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a b s t r a c t

Stability of compounds in the human plasma is crucial for maintaining sufficient systemic drug exposure 
and considered an essential factor in the early stages of drug discovery and development. The rapid de-
gradation of compounds in the plasma can result in poor in vivo efficacy. Currently, there are no open- 
source software programs for predicting human plasma stability. In this study, we developed an attention- 
based graph neural network, PredPS to predict the plasma stability of compounds in human plasma using 
in-house and open-source datasets. The PredPS outperformed the two machine learning and two deep 
learning algorithms that were used for comparison indicating its stability-predicting efficiency. PredPS 
achieved an area under the receiver operating characteristic curve of 90.1%, accuracy of 83.5%, sensitivity of 
82.3%, and specificity of 84.6% when evaluated using 5-fold cross-validation. In the early stages of drug 
discovery, PredPS could be a helpful method for predicting the human plasma stability of compounds. 
Saving time and money can be accomplished by adopting an in silico-based plasma stability prediction 
model at the high-throughput screening stage. The source code for PredPS is available at https://bitbuck-
et.org/krict-ai/predps and the PredPS web server is available at https://predps.netlify.app.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY license (http://creative-

commons.org/licenses/by/4.0/).

1. Introduction

The stability of compounds in the human plasma plays a crucial 
role in drug discovery and development. Rapidly degraded com-
pounds in plasma tend to have low bioavailability and poor in vivo 
efficacy. Furthermore, poor plasma stability during sample storage 
or analysis processes could result in misleading in vivo drug con-
centrations. Plasma stability is considered an important factor for 
advanced compounds in drug discovery and development because 
accurate determination of drug concentration in biological samples 
is critical for pharmacodynamics–pharmacokinetic studies in 

preclinical and clinical practice [1,2]. In addition, the plasma stability 
profiles of compounds could alert drug discovery teams to modify 
the molecular structure to improve physicochemical properties and 
help prioritize molecules for subsequent development [3]. Therefore, 
plasma stability assays should be conducted early in the drug de-
velopment process to reach optimal therapeutic concentrations in 
the clinical phase. However, evaluating plasma stability for large 
chemical libraries through in vitro or in vivo assays is challenging 
due to high costs, time requirements, and labor intensity. These 
limitations highlight the need for an in silico plasma stability pre-
diction tool for quick examination of numerous compounds in the 
early drug development stages.

In the human body, most drugs are chemically converted via liver 
metabolism. Computer-based techniques for predicting metabolic 
stability in human liver microsomes have been developed to assess 
chemical stability [4,5]. In addition to liver metabolism, compound 
decomposition can be catalyzed in the plasma by multiple enzymes, 
such as hydrolases and esterases. The stability of liver microsomes 
may differ from that of plasma because plasma and microsomal 
enzymes are dissimilar. Blood contains several hydrolytic enzymes, 
such as cholinesterase, aldolase, lipase, dehydropeptidase, alkaline, 
and acid phosphatase [6,7]. Plasma degradation is possible if the 
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compound has an affinity for one of these plasma enzymes and a 
hydrolysable group at the proper position. Certain classes of drug 
molecules, such as those containing esters, amides, lactones, lac-
tams, carbamides, sulfonamides, and peptic mimetics, are prone to 
enzymatic hydrolysis by plasma esterases, amidases, or proteases 
[1]. In this study, plasma stability refers to the ability of small mo-
lecules to resist enzymatic degradation by plasma enzymes. This 
degradation process can convert active drug molecules into inactive 
or less active metabolites. Therefore, high plasma stability indicates 
that a small molecule can maintain its structure and function in the 
presence of plasma enzymes, ensuring that the drug remains active 
and can reach its intended target site in the body to exert its ther-
apeutic effect. Conversely, low plasma stability suggests that the 
drug is rapidly metabolized in the bloodstream, which could po-
tentially decrease its effectiveness.

Serum and plasma are the liquid parts of blood that are widely 
used in drug discovery research. Serum is the liquid that remains 
after blood clots, and plasma is the liquid that contains coagulation 
factors such as fibrinogen by adding an anticoagulant. Since these 
differences could influence the research outcomes, it is necessary to 
select the appropriate one for the intended purpose. This study fo-
cused on developing a model to predict compound stability in 
human plasma.

There are several factors that make the prediction of plasma 
stability difficult. Species differences in the distribution and activity 
of plasma enzymes can lead to differences in the plasma stability 
profiles of animal species [8,9]. In addition, plasma stability is dif-
ficult to predict because it is greatly affected by the surrounding 
atoms, such as steric hindrance and electron-withdrawing groups 
[10,11]. To date, only a few chemical functional groups are known for 
their plasma stability. Therefore, it is necessary to develop a com-
putational tool based on deep learning that is trained based on the 
local and global information of a compound to predict plasma sta-
bility in human plasma.

Plasma stability can be used to profile prodrugs where rapid 
conversion in plasma is desirable. Medicinal chemists can take ad-
vantage of plasma reactions as a part of a prodrug approach. The 
prodrugs improve permeability and oral bioavailability so that high 
concentrations of the prodrug reach the bloodstream. Hydrolytic 
enzymes cleave the prodrug to release the active drug in the blood. 
For instance, the newly approved antiviral drug for COVID-19, re-
mdesivir, adopts a unique strategy for the delivery of phosphate 
prodrugs. It is administered intravenously to reduce payload release 
during transit, thereby optimizing payload dispersion within the 
tissues [12]. Plasma stability prediction tools can be helpful in ra-
pidly designing appropriate prodrugs that are intrinsically unstable 
in the plasma.

Machine learning (ML) and deep learning (DL) have found ap-
plications in evaluating molecular properties like absorption, dis-
tribution, metabolism, excretion, and toxicity (ADMET) for drug 
discovery and development [13–15]. For example, ML and DL models 
that predict molecular properties, such as blood-brain barrier per-
meability [16,17], cardiotoxicity [18,19], metabolic stability [4,20], 
and solubility [21] have been developed to accelerate drug discovery. 
Recently, there have been numerous advancements in message- 
passing methods that are trained to predict molecular properties 
[22–24]. Such graph networks use dense layers of neural networks 
as non-linear functions for message passing convolution and are also 
commonly known as graph-convolutional neural networks (GCNNs). 
Graph-based models are naturally well suited for molecular mod-
eling because atoms may be modeled as nodes and bonds as edges in 
mathematical graphs to represent molecules. The main advantage of 
GCNNs is that they consider more distant information through 
iterative message-passing operations, avoiding the local de-
pendencies of descriptor-based models, such as molecular finger-
prints. GCNNs have outperformed previous descriptor-based ML 

approaches in various molecular property prediction tasks [25–28]. 
In addition, various attempts have been made to combine the at-
tention mechanism module with GCNNs to increase prediction 
performance by capturing global dependencies between functions in 
substructures [29–32]. The advent of AI-based drug discovery plat-
forms marks a transformative moment in medical research, sig-
nificantly influencing public health and society at large. These 
platforms accelerate the discovery process, enabling the rapid 
identification of potential therapeutic candidates with suitable 
pharmacokinetic properties, and reducing the time and cost in-
volved in traditional methods of drug discovery. Consequently, this 
has the potential to revolutionize healthcare by making novel and 
effective treatments more readily available, especially in under-
served or resource-limited settings.

In this study, we developed an attention-based graph neural net-
work called PredPS, which predicts the plasma stability of a given 
compound in human plasma and classifies the compound as stable or 
unstable (Fig. 1). We first generated in-house data on the plasma 
stability of a diverse set of 932 compounds using an in vitro assay in 
human plasma (785 stable and 147 unstable compounds) to develop 
PredPS. In addition, we collected open-source data on 2166 com-
pounds (647 stable and 1519 unstable compounds) for human plasma 
stability. We then constructed an attention-based graph neural net-
work (PredPS) to predict human plasma stability. Predicted results for 
human plasma stability are returned as a binary classification—stable 
or unstable. To evaluate the performance of PredPS, we also tested four 
ML and DL algorithms: random forest (RF), support vector machine 
(SVM), directed message passing neural network (DMPNN) [25], and 
communicative message passing neural network (CMPNN) [28]. 
PredPS showed the highest area under the receiver operating char-
acteristic curve (AUC) of 0.901  ±  0.006 when evaluated using 5-fold 
cross-validation. To the best of our knowledge, this is the first time 
that a model based on deep learning has been used to predict human 
plasma stability. Our model can be used for binary class prediction of a 
compound and high-throughput screening of chemical compounds in 
the early stages of drug discovery.

Fig. 1. Relation schematic workflow of PredPS. PredPS predicts the human plasma 
stability for a given compound as a binary classification—stable or unstable. PredPS is 
based on an attention-based message passing neural network trained with in-house 
and open-source data, comprising a chemically diverse set of chemical compounds.
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2. Materials and methods

2.1. In vitro human plasma stability assay

All compounds used in the human plasma stability assay were ob-
tained from the Korea Research Institute of Chemical Technology 
(Daejeon, Korea). Pooled plasma was purchased from Innovative 
Research, Inc. (Novi, MI, USA). Test compounds were spiked into the 
preincubated 100% plasma (pH 7.4) to produce a final compound con-
centration of 2 µM with a final DMSO concentration of 2%. The spiked 
plasma samples were incubated at 37 °C, and the reactions were ter-
minated by adding a sufficient volume of acetonitrile containing dis-
opyramide as an internal standard. The compound concentrations in the 
supernatant were analysed by LC-MS/MS after centrifugation at a re-
lative centrifugal force of 3220 g for 20 min at 4 °C.

2.2. Open-source human plasma stability

We collected human plasma stability data from public 
databases—PubChem [33] and ChEMBL [34]—for model training. The 
information collected provides two types of human plasma stability 
data: the concentration (%) of the compound remaining after a cer-
tain time and the half-life (t1/2).

2.3. Data preparation

We first standardized the simplified molecular-input line-entry 
system (SMILES) format of all collected compounds using RDKit 
(http://www.rdkit.org) and MolVS (https://github.com/mcs07/MolVS) 
after collecting in-house and open-source datasets. The standardiza-
tion process included the selection of the largest fragment, removal of 
explicit hydrogens, ionization, and calculation of stereochemistry.

For the in-house dataset, compounds with ≥ 85% remaining after 
3 h in human plasma were considered stable structures, whereas 
compounds with <  85% remaining were considered unstable struc-
tures [1,35]. For the open-source dataset, compounds were con-
sidered stable if at least 85% of the compound remained in human 
plasma after 3 h. Assuming that the compound decreased linearly by 
85% in plasma within 3 h, the half-life was approximately 10 h. 
Therefore, compounds with a half-life of ≥ 10 h in human plasma 
were considered stable, and compounds with a half-life of <  10 h 
were classified as unstable.

2.4. Baselines

We used RF, SVM, DMPNN [25], and CMPNN [28] as four baseline 
methods to compare our PredPS with traditional ML methods and 
existing graph convolution networks. RF is a supervised learning al-
gorithm with an ensemble of decision trees generated from a boot-
strapped sampling of features. It is regarded as the gold standard in 
structure-property relationship research owing to its robustness, ease 
of application, and high prediction accuracy [4,36,37]. The SVM 
method was proposed by Vapnik and is based on the structural risk 
minimization principle [38]. An estimated function is a linear exten-
sion of a function defined over a particular collection of data (support 
vectors). The input data were mapped onto a high-dimensional feature 
space, and linear regression was performed in the feature space. The 
extended connectivity fingerprint with a fixed length of 1024 was used 
with the RF model and SVM, which was implemented in Python 3.6.13, 
with the Scikit-learn package, version 0.24.2 [39]. For the RF model, we 
set 500 trees suggested in metabolic stability [4]. An SVM model with 
a radial basis function kernel was used for plasma stability. Both RF 
and SVM were evaluated using 5-fold cross-validation.

Recently, structural information of compounds has been encoded by 
MPNN [40], which is widely used to predict molecular properties. 
MPNN refers to a method of continuously updating node information 

corresponding to atoms when a molecular structure is expressed as a 
graph in graph convolution. In this study, we employed the DMPNN and 
CMPNN, which are MPNN variants, as graph-based baseline methods. 
MPNN focusses primarily on achieving node (atom) embeddings while 
ignoring information carried by edges (bonds). A DMPNN uses messages 
involving directed edges (bonds) [25] to compensate for this problem. 
For the central node of the graph, the information of the central node is 
updated by mixing the edge information from neighboring nodes 
connected by intermolecular bonds. Information is transmitted ac-
cording to the surrounding environment of each node and the structural 
features of the molecules can be effectively encoded by repeating this 
process several times. The CMPNN was developed to improve the in-
sufficient representation of the attribution of molecular graphs in the 
DMPNN [28]. This method reinforces the node-edge interactions using 
the ‘communicative’ kernel. The DMPNN was implemented with the 
source code obtained from ChemProp (https://github.com/chemprop/ 
chemprop), and the CMPNN was implemented with the source code 
obtained from https://github.com/SY575/CMPNN.

2.5. Model architecture and training of PredPS

PredPS comprises a CMPNN encoder, a self-attention layer, and 
fully connected layers optimized over a molecular fingerprint re-
presentation concatenated with a graph-based representation (Fig. 2). 
We considered two types of molecular representations: molecular 
fingerprints and graphs. For molecular fingerprints, we used the 
Morgan fingerprint [41] provided by the Python package RDKit (http:// 
www.rdkit.org) to convert the SMILES strings into binary feature 
vectors of 2048 bits. For molecular graphs, all node and edge features 
were initialized using the atom and bond properties, respectively 
(Supplementary Table 1). For all nodes in the graph, a node message 
vector is updated by an aggregate function based on the message 
booster [28] using the former hidden states of all neighboring nodes. 
The hidden state of each node is updated by a communication function 
using the message vector and former hidden state. We adopted a 
multilayer perceptron as the communicate function showing the best 
performance benchmarked by Song et al. [28]. Subsequently, the edge 
message vector is updated by subtracting the former hidden state of 
the inverse bond from the hidden state of the node. Then, the hidden 
state of the edge is updated by feeding it into a fully connected layer 
with its initial hidden state as the bias and ReLU activation function. 
These procedures update the hidden states of nodes and edges five 
times, and the final message vector and hidden state vector are cal-
culated using the aggregate and communicate functions, respectively. 
Next, the self-attention method was applied to the readout procedure 
for all nodes to generate a molecular feature vector [42]. Finally, we 
concatenated the representation from molecular graphs to the mole-
cular fingerprints and trained fully connected layers to predict human 
plasma stability as a binary classification of stability or instability. 
More detailed embedding information and hyperparameters are pro-
vided in Supplementary Table S1, S2, and Fig. S1.

3. Results and discussion

3.1. Preparation of in-house and open-source dataset for human plasma 
stability

Building generalizable and robust deep-learning models requires a 
sufficient amount of input data with various unbiased characteristics. 
High-quality input data were prepared by integrating in-house datasets 
obtained from in vitro human plasma stability measurements with 
human plasma stability datasets from public databases. Particularly, in 
the case of the in-house dataset, the quality of the dataset was de-
termined to be excellent by measuring the human plasma stability of 
compounds with various scaffolds from the Korea Chemical Bank 
(www.chembank.org) under consistent assay conditions. High- 
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dimensional data were projected onto a low-dimensional space using t- 
distributed stochastic neighbor embedding (t-SNE), a dimensionality 
reduction method, to investigate the diversity of molecular properties. 
Molecular representations based on Morgan fingerprints were used as 
inputs for t-SNE for 3098 compounds (Fig. 3).

As shown in Fig. 3, compounds in the open-source dataset ap-
peared clustered, indicating that several compounds had similar 
molecular properties. In contrast, the compounds in the in-house 
dataset were relatively more evenly distributed on t-SNE. Further-
more, the plasma stability data of the open-source dataset mainly 
showed a high proportion of unstable compounds, such as pro- 
drugs. In contrast, the proportion of stable compounds in the in- 
house dataset is high. Training data with low chemical diversity or 
class imbalance can cause overfitting and model generalization 
problems [43]. We integrated in-house and open-source datasets to 
prepare training datasets with various compound structures to avoid 
these problems. Simultaneously, the ratio of stable/unstable com-
pounds was similarly prepared.

PredPS was specifically designed and trained on a diverse dataset 
consisting primarily of small molecules. As a result, the program 
shows strong performance when applied to small molecules. As such, 
there are potential limitations when extrapolating this model to more 
complex molecular structures, such as cyclic peptides. Macrocyclic or 
bicyclic peptides may not be optimally predicted by PredPS due to 
their structural complexity and the lack of these compounds in the 
training set. The application of PredPS to these types of molecules is an 
exciting future prospect, but researchers should consider that accuracy 
may be lower than reported for small molecules.

3.2. Evaluation of prediction performance of PredPS

PredPS achieved an overall accuracy of 0.835  ±  0.007, AUC of 
0.901  ±  0.006, sensitivity of 0.823  ±  0.054, and specificity of 

0.846  ±  0.049 in the 5-fold cross-validation (Fig. 4 and Table 1). 
PredPS outperforms traditional ML models (RF and SVM) and ex-
isting graph-based neural networks (MPNN and CMPNN). The 
PredPS was constructed by connecting the self-attention layer to the 
CMPNN model architecture. An attention layer was applied to cap-
ture the importance of substructures in determining plasma stability 
instead of simply combining all the learned representations with 
sum pooling after the message-passing neural encoder. We con-
firmed that PredPS using attention pooling had a higher AUC value 
than CMPNN alone. Furthermore, all performance metrics improved 
when the fingerprint features obtained using the Morgan algorithm 
[41] were concatenated with the final graph representation (Fig. 4

Fig. 2. Model architecture of PredPS. PredPS integrates the communicative message passing neural network (CMPNN) [28], a self-attention layer, and fully-connected layers. It 
transforms input compounds (SMILES) into molecular fingerprints and graph representations, updating all node and edge features. The self-attention method generates a 
molecular feature vector, which when concatenated with graph features, undergoes training as fully connected layers.

Fig. 3. Visualization results of chemical diversity using t-distributed stochastic 
neighbor embedding (t-SNE). Blue indicates in-house data, and red indicates open- 
source data for human plasma stability.
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and Table 1). Molecular fingerprints can provide explicit structural 
information by capturing properties related to molecular sub-
structures, including aromatic rings and functional groups.

Sensitivity (recall rates) was computed to estimate the risks of 
false negatives because it was more severe to predict an actual un-
stable compound as stable. False negatives can mislead medicinal 

Fig. 4. Performance results of PredPS and existing molecular representation methods for the plasma stability. AUROC, area under the receiver operating characteristic curve; RF, 
random forest; SVM, support vector machine; MPNN, message passing neural network; CMPNN, communicative message passing neural network; FP, fingerprint.

Table 1 
Performance results of PredPS and existing molecular representation methods on the internal dataset. 

RF SVM DMPNN CMPNN PredPS w/o FP PredPS w/ FP

Accuracy 0.766  ±  0.005 0.734  ±  0.010 0.795  ±  0.013 0.815  ±  0.025 0.807  ±  0.022 0.835  ±  0.007
Sensitivity 0.741  ±  0.039 0.745  ±  0.026 0.767  ±  0.073 0.769  ±  0.027 0.802  ±  0.059 0.823  ±  0.054
Specificity 0.791  ±  0.031 0.726  ±  0.038 0.823  ±  0.055 0.855  ±  0.052 0.813  ±  0.046 0.846  ±  0.049
AUC 0.817  ±  0.008 0.804  ±  0.011 0.873  ±  0.009 0.881  ±  0.002 0.897  ±  0.002 0.901  ±  0.006

Random forest (RF) and support vector machine (SVM) were implemented using Scikit-learn package. The DMPNN was implemented with the source code obtained from 
ChemProp (https://github.com/chemprop/chemprop), and the CMPNN was implemented with the source code obtained from https://github.com/SY575/CMPNN. We employed a 
5-fold cross-validation with a random split and provided the mean and standard deviation for each performance metric.

Fig. 5. The color of molecules on a heat map depends on the plasma stability. Red represents a predicted unstable feature, while blue represents a predicted stable feature. 
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chemists to continue working futilely on unstable compounds, 
wasting time and resources. The sensitivity of the test set was 82.3%. 
A higher sensitivity score indicated a lower risk of false negatives. 
The high AUC and sensitivity values indicate that PredPS shows high 
accuracy in predicting human plasma stability, sufficient for ADMET 
screening in the early stages of drug discovery.

3.3. Attention analysis

For PredPS, attention weight scores from the self-attention me-
chanism were obtained to identify learned features. We examined 
the attention patterns to assess whether the model focused on 
particular molecular substructures to predict plasma stability. Six 
unstable chemicals from the training set were randomly selected to 
analyze attention patterns. The most unstable compounds in plasma 

have ester bonds [1]. Visualizing the attention weight scores con-
firmed that the model focused locally on the atoms constituting the 
ester bond, which was consistent with expectations (Fig. 5).

3.4. Basic usage of web based PredPS

A publicly accessible web server was created to predict the 
human plasma stability of the requested compound. It accepts the 
SMILES format of the query compound as the input and returns 
binary classification results as stable or unstable. The user interface 
of the web server is illustrated in Fig. 6. Users can also directly draw 
the chemical structure of a query compound to predict plasma sta-
bility.

AI-based plasma stability prediction platforms can be widely 
utilized in the pharmaceutical industry. By being able to screen only 

Fig. 6. User interface of PredPS web server (https://predps.netlify.app). Input data can be obtained by directly entering SMILES or drawing the target chemical. Stability pre-
dictions for human plasma are either stable or unstable as binary outcomes.
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compounds with good plasma stability in the early stages of drug 
discovery, the organic synthesis process and preclinical stages of 
compounds can be streamlined. As a result, these platforms can 
accelerate the drug discovery process, quickly identifying potential 
therapeutic candidates and reducing the time and costs associated 
with traditional drug discovery methods.

4. Conclusion

In this study, we proposed a plasma stability prediction tool, 
PredPS, which classifies input compounds as stable and unstable in 
human plasma. The PredPS comprises a CMPNN encoder and a self- 
attention layer. PredPS showed the highest accuracy, sensitivity, and 
AUC based on a comparative analysis using traditional ML methods 
and existing graph-based neural networks. In addition, we devel-
oped a publicly accessible web server to predict the stability of the 
human plasma. Although the evaluation of plasma stability is very 
important in drug development, there are no known open-source 
programs that predict the stability of compounds in human plasma. 
PredPS could serve as a helpful tool for predicting the human plasma 
stability of compounds in the early stages of drug discovery and 
development. In particular, using an in silico-based plasma stability 
prediction model in the high-throughput screening step is a very 
effective way to save time and money. The emergence of AI-powered 
drug discovery platforms represents a transformative moment in 
medical research, with major implications for public health and 
society at large. As a result, this has the potential to revolutionize 
healthcare by making new and effective treatments more readily 
available, especially in underserved or resource-limited settings.
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