY, and eGFR), the values were first transformed to a
standard normal distribution by quantile transformation.
Age, gender, history of stroke, days between disease onset
and blood sampling of the patient, and the first five
principal components from PCA analysis were included as
covariates in both single-variant and gene-based analysis.
For the 4 qualitative traits (DRINK, Smoking, AIS-DWI,
and sEICAS), age, gender, history of stroke, and the first
five principal components from PCA were included as
covariates. DRINK was defined as the drinkers who drank
≥ 2 standard alcohol consumption/per day. Smoking was
defined as current smokers. AIS-DWI was defined as
acute ischemic infarction which was identified by DWI.
sEICAS was defined as TIA or ischemic stroke attributed
to 50%–99% atherosclerotic stenosis of an extracranial
artery or a major intracranial artery.

For replication of single-variant association discoveries,
we searched the lead SNP and its proxies (R2 > 0.8 in
1KGP3 East Asian population) across three databases
(GWAS catalog51, OpenGWAS54, Phenoscanner52,53). We
identified the studies with the greatest sample size among
the East Asian population and downloaded the summary
statistics. We reported the summary statistics for the lead
SNP or its proxy in Supplementary Table S18. If no
GWAS was conducted among the East Asian population,
we reported the summary statistics for the studies with
the largest sample size among the other populations. We
called a lead SNP or its proxy as replicated if it has the
same effect direction between the STROMICS analysis
and the replication dataset and a P-value < 0.05 divided by
the number of loci with the replication dataset (n= 29),
namely, P < 1.72 × 10–3.

Co-localization analysis to detect pleiotropic loci
To understand whether the significant genetic loci may

have a pleiotropic effect on other biochemical traits assayed
in the study, we tested the probability that the genetic
determinants of a specific trait were shared with the rest of
the other traits using co-localization analyses, as imple-
mented in coloc84. We performed the analysis for each of
the genome-wide significant loci (a 1 Mbp window centering
on the lead SNP, n= 46, P < 5 × 10–8) separately. For each
locus, if any two traits with a posterior probability (PP) of a
shared single causal signal > 0.8 (H4 > 0.8), we further
identified the SNP that was most likely causal for the shared
signal (SNP.PP.H4 > 0.8). In total, six loci were identified to
have exhibited a pleiotropic effect. The likely causal SNP and
the H4 probability were presented in Supplementary Table
S19. For each SNP, the GWAS P-values of the 14 bio-
chemical traits were presented in Supplementary Fig. S19.

Identification of known P/LP variants in the WGS dataset of
STROMICS
To identify the P/LP genetic variants, we retrieved the

ClinVar dataset (release 20211218 at https://
ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/weekly/).
A genetic variant in the ClinVar database would be
regarded as a known P/LP if it fulfilled these criteria:
1. the variant must be recorded by MedGen;
2. the annotations of the variant in ClinVar should not

contain any one of these strings including
“conflicting”, “benign”, “likely benign”, or “uncertain
significance”.

A total of 149,355 known P/LP variants were obtained
from ClinVar database. Then we identified the genetic
variants in STROMICS dataset that had the same geno-
mic coordinate, reference allele, and alternative allele as
the P/LP variants in ClinVar. The alternative allele counts
of these reported P/LP variants were also calculated in the
STROMICS (Supplementary Table S22).
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Annotation of genetic variants in NOTCH3 gene
A total of 2265 genetic variants were mapped to

NOTCH3 gene in STROMICS (Supplementary Table
S24). ClinVar database recorded 188 of the 2265 genetic
variants, including 187 SNVs (9 were P/LP variants) and 1
indel. All of these 188 genetic variants had been recorded
in dbSNP.
The information on domains of NOTCH3 was retrieved

from UniProt (https://www.uniprot.org/uniprot/Q9UM47)
and SMART database85.
Then, LoF, splicing variants, as well as missense and

non-frameshift variants that resulted in substitution, loss,
or gain of Cys in the NOTCH3 protein, were denoted as
CADASIL-susceptible variants. All of the 87 carriers for
these variants were extracted, and they carried a total of
49 CADASIL-susceptible variants (Supplementary Tables
S23–S25). Each of the 87 carriers had only 1 CADASIL-
susceptible variant in the genome. One LoF variant was a
multi-nucleotide polymorphism (MNP) that was inte-
grated from three indels (patient ID 80 in Supplementary
Table S25).
To estimate the credibility of CADASIL-susceptible

variants in NOTCH3, 73 out of the 87 carriers underwent
target-capture NGS (mentioned above). All of the
CADASIL-susceptible variants in 73 carriers were vali-
dated (Supplementary Table S25).

Brain imaging
Brain imaging was conducted for patients, including brain

MRI (T1 weighted, T2 weighted, Fluid-attenuated Inversion
Recovery (FLAIR), Turbo Inversion Recovery Magnitude
(TIRM), DWI with Apparent Diffusion Coefficient (ADC)
maps, Magnetic Resonance Angiography (MRA), T2*/Sus-
ceptibility Weighted Imaging (SWI)) or CT. If the patients
were contraindicated to MRI, they only accepted the CT
scan19. Among the 87 carriers for CADASIL-susceptible
variants in the study, the brain MRI of 6 patients was not
available. A radiologist and a neurologist who were blind to
the genetic results of NOTCH3, analyzed all the available
scans and assessed the following features:
1. Presence and severity of DWMH and PVH on

FLAIR or T2-weighted images were evaluated
according to Fazekas scale86. The grades of
DWMH were grouped as being grade 0 (absence),
grade 1 (punctate foci), grade 2 (beginning
confluence), or grade 3 (large confluent areas). The
grades of PVH were grouped as being grade 0
(absence), grade 1 (caps or pencil-thin lining), grade
2 (smooth halo), or grade 3 (irregular PVH
extending into deep white matter). The severity of
WMH load was the sum of DWMH and PVH, and
was categorized as mild (summed score: 0–2),
moderate (summed score: 3–5), or severe
(summed score: 6).

2. Presence of hyperintense lesions (FLAIR and T2-
weighted images) in the anterior temporal lobe white
matter.

3. Presence of hyperintense lesions (FLAIR and T2-
weighted images) in the external capsules white
matter.

4. Presence of lacunar lesions is defined as focal
hyperintensities on T2-weighted images, with the
corresponding hypointensity on T1-weighted
images, and larger than 3mm in size87.

5. Presence of brain microbleeds defined as small,
rounded, or circular, hypointense lesions within
brain parenchyma with margins ranging from 2mm
to 10 mm in size on GRE T2* or weighted SWI
images88.

6. Presence of brain atrophy is defined as global
atrophy (sulcal and ventricular dilation) or medial
temporal lobe atrophy89,90.
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