Skip to main content
. 2023 May;52(5):1071–1080. doi: 10.18502/ijph.v52i5.12725

Table 3:

Regression equations of the best model for “DDDs per 1000 inhabitants per day “in each of the parenteral anti-diabetes drugs and classifications (insulins)

DIDs for Total Insulins - Regression Analysis
Drug Name Regression Type Regression Equation R2
Insulin (beef) Polynomial y = 0.0042x2 − 0.0573x + 0.1851 R2 = 0.7949
Insulin aspart Polynomial y = −0.0056x2 + 0.389x − 0.6532 R2 = 0.9936
Insulin glargine Polynomial y = −0.0039x2 + 0.2731x − 0.457 R2 = 0.9952
Insulin (human) Polynomial y = 2E-05x2 + 0.0335x + 0.622 R2 = 0.6686
Combinations Insulin Exponential y = 2.282e−0.052x R2 = 0.6291
Insulin detemir Polynomial y = −0.0001x2 + 0.0101x − 0.0093 R2 = 0.7548
Insulin glulisine (Pen) Polynomial y = −0.0001x2 + 0.0121x − 0.0303 R2 = 0.9754
Insulin glulisine (Vial) Polynomial y = 1E-05x2 − 0.0004x + 0.004 R2 = 0.0866
Total Insulins Polynomial y = −0.0073x2 + 0.5802x + 2.0044 R2 = 0.988
DIDs for Total Insulin Classifications - Regression Analysis
Drug Name Regression Type Regression Equation R2
Short-Acting Insulin (Vials) Polynomial y = 0.0009x2 − 0.0942x + 3.1181 R2 = 0.4127
Rapid-Acting Insulin (Vials) Polynomial y = −6E-06x2 + 0.0001x − 0.0002 R2 = 0.6849
Rapid-Acting Insulin (Pens) Polynomial y = −0.0057x2 + 0.401x − 0.6835 R2 = 0.9936
Long-Acting Insulin (Vials/Pens) Polynomial y = 0.0067x2 + 0.1777x − 0.2962 R2 = 0.9701
Total Insulins Polynomial y = −0.0073x2 + 0.5802x + 2.0044 R2 = 0.988