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Abstract 

Background  Inflammatory bowel disease (IBD), including Crohn’s disease (CD) and ulcerative colitis (UC), is a chronic, 
inflammatory, and autoimmune disease, but its specific etiology and pathogenesis are still unclear. This study aimed 
to better discover the causative basement membrane (BM) genes of their subtypes and their associations.

Methods  The differential expression of BM genes between CD and UC was analyzed and validated by downloading 
relevant datasets from the GEO database. We divided the samples into 3 groups for comparative analysis. Construc-
tion of PPI networks, enrichment of differential gene functions, screening of Lasso regression models, validation 
of ROC curves, nomogram for disease prediction and other analytical methods were used. The immune cell infiltration 
was further explored by ssGSEA analysis, the immune correlates of hub BM genes were found, and finally, the hub 
central genes were screened by machine learning.

Results  We obtained 6 candidate hub BM genes related to cellular immune infiltration in the CD and UC groups, 
respectively, and further screened the central hub genes ADAMTS17 and ADAMTS9 through machine learning. 
And in the ROC curve models, AUC > 0.7, indicating that this characteristic gene has a more accurate predictive effect 
on IBD. We also found that the pathogenicity-related BM genes of the CD and UC groups were mainly concentrated 
in the ADAMTS family (ADAMTS17 and ADAMTS9). Addition there are some differences between the two subtypes, 
and the central different hub BM genes are SPARC, POSTN, and ADAMTS2.

Conclusions  In the current study, we provided a nomogram model of CD and UC composed of BM genes, identi-
fied central hub genes, and clarified the similarities and differences between CD and UC. This will have potential value 
for preclinical, clinical, and translational guidance and differential research in IBD.
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Introduction
Inflammatory bowel disease (IBD) is an inflammatory 
disease involving the ileum, rectum, and colon, among 
which ulcerative colitis (UC) and Crohn’s disease (CD) 
are the most common. As a systemic disease, IBD 
affects the quality of life of patients, and severe cases 
increase the risk of colon cancer [1, 2]. The main patho-
logical feature of IBD is intestinal inflammation and 
causes varying degrees of intestinal mucosal damage, 
including extensive epithelial cell death, ulcers, crypt 
abscesses, and the formation of fibrosis [3, 4]. At pre-
sent, the pathogenesis of IBD is still unclear, and the 
possible causes include genetic susceptibility, commen-
sal flora disturbance, epithelial barrier defect, immune 
dysregulated response, and environmental factors [5]. 
Therefore, it is of great significance to further explore 
new molecular markers and molecular mechanisms of 
IBD.

The BM is the evolutionary conserved animal extracel-
lular matrix and forms sheet-like structures that epitheli-
alize and surround most tissues [6–8]. Two independent 
planar networks of laminin and type IV collagen mole-
cules associate with cell surface interactors and provide 
a scaffolding structure for building BMs along tissues. 
These functions will suggest that the BM has an impor-
tant relationship with the occurrence and development of 
IBD [9]. Recently, Jayadev et al.[10] systematically defined 
222 humans BM genes, which identified the enormous 
complexity of BM and important impact on human 
health. We will further use these 222 humans BM genes 
to explore new molecular markers of BM closely related 
to IBD. BM has a variety of components that can be used 
to resist mechanical stress, determine tissue shape, and 
create diffusion barriers. They also provide cues directing 
cell polarity, differentiation, migration, and survival. Var-
iations in more than 20 BM genes underline their diverse 
and fundamental functions that underlie human disease. 
BM proteins are targets of autoantibodies in immune dis-
eases, and defects in BM protein expression and turnover 
are hub pathogenic aspects of cancer, inflammation, and 
fibrosis [11].

Advances in high-throughput sequencing technologies 
such as RNA-seq and microarrays have provided oppor-
tunities to comprehensively characterize the molecular 
features of tumorigenesis [12]. Furthermore, the appli-
cation of these high-throughput technologies has facili-
tated the identification of promising biomarkers for 
cancer diagnosis and prognostic assessment. Appropri-
ate IBD data were obtained through Gene Expression 
Omnibus (GEO). Based on BM genes, we grouped and 
compared them separately, performed a series of bioin-
formatics analyses, and mined new molecular markers to 
predict related drugs and miRNA, which aims to lay the 

foundation for the development of IBD treatment, identi-
fication of subtypes, and further in-depth research.

Materials and methods
Data sources and processing methods
IBD samples with complete gene expression informa-
tion were downloaded from GEO (https://​www.​ncbi.​
nlm.​nih.​gov/). The dataset GSE165512 (Public on Nov, 
2021 GPL16791) used for the analysis collected 46 nor-
mal patient samples, 84 Crohn’s patient samples, and 
40 ulcerative colitis patients. All tissue samples were 
obtained from the patient’s ileocolic tissue. Microarray 
data were downloaded and reanalyzed from the public 
GEO database, and systematic bioinformatics analysis 
was performed. Dataset GSE179285 (Public on Jul, 2021 
GPL6480) was used for validation of the analysis. The 
numerically larger expression values of the dataset were 
log2 transformed. In this study, no experiments were 
performed on humans or animals. Therefore, ethical 
approval or consent to participate was not applicable.

Analysis of differential expression BM genes
The expression datasets were extracted by R software for 
BM genes, and the "limma" package was applied to select 
differential expression genes (DEGs) between Crohn’s 
disease or UC and control samples, respectively [13]. 
The "limma" package is a mainstream tool for genetic 
differential analysis [14]. We set significance criteria as 
|logFC| > 0.5 and p < 0.05 and visualized DEGs via heat-
maps and volcano plots.

PPI network analysis
As described above, we selected significantly differential 
expression BM genes from CD or UC. We mapped a pro-
tein–protein interaction (PPI) network using the online 
mapping tool "STRING" (https://​string-​db.​org/​cgi/​input.​
pl) with a minimum interaction distance of 0.9. Next, 
Cytoscape (v3.9.1) visualized the network model and 
used CytoHubba in the app to calculate the 10 top of hub 
genes.

Functional analysis of DEG
To reveal the biological functions of the selected DEGs, 
Gene Ontology (GO) enrichment analysis including 
biological process (BP), cellular component (CC), and 
molecular function (MF) analysis was performed using 
the "clusterProfiler" package. Criterion was set at p < 0.05 
and results were visualized in bubble charts. In addi-
tion, "GObubble" and "GOChord" were applied with the 
"GOplot" package to illustrate functional analysis data. 
Likewise, the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) is a database that integrates genomic, chemi-
cal and phylogenetic functional information [15], which 

https://www.ncbi.nlm.nih.gov/
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analysis illustrates the enrichment of pathways in DEGs 
by applying the ’clusterProfiler’ package; results are pre-
sented as bar and circle graphs. To further study the dif-
ferential expression immune environment of the disease, 
GSEA used the immune-related gene set in the Molecu-
lar Signatures Database (MsigDB) as a reference, in which 
the gene set with p < 0.05 and false discovery rate (FDR) q 
value < 0.05 was considered to be significantly enriched. 
GSEA enrichment analysis was performed by the "limma" 
and "enrichplot" packages and the top 5 immune gene 
sets are displayed [16].

Screening and identification of Lasso prediction models
Lasso logistic regression is a machine learning method 
that identifies variables by finding the λ value with the 
smallest classification error. The partial-likelihood bias of 
log-change plotted by Lasso regression in tenfold cross-
validation. A dashed vertical line is drawn at the optimal 
value with the minimum criterion (lambda. min) and 1 
standard error of the minimum criterion (1-se criterion). 
The "glmnet" package is a package used to construct gen-
eralized linear and similar models, and candidate hub 
genes were then crossed with DEGs using the "glmnet" 
package of the R software for Lasso analysis to screen the 
final hub genes [17]. The hub gene expression levels in 
the BM of IBD patients were assessed using boxplots. The 
ROCs of the screened hub genes were drawn and their 
AUCs were determined.

Drawing of a nomogram
Nomograms were constructed and displayed using the 
"regplot" R package. Then, calibration plots were drawn 
to assess the reliability of the nomogram, and decision 
curve analysis (DCA) was performed to investigate the 
net clinical benefit of the nomogram (R packages "caret" 
and "rmda"). The occurrence and development of IBD are 
evaluated by hub genes.

Analysis of immune cells and functions infiltration
The degree of immune cell and functions infiltration 
can be quantified by ssGSEA analysis [18]. The relative 
infiltration levels of immune cells and functions in the 
GSE165512 dataset were quantified using the ssGSEA 
algorithm, and heatmaps and boxplots were drawn show-
ing the correlation and differential expression levels of 
immune infiltrating cells and functions. The relationship 
between hub genes and immune cells and functions was 
analyzed with Spearman correlation of immune infiltrat-
ing cells with hub genes and then visualized using the 
"ggplot2" software package.

Predict related drugs and miRNAs
We screened out the hub BM-related genes to IBD 
through the online Enrichr database (https://​maaya​
nlab.​cloud/​Enric​hr/) to predict related drugs and miR-
NAs, and screened the top 10 drugs or miRNAs with 
p < 0.05 for visualization. The miRNA network relation-
ship was constructed by Cytoscape (v3.9.1) to build a 
visual network model.

Screening of machine learning models
Support vector machines-recursive feature elimination 
(SVM-RFE) is to train the sample by the model, then 
rank each feature with a score, remove the feature with 
the smallest feature score, then train the model again 
with the remaining features for the next iteration, and 
finally select the required number of features, which is 
often used for the extraction of disease feature mark-
ers [19]. We selected differential expression BM genes 
from the modules most closely related to CD or UC 
for machine learning. We run the e1071 package to 
eliminate recursive features of the obtained differential 
genes and use the SVM-RFE function for data calcula-
tions. We set up folds by wrapping the entire feature 
selection and generalization error estimation process in 
a top loop of outer cross-validation. Finally, we used the 
loop function to estimate the generalization error of 
different numbers of top features with a 10 × CV stand-
ard, so that the error rate reaches the lowest point, and 
the best gene features are obtained.

Fig. 1  Workflow of data processing

https://maayanlab.cloud/Enrichr/
https://maayanlab.cloud/Enrichr/
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Result
Study design and data preliminary analysis
The overall design idea of this study is shown in the flow-
chart (Fig.  1). The samples of dataset GSE165512 were 
divided into normal group (n = 46), CD group (n = 84), 
and UC group (n = 40), which were used for subsequent 
model construction and analysis, respectively. To inves-
tigate the relationship between inflammatory bowel 
disease and basement membrane, we first extracted the 
222 BM gene expression data found by Jayadev et al.[10]. 
Probably due to the tissue specificity of BM genes a few 
that were undetected with very low gene expression in 
the intestine were excluded. Of these, 211 genes were 
extracted in the Con and CD groups; 221 genes in the 
Con and UC groups; and 211 genes in the CD and UC 
groups. The expression matrix of the extracted BM genes 
was used for further analysis.

Differential expression of BM genes and screening of hub 
genes
The differential expression of BM genes between nor-
mal and CD groups, normal and UC, and CD and UC 
groups were analyzed by the “limma” package in R lan-
guage (|logFC| > 0.50, p < 0.05), and a heat map and a vol-
cano plot were drawn (Fig.  2A, B and Additional file  1: 
Fig. S1A, B). 83, 101, and 56 significantly differential 
expressed BM genes were found in these three groups, 
respectively (Additional file  2: Tables S2, S4, S6). String 
is an online website tool for analyzing protein–protein 
interactions (PPI) (https://​cn.​string-​db.​org/) [20]. The 
differential genes were passed through the String online 
database, and the standard set was that the interaction 
score of the network was > 0.9 to construct PPI network 
diagrams (Fig. 2C, D and Additional file 1: Fig. S1C), and 
calculated by the CytoHubba(v0.1) plugin in Cytoscape, 
and obtained the hub top 10 genes respectively. Red indi-
cates hub genes, and darker colors indicate higher scores 
(Table 1).

Lasso regression model to screen the central hub genes
Lasso regression is commonly used for screening diag-
nostic model genes or prognostic model genes and is 
based on general linear regression with a canonical 
term added to ensure best-fit error while making the 
model generalizable [21]. By building a Lasso model 
in the training set, the value of the hyperparameter λ is 
obtained by tenfold cross-validation using the smallest 
criterion. After adjusting the cross-validation of param-
eter selection in Lasso regression, the final hub genes 
were obtained, which were ADAMTS4, ADAMTS3, 
ADAMTS17, ADAMTS19, SPON2, and ADAMTS6 in 
the CD group, respectively. Similarly, the final hub genes 

of the UC group and the CD/UC group can be obtained 
(Fig. 3A, B and Additional file 1: Fig. S1D–F) (Table 1).

The expression levels of hub genes in each group were 
verified by boxplots, and the expression differences of the 
central genes were visually displayed, and the expression 
of these genes in tissues was compared with the control 
group, and the results were all statistically significant 
(p < 0.05). The Receiver operating characteristic curve 
(ROC) is used to evaluate the effectiveness of a marker 
in classifying or diagnosing two types of test subjects (for 
instance patients and normal individuals). The area under 
the curve (AUC) is calculated (0.5 = purely random pre-
diction and 1 = full discrimination) to find the optimal 
cut-off value for this model [22]. ADAMTS4, ADAMTS3, 
ADAMTS17, ADAMTS19, SPON2, and ADAMTS6 
were then validated with ROC curves and AUC statistics 
to assess the ability to differentiate from healthy con-
trols and found to have good sensitivity and specificity. 
The National Institutes of Health define an AUC > 0.6 
as "FAIR"[23, 24]. The horizontal coordinates represent 
specificity and the vertical coordinates represent sensi-
tivity, where the AUC of SPON2 was 0.71, cut-off value 
was 0.35, specificity (67.11%) and sensitivity (67.90%), 
suggesting that this gene has a good predictive effect and 
better diagnostic ability for CD (Fig. 3C–H).

In the UC group, the hub genes ADAMTS4, 
ADAMTS9, ADAMTS2, ADAMTS3, ADAMTS17, and 
ADAMTS13 were screened by Lasso regression for box-
plots verification, all the results were significantly dif-
ferent and the ROC and AUC statistics were verified. 
Among these, the AUC of ADAMTS17 was 0.85, with 
a cut-off value of 0.60, specificity (94.80%) and sensitiv-
ity (64.60%), suggesting a good predictive effect (Fig. 4A, 
B). Similarly, it can be verified in the CD/UC group. 
The expression of SPARC gene was significantly higher 
in the UC group than in the CD group, with an AUC 
value of 0.71, cut-off value of 0.40, specificity (70.35%) 
and sensitivity (69.70%). It is indicated that SPARC gene 
is important for the identification of two IBD subtypes 
(Additional file 1: Fig. S2).

Construction of nomogram to predict disease
The nomogram model was constructed to make more 
accurate personalized predictions for patients. We chose 
to establish a nomogram model of CD with BM hub 
genes (including ADAMTS4, ADAMTS3, ADAMTS17, 
ADAMTS19, SPON2, and ADAMTS6) (Fig.  4C), in 
which the predicted curve almost coincides with the 
actual curve, indicating a good prediction effect (Fig. 4E). 
Both the DCA decision curve and the clinical impact 
curve showed that the model had good accuracy and 
could accurately predict the occurrence and develop-
ment of CD (Fig.  4F, G) [25]. Also available, in the UC 

https://cn.string-db.org/
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group, BM hub genes (including ADAMTS4, ADAMTS9, 
ADAMTS2, ADAMTS3, ADAMTS17, and ADAMTS13) 
were constructed for nomograms (Fig. 4D and Additional 
file 1: Fig. S3A–C).

Functional enrichment analysis of DEGs
Through GO and KEGG analysis, the biological func-
tion, cellular localization, and molecular function of 
DEGs of BM genes in CD patients were found. It can 
be concluded that the biological functions of the differ-
ential expression genes are mainly concentrated in the 

extracellular matrix organization, structural organiza-
tion, and collagen fiber organization; The cell localization 
is mainly concentrated in collagen extracellular matrix; 
Molecular functions are mainly focused on antitension 
and strength of extracellular matrix structural compo-
nents and collagen binding (Fig.  5A, B). Analysis of the 
KEGG signaling pathway revealed that the functional 
pathways of differential expression genes were mainly 
focused on ECM-receptor interactions and focal adhe-
sions to perform biological functions (Fig. 5C, D). Taken 
together, these results identify biological processes and 

Fig. 2  Data variance analysis and PPI network construction. A Heatmap of differential expression of 211 BM genes extracted from the CD group. B 
Volcano plot of BM genes in CD and UC groups. C, D PPI network construction of BM differential genes in CD and UC groups
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signaling pathways associated with significant differen-
tial BM in CD patients. The Molecular Signatures Data-
base (MsigDB) is a database of annotated gene sets of all 
types and can be used with GSEA software. GSEA uses 
the “immunesigdb.gmt” dataset in MsigDB as a refer-
ence [26]. It is a dataset with expression levels of various 
gene pairs in immune cells. We can obtain that the main 
enriched immune cell infiltration is negatively correlated 
with the normal group and positively correlated with the 
CD group. It further suggests that the development of 
CD is associated with BM genes regulating immune cell 
levels and causing abnormal aggregation of immune cells 
in CD intestinal tissues, implying that BM genes regulat-
ing immune cells are closely associated with the develop-
ment of the disease (Fig. 5E, F).

In the UC group, the biological functions of genes dif-
ferential expression in BM were also mainly concentrated 
in an extracellular matrix organization, structural organi-
zation, and collagen fiber organization. The localization 
of cells is mainly concentrated in collagen extracellular 
matrix. Molecular functions mainly focus on metalloen-
dopeptidase activity and glycosaminoglycan (Additional 
file 1: Fig. S3D).

Analysis of the KEGG signaling pathway revealed that 
the functional pathways of differential expression genes 
were mainly focused on ECM-receptor interaction and 
biological functions on focal adhesions (Additional file 1: 
Fig. S3E). It is interesting to find that in the bioinformat-
ics analysis of base BM genes, the enrichment results of 
CD and UC subtypes have highly similar biological func-
tions. Also in the GSEA, we found differentially enriched 
results of immune cell infiltration (Additional file  1: 
Fig. S3F, G). In the CD/UC group, we found similarities 
in biological function enrichment. It can be explained 
that the functional changes caused by the two subtypes 
are similar, but the degree is inconsistent, and there is a 

certain enrichment difference, which may be explained 
by the specificity of their respective diseases (Additional 
file 2: Table S7).

Immune cell infiltration and its correlation with the hub 
gene
Single sample GSEA analysis(ssGSEA) quantified 
immune infiltration from different angles, is a special 
type of GSEA analysis [27]. To further investigate the 
differences in BM immune cell infiltration among CD 
patients, the ssGSEA algorithm was used to evaluate 
the relationship between the two, and heatmap and cor-
relation map of immune cells and functions infiltration 
were drawn. It can be found that most immune cells and 
functions were positively correlated, and the correlation 
coefficient is > 0.80 (Fig. 6A–C). Next, the distribution of 
immune cells and function is shown. In CD, neutrophils 
were significantly higher than normal (p < 0.05), and there 
were more changes in immune functions (Fig.  6D).Also 
in the UC group and the CD/UC group, we performed 
analyses (Fig. 6E and Additional file 1: Fig. S4A–D). Six 
hub BM genes were tested for the correlation between 
immune cells and functions, among which ADAMTS3 
was associated with a variety of immune cells and func-
tions (Fig.  6F). We performed the same analysis in the 
UC group and the CD/UC group (Additional file 1: Fig. 
S4E). These results provide further evidence that these 
immune cells play a crucial role in the progression of 
IBD.

Validation of hub immune‑related BM genes in CD and UC
The IBD dataset GSE179285 of the GEO database was 
used to validate the model screening results. The expres-
sion levels of the central genes in each group were verified 
by box plots. We can see that the expression differences 
of all predicted genes are consistent with the validation 

Table 1  BM hub genes in IBD

CD group UC group CD/UC group

Rank CytoHubba Lasso CytoHubba Lasso CytoHubba Lasso

1 ADAMTS4 ADAMTS4 ADAMTS4 ADAMTS4 LUM LUM

2 ADAMTS9 – ADAMTS9 ADAMTS9 POSTN POSTN

3 ADAMTS1 – ADAMTS1 – MMP2 –

4 ADAMTS2 – ADAMTS2 ADAMTS2 COL5A1 COL5A1

5 ADAMTS3 ADAMTS3 ADAMTS3 ADAMTS3 VCAN VCAN

6 ADAMTS17 ADAMTS17 ADAMTS17 ADAMTS17 FBLN2 –

7 ADAMTS19 ADAMTS19 ADAMTS19 – SPARC​ SPARC​

8 SPON2 SPON2 ADAMTS20 – CD44 –

9 ADAMTS6 ADAMTS6 ADAMTS6 – LOXL1 LOXL1

10 ADAMTS7 – ADAMTS13 ADAMTS13 ADAMTS2 ADAMTS2
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Fig. 3  DEGs identification and hub gene screening. A Lasso coefficient profile of tenfold cross-validation hub genes in the CD group. B Partial 
likelihood bias of log-change plotted by Lasso regression in tenfold cross-validation. A dashed vertical line is drawn at the optimal value 
with the minimum criterion (lambda. min) and 1 standard error of the minimum criterion (1-se criterion). C–H Boxplots of 6 hub genes in CD group 
and construction of ROC curve model (*p < 0.05; *p < 0.05; *p < 0.05, with an unpaired Student’s t test)
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group, indicating the accuracy and validity of the model 
predictions. However, ADAMTS3 and ADAMTS6 in 
the CD group and ADAMTS3 in the UC group were not 
statistically significant. There were a few discrepancies 

in the results of the dataset validation, which may have 
been caused by the variability of batches and individuals 
from different sample sources is a slight effect, but had no 
effect on the study overall (Fig. 7A–D).

Fig. 4  Drawing of hub gene nomograms. A Boxplots of hub genes in the UC group. B Drawing of the ROC model of hub genes in the UC group. 
C Plotting of the nomogram of hub genes in the CD group. D Drawing of the nomogram of hub genes in the UC group. E–G Prediction curve, 
decision curve, and clinical impact curve of the nomogram model in the CD group (*p < 0.05; *p < 0.05; *p < 0.05, with an unpaired Student’s t test)
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Fig. 5  Functional analysis of DEGs. A Bubble chart of GO enrichment analysis of differential BM genes in the CD group, and the top 10 functions 
are listed respectively. B Circle chart of GO enrichment analysis of differential BM genes in CD group and the distribution of top 6 functions 
are listed respectively. C Bubble chart of differential BM genes KEGG enrichment analysis in CD group and the top 10 functional pathways are 
listed. D Circle plot of CD group differential BM gene KEGG enrichment analysis. E, F In the CD group analysis, GSEA analysis was performed 
with the immune-related gene set as a reference, and the top 5 enriched immune gene sets were listed, respectively
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Fig. 6  Immune cells and functions correlation analysis. A In the CD group, the heatmap shows the distribution of immune cells and functions 
within the group by ssGSEA analysis. B, C Correlation between immune cells and functions within the group was shown by ssGSEA analysis. 
D, E The levels of immune cells and functions within each group were shown by ssGSEA analysis in the CD and UC groups, respectively. F The 
relationship between six central hub BM genes and immune cells and functional infiltration in the CD group by ssGSEA analysis (*p < 0.05; *p < 0.05; 
*p < 0.05, with an unpaired Student’s t test)
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Prediction of related drugs and miRNAs
We used the immune infiltration-related hub genes to 
predict related drugs and miRNAs through the online 
Enrichr database. It is a comprehensive online tool for 
gene enrichment analysis, containing a large library of 
genome annotations available for analysis and download, 
such as Transcription, Pathways, Ontologies, Diseases/
Drugs and Cell types [28]. We entered the six impor-
tant genes screened for drug correlation prediction, 
calculated the corresponding p values (p < 0.05), and per-
formed reverse order to select the top 10 hub drugs for 
presentation (Table  2). Overlap represents how many 
genes are predicted to point to this drug, and higher val-
ues suggest better prediction for the disease. In the CD 
and UC groups, we obtained the most sensitive drugs 
were retinoic acid and arbutin, respectively. miRNA pre-
diction data (p < 0.05) were also extracted, the genes asso-
ciated with them were connected, and their regulatory 

Fig. 7  Validation of hub BM genes. A, B In the CD group, boxplots and ROCs verify the expression of hub BM genes. C, D In the UC group, boxplots 
and ROCs verify the expression of hub BM genes (*p < 0.05; *p < 0.05; *p < 0.05, with an unpaired Student’s t test)

Table 2  Predicting related drugs for hub BM genes

CD group UC group

Drug Overlap P Drug Overlap p

Retinoic acid 5/6 0.0022 Arbutin 2/6 0.0029

CGS-27023A 1/6 0.0039 CGS-27023A 1/6 0.0039

Trichostatin A 4/6 0.0114 AFLATOXIN B1 4/6 0.0065

VANADIUM 1/6 0.0439 Pivampicillin 1/6 0.0069

VALPROIC ACID 5/6 0.0486 Uridine Triphos-
phate

1/6 0.0102

– – – Clonidine 1/6 0.0105

– – – CAPECITABINE 1/6 0.0149

– – – Clopidogrel 
Bisulfate

1/6 0.0199

– – – Imidurea 1/6 0.0220

– – – Methylpredni-
solone

1/6 0.0223
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forms were visualized by Cytoscape software. The red 
color indicated the names of hub BM genes (Fig. 8A, B). 
It will provide guidance and reference significance for 
disease treatment and in-depth research.

Machine learning finds hub genes
We screen for hub genes through computer learn-
ing methods. In the CD group, a total of 18 meaning-
ful hub genes were screened out and intersected with 
the predicted hub genes to obtain the central hub gene 
ADAMTS17 (Fig.  8C, E). The Venn diagram is used to 
represent overlapping regions between multiple data. 
In the UC group, a total of 34 significant hub genes 
were screened out and intersected by the Venn dia-
gram to obtain the central hub genes ADAMTS17 and 
ADAMTS9. In the CD/UC group, a total of 40 significant 
hub genes were screened out and intersected by the Venn 

diagram to obtain the central hub genes POSTN, SPARC, 
and ADAMTS2 (Fig. 8D and Additional file 1: Fig. S5A, 
B).

Discussion
In recent years, with the continuous research on IBD, the 
expected therapeutic effect has still not been achieved. 
The course of IBD is usually prolonged and even requires 
lifelong treatment. Its pathogenic mechanism is com-
plex [29–31] and is closely related to the inflammatory 
immune response of the intestine [32]. Therefore, the 
in-depth study of its immune regulation mechanism has 
always been a clinical research hotspot. The pathological 
manifestations of IBD are mainly in the congestion and 
erosion of the intestinal tissue mucosa, the structure of 
the matrix is damaged, accompanied by the infiltration 
of a large number of inflammatory cells [33, 34]. BM is 

Fig. 8  Prediction of relevant miRNAs and machine learning screening. A, B In the CD and UC groups, the BM hub gene sets were predicted 
for miRNA, and the correlation was visualized. C, D Machine learning was performed on the differential expression BM gene sets, respectively, 
and the central genes were screened by the model. In the CD group, the Lasso regression model and the genes screened by the machine learning 
model were subjected to Venn diagram intersection. E Venn plot intersection of BM-related hub genes screened by Lasso regression model 
and machine learning in CD group
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an extracellular matrix structure, which is formed by 
the combination of collagen and adhesions protein to 
form a tissue structure, which is closely related to the 
formation of the intestinal mucosal structure. Recently, 
Jayadev et  al. [10] successfully identified the BM gene 
set by network analysis and screening of elegans and 
zebrafish, which finally clearly defined 222 human BM 
set and affirmed the important impact of BM genes on 
human health. It is composed of 160 basement members 
matrix and 62 cell surface interactors, which are the scaf-
folding structure of the tissue and play an important role 
as a protective barrier. However, there are fewer studies 
on BM genes on diseases, which the role of BM genes in 
IBD diseases has not been carried out, thus BM genes are 
important for IBD studies. We extracted the BM gene set 
for the study to discover the key pathogenic genes of IBD. 
A further prediction of related drugs and miRNAs has 
important clinical application and guiding significance 
for basic experiments.

We are interested in a multi-faceted exploration of 
IBD through BM genes. In both CD and UC, we were 
surprised to find that these two disease subtypes collec-
tively focus on the ADAMTS family [35, 36]. At present, 
the ADAMTS family has been studied to be associated 
with the occurrence of various diseases and has a hub 
role in tissue development and homeostasis. Its func-
tions are widely determined by their interactions with 
the extracellular matrix and proteins in the extracel-
lular matrix [37]. It is also suggested that its functional 
form of action may be closely related to the histopatho-
logical destruction and immune cell infiltration of IBD. 
In CD, we further screened out the central hub gene 
ADAMTS17 by machine learning. It is related to fibril-
lin biology [38–41], and its downregulation is associ-
ated with dysplasia, and ECM substrates are functionally 
linked, consistent with our analysis that low expression 
promotes the development of CD [42]. It has also been 
found that there is a significant negative correlation with 
immune functions such as T lymphoid helper cells, par-
acrine, and type I interferon responses, which may be 
involved in the immune response of CD. In UC, central 
hub genes ADAMTS17 and ADAMTS9 were identified. 
Among them, ADAMTS9 belongs to the hub enzyme of 
proteoglycan degradation [43–45], and its harmful role 
in osteoarthritis, rheumatoid arthritis, and intervertebral 
disc degeneration have been widely described [46]. Pos-
sibly related to disrupting the function of the extracellu-
lar structural matrix, consistent with our analysis. In the 
immune response, it is significantly related to the promo-
tion of B cells, CD8 + T cells, and DCs, the promotion of 
inflammatory responses, and the inhibition of NK cells 
and other immune cells. Chen et al. suggested that there 
is a strong interaction force between BM and immune 

cells, while regulating immune cell levels [11, 47, 48]. BM 
genes are also involved in the regulation of immune cells 
including mast cells and may be associated with the acti-
vation of loaded inflammatory networks including mast 
cells when inflammatory factors bind to the BM [49–51].

In addition, we are also interesting to find that there are 
also significant differences between CD and UC [52]. The 
clinical manifestations of CD and UC are different, but 
some patients are difficult to identify, especially in the 
early stage of the disease. Therefore, it is of great clinical 
significance to find new biomarkers for identification. We 
found that the BM-related differential expression genes 
of the two subtypes were still enriched in the cell–matrix 
organization and structural organization, which indi-
cated that the degree of structural changes in the stromal 
organization was different between them [53]. The anal-
ysis showed that the hub genes of the difference center 
were SPARC, POSTN, and ADAMTS2. The gene expres-
sion levels of these three genes in UC were higher than 
those in CD, and the AUC of the SPARC gene was 0.71, 
indicating a more accurate prediction effect. It is mainly 
involved in the regulation of cell adhesion, proliferation, 
migration, and tissue remodeling, and is related to the 
expression of fibroblasts [54, 55]. This may suggest that 
the differences in the pathological and immune-inflam-
matory responses developed between the two are closely 
related.

Our model has a good prediction of the pathogenic 
factors of CD and UC, and also explains the differences 
between the two to a certain extent, which can guide 
clinical treatment and basic research plans. As our find-
ings were derived from bioinformatic analysis, there are 
deficiencies in the authenticity and credibility of the find-
ings without experimental evidence of protein, and fur-
ther experimental studies are required to confirm these 
results.

Conclusion
In conclusion, we constructed and validated a nomogram 
model of CD and UC composed of BM genes through 
a series of multiple group bioinformatics comparative 
analyses. In CD, the central key gene is ADAMTS17; in 
UC, the central key gene is ADAMTS17 and ADAMTS9, 
which are closely related to the progression of disease, 
hoping to provide a new direction for the diagnosis and 
treatment of IBD. Additionally interesting, we found that 
the important differential significance of SPARC, POSTN 
and ADAMTS2 between CD and UC, which was able to 
clarify the similarities and differences between CD and 
UC, provides new insights into the identification of IBD 
subtypes, and has important research significance.
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