Skip to main content
. 2023 Jul 8;9(7):e17916. doi: 10.1016/j.heliyon.2023.e17916

Table 1.

Hyperparameters for artificial neural network prediction model.

Hyperparameters Values
Activation function at hidden layer ReLU f(x)=max(0,x)
Activation function at output layer ReLU f(x)=max(0,x)
Input parameters P (Perception of Fitting Factors by Consumers' Psychological Orientation)
B (Body Measurements)
Output parameters R (Pattern Parameters for Sketch Drafting)
Number of hidden layers 6
Number of hidden nodes in each layer
  • Layers 1 & 2: 70

  • Layers 3 $ 4: 140

  • Layers 5 & 6: 50

Number of training rows 70
Number of testing rows 50
Learning rate 0.001
Loss function Mean Squared Error
Optimizer Adaptive Moment Estimation (Adam)
Training Time for the Model 1–5 min