Table 3:
Regression equations of the best model for “DDDs per 1000 inhabitants per day “in each of the parenteral anti-diabetes drugs and classifications (insulins)
DIDs for Total Insulins - Regression Analysis | |||
---|---|---|---|
Drug Name | Regression Type | Regression Equation | R2 |
Insulin (beef) | Polynomial | y = 0.0042x2 − 0.0573x + 0.1851 | R2 = 0.7949 |
Insulin aspart | Polynomial | y = −0.0056x2 + 0.389x − 0.6532 | R2 = 0.9936 |
Insulin glargine | Polynomial | y = −0.0039x2 + 0.2731x − 0.457 | R2 = 0.9952 |
Insulin (human) | Polynomial | y = 2E-05x2 + 0.0335x + 0.622 | R2 = 0.6686 |
Combinations Insulin | Exponential | y = 2.282e−0.052x | R2 = 0.6291 |
Insulin detemir | Polynomial | y = −0.0001x2 + 0.0101x − 0.0093 | R2 = 0.7548 |
Insulin glulisine (Pen) | Polynomial | y = −0.0001x2 + 0.0121x − 0.0303 | R2 = 0.9754 |
Insulin glulisine (Vial) | Polynomial | y = 1E-05x2 − 0.0004x + 0.004 | R2 = 0.0866 |
Total Insulins | Polynomial | y = −0.0073x2 + 0.5802x + 2.0044 | R2 = 0.988 |
DIDs for Total Insulin Classifications - Regression Analysis | |||
---|---|---|---|
Drug Name | Regression Type | Regression Equation | R2 |
Short-Acting Insulin (Vials) | Polynomial | y = 0.0009x2 − 0.0942x + 3.1181 | R2 = 0.4127 |
Rapid-Acting Insulin (Vials) | Polynomial | y = −6E-06x2 + 0.0001x − 0.0002 | R2 = 0.6849 |
Rapid-Acting Insulin (Pens) | Polynomial | y = −0.0057x2 + 0.401x − 0.6835 | R2 = 0.9936 |
Long-Acting Insulin (Vials/Pens) | Polynomial | y = 0.0067x2 + 0.1777x − 0.2962 | R2 = 0.9701 |
Total Insulins | Polynomial | y = −0.0073x2 + 0.5802x + 2.0044 | R2 = 0.988 |