Skip to main content
. 2023 May;52(5):1071–1080. doi: 10.18502/ijph.v52i5.12725

Table 2:

Regression equations of the best model in the utilization indicator of “DDDs” in each of the parenteral anti-diabetes drugs and classifications (insulins)

DDDs for Total Insulins - Regression Analysis
Drug Name Regression Type Regression Equation R2
Insulin (beef) Polynomial y = 52091x2 - 709873x + 2E+06 R2 = 0.7928
Insulin aspart Polynomial y = 194885x2 + 3E+06x − 6E+06 R2 = 0.9688
Insulin glargine Polynomial y = 149075x2 + 2E+06x − 4E+06 R2 = 0.9786
Insulin (human) Polynomial y = −81.161x2 + 1403.6x − 2241.7 R2 = 0.7005
Combinations Insulin Linear y = −551827x + 3E+07 R2 = 0.2367
Insulin detemir Polynomial y = 33237x2 − 170685x + 155513 R2 = 0.817
Insulin glulisine (Pen) Polynomial y = 22100x2 − 63183x + 850.45 R2 = 0.8801
Insulin glulisine (Vial) Linear y = 634458x + 9E+06 R2 = 0.6795
Total Insulins Power y = 3E+07x0.5057 R2 = 0.8087
DDDs for Total Insulin Classifications - Regression Analysis
Drug Name Regression Type Regression Equation R2
Short-Acting Insulin (Vials) Polynomial y = −23613x2 + 129796x + 4E+07 R2 = 0.0071
Rapid-Acting Insulin (Vials) Polynomial y = −81.161x2 + 1403.6x - 2241.7 R2 = 0.7005
Rapid-Acting Insulin (Pens) Polynomial y = 216985x2 + 3E+06x − 6E+06 R2 = 0.969
Long-Acting Insulin (Vials/Pens) Polynomial y = 182313x2 + 2E+06x − 4E+06 R2 = 0.9796
Total Insulins Polynomial y = 375603x2 + 5E+06x + 3E+07 R2 = 0.9446