Skip to main content
. 2023 Jul 21;23:131. doi: 10.1186/s12911-023-02215-2

Table 5.

Comparison of methods and result of state-of-the-art studies with proposed model

Data source Method Personalized Metrics SBP DBP
(Su et al. 2018) [34] Proprietary data (84 subjects, 10 min each) PTT + deep learning (LSTM) Unknown RMSE 3.73 2.43
(Mohammad Kachuee et al. 2017) [35] MIMIC II (1000 subjects) PTT + classical ML (AdaBoost) Yes MAE 11.17 5.35
(Kurylyak, Lamonaca, and Grimaldi 2013b) [51] MIMIC (15,000 beats) Temporal PPG features + artificial neural network (ANN)) Unknown MAE 3.8 2.21
(Gupta et al. 2022) [52] MIMIC I, II, and III (39 subjects, ? subjects, 510 subjects) PPG signal’s derivative contours + ML algorithms Yes MAE 0.74, 1.69, 1.30 0.35, 0.77, 0.56
(Bernard, Msigwa, and Yun 2022) [36] MIMIC II (69 subjects) and proprietary data (23 subjects) five 1-D CNN, three Bi-directional LSTM networks No MAE 1.38 0.95
(Leitner, Chiang, and Dey 2022) [37] MIMIC III (100 subjects) RCNN neural networks + personalization Yes MAE 3.52 2.2
(Wang et al. 2022) [53] MIMIC II (348 records) Visibility graph + transfer learning No MAE 6.17 3.66
(Schlesinger et al. 2020) [38] MIMIC II (304 subjects) CNN + Siamese Network No MAE 5.95 3.41
Our proposed work (MLM-Transformer w/personalization) MIMIC III (1,732 subjects) 3-layer Time Series Transformer + personalized fine-tuning Yes MAE 2.41 1.31