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ABSTRACT
Background. We developed a novel, non-destructive, expandable, ebb and flow soilless
phenotyping system to deliver a capable way to study early root system architectural
traits in stem-derived adventitious roots of sweetpotato (Ipomoea batatas L.). The
platform was designed to accommodate up to 12 stems in a relatively small area for
root screening. This platform was designed with inexpensive materials and equipped
with an automatic watering system.
Methods. To test this platform, we designed a screening experiment for root traits using
two contrasting sweetpotato genotypes, ‘Covington’ and ‘NC10-275’. We monitored
and imaged root growth, architecture, and branching patterns every five days up to 20
days.
Results. We observed significant differences in both architectural and morphological
root traits for both genotypes tested. After 10 days, root length, surface root area, and
root volume were higher in ‘NC10-275’ compared to ‘Covington’. However, average
root diameter and root branching density were higher in ‘Covington’.
Conclusion. These results validated the effective and efficient use of this novel root
phenotyping platforming for screening root traits in early stem-derived adventitious
roots. This platform allowed for monitoring and 2D imaging of root growth over time
withminimal disturbance and no destructive root sampling. This platform can be easily
tailored for abiotic stress experiments, and permit root growth mapping and temporal
and dynamic root measurements of primary and secondary adventitious roots. This
phenotyping platform can be a suitable tool for examining root system architecture
and traits of clonally propagated material for a large set of replicates in a relatively
small space.

Subjects Agricultural Science, Plant Science
Keywords Root phenotyping, Sweetpotato, Ipomoea batatas, Adventitious roots, Root system
architecture, Root branching density

INTRODUCTION
Crop productivity is mainly influenced by environmental factors which include, fluctuating
temperatures, seasonal radiant energy, available and accessible soil moisture and mineral
nutrients that are distributed in soil. Of the abovementioned factors, soil moisture and
mineral nutrients directly affect growth and distribution of root systems (Purushothaman et
al., 2017b; Purushothaman et al., 2017a; Siddique, Chen & Rengel, 2015;Gao & Lynch, 2016;
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Burridge et al., 2016; Zhan & Lynch, 2015). Examining in situ or ex situ root systems are key
to understanding crop productivity, as soil resources are heterogeneously dispersed in soil
profiles or are prone to localized depletion, making root spatial growth and distribution
shape the capacity of a plant to capitalize on available resources (Lynch, 1995). Research on
improving root system architecture (RSA) under low nutrient, low input agriculture and
water stress could improve overall crop yield (Wasson et al., 2012; Kuijken et al., 2015) and
favorable changes in root architecture for nutrient capture and utilization of soil moisture
could influence overall biomass accumulation, hence, yield (Hammer et al., 2009; Anami
et al., 2015; Xie et al., 2017). However, the exploration of RSA traits is laborious due to the
impediment of accessing the soil matrix.

To circumvent this constraint, numerous real-time growth monitoring systems have
been developed for root visualization and quantification with support of innovative optical
recording techniques used in greenhouse settings. Furthermore, newer methodologies
and improvements on existing platforms for phenotyping large number of genotypes,
replicates and treatments are being developed with more reliable results (Kuijken et al.,
2015; Chen et al., 2011). These ex-situ root phenotyping platforms can be categorized into
two broad groups: (1) soil/substrate systems and (2) non-soil systems. The soil/substrate
system consists of a rhizotron/-box/-mesocosm containing sand, natural soil or artificial
soil mix were root growth is either monitored non-invasively with the use of X-ray
micro-tomography, magnetic resonance imaging or CT scanning or destructively by
digging, removing and cleaning whole root system and afterward, scanning and/or taking
a picture for further analysis (Nagel et al., 2012; Blossfeld et al., 2011; Rascher et al., 2011;
Metzner et al., 2015; Pflugfelder et al., 2017; Saengwilai et al., 2014; Zhan & Lynch, 2015).
The soilless systems include: hydroponics (Clark et al., 2013; Pace et al., 2014), agar or
gellan gum (Fang, Yan & Liao, 2009; Iyer-Pascuzzi et al., 2010; Clark et al., 2011; Topp et al.,
2013; Ribeiro et al., 2014), aeroponics (De Dorlodot et al., 2007; Gaudin et al., 2011), grow
pouches (Hund, Trachsel & Stamp, 2009; Adu et al., 2014), transparent soil (Downie et al.,
2012) and rhizoslides (Le Marié et al., 2016). Both ex situ systems present advantages as well
as disadvantages dependent on end results. For example, environmental unpredictability
can be reduced using standardized artificialmedia, nutrient composition and/or application
and micro-environment control of both systems. In addition, they have the capability of
real-time direct root growth observations avoiding destructive harvest and can be very high
throughput. On the other hand, the 2D or 3D nature of both systems force root growth
and development in an unnatural physical realm as well as in a chemically artificial media.
Lastly, both systems have the limitation of using seed and seedling growth as proxies for
mature plants. Thus, the optimal phenotyping platform should accommodate a range of
desirable properties, such as, low operating and developmental costs and the possibility of
measuring large number of plants, replicates and/or treatments (Kuijken et al., 2015). So
far, most techniques developed for RSA phenotyping have relied on using seedlings and
early-stage root phenotypes. These methods have shown some predictive value for later
developmental stages, as reported by Tuberosa et al. (2002). However, other studies, such
as the one by Watt et al. (2013), have demonstrated that seedling root phenotypes do not
necessarily correspond to those of mature plants. Consequently, a flexible phenotyping
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system capable of capturing a time-series of several developmental stages would be of
paramount importance and have increased agronomic relevance. Now, there is a lack
of a suitable root phenotyping method enabling the study of time-series stem derived
storage root systems for that is inexpensive, scalable, and adoptable by low resource or
fund-limited laboratories worldwide. Here, we focused on the root system of the storage
root crop, sweetpotato (Ipomoea batatas L.), an important and emerging crop for both
developing as well as for developed nations worldwide.

Sweetpotato, is a vegetatively propagated true root crop that provides food security for
resource-poor small holder farmers in Sub-Saharan Africa as well as in other tropical and
sub-tropical countries worldwide (Khan, Gemenet & Villordon, 2016). Limited literature
is available on sweetpotato root growth and development when compared to cereals, and
what is available, focuses on storage root growth, bulking and yield leaving out RSA entirely.
Sweetpotato roots are adventitious roots (AR) originating from the shoot or underground
stem (Khan, Gemenet & Villordon, 2016), contrary to the root systems of seed propagated
crops which consist of embryonic primary roots, seminal roots and stem borne crown
roots (Hochholdinger et al., 2004; Hund, Reimer & Messmer, 2011). Sweetpotato RSA is
composed of AR, lateral roots (LR) and storage roots (SR). The simple identification
of a main AR axis and emerging LR through spatial and temporal events would enable
novel research to further recognize mechanisms involved in LR emergence and function
(Khan, Gemenet & Villordon, 2016). To exploit early sweetpotato root traits as potential
selection criteria for breeding programs that target different environmental scenarios,
attempts have to be guided towards the development of (1) a robust and reproducible
root phenotyping platform, (2) sustain stem and root growth until storage initiation, (3)
express high heritability and/or repeatability for a given trait, (3) minimize genotype ×
environment interaction, (4) be able to be used all year around, and (5) not be labor
intensive.

In our study, first we describe a novel, non-destructive, expandable, ebb and flow soilless
phenotyping platform that is equipped with a customized imaging setup for stem derived
(i.e., ‘slips’) storage root systems using germination paper that is preferred for large scale
root phenotypic screens. Second, we examine the inherent genetic variations in root traits
among a commercially available sweetpotato clone and an unreleased breeder line. This
system enables the analysis of large number of replicates with relatively low-cost materials,
non-destructive real-time direct root growth observations and imaging based on RGB
photography and WinRhizo root image analysis.

MATERIALS & METHODS
Root phenotyping platform
Each individual phenotyping system consisted of a 17-gallon (64.3 liter) heavy duty
polypropylene tough tote (26.88 in. L × 18 in. W × 12.5 in. H, HDX Model#
SH17GTOUGHTLDBY, Home Depot, Atlanta, GA, U.S.A.) protected with a radiant
barrier with a reflectance (IR) estimated at 94% + (Reflectix Insulation, Markleville, IN,
U.S.A.) (Fig. 1A). The radiant barrier was used to prevent the phenotyping system from
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Figure 1 Sweetpotato ebb and flow soilless phenotyping platform constructed and tested for stem-
derived adventitious roots. (A) Side and (B) aerial view showing the 12 individual growth units fitted
with sweetpotato ‘slips’.

Full-size DOI: 10.7717/peerj.15448/fig-1
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Figure 2 Schematic representation of the semi-hydroponic ebb and flow phenotyping system. (A)
Transparent plastic sheeting, (B) corrugated white plastic, (C) anchor steel blue seed germination paper,
(D), brown heavy weight germination paper, (E) tank or reservoir (not drawn to scale), (F), nutrient so-
lution, (G) securing clip, (H) bubbler, (I) nutrient tank retrofitted with an automatic submersible pump
through a time controller.

Full-size DOI: 10.7717/peerj.15448/fig-2

overheating caused by direct natural and artificial light. The original plastic top lid was
removed and a retrofitted polyisocyanurate rigid foam insulation (Rmax Thermasheath-3,
Dallas, TX, U.S.A.) was used in its place. The retrofitted foam insulation lid was cut with
12 rectangular openings(13 in. L × 1 in. W spaced 1 in. apart from opening to opening)
to accommodate each individual growth unit (Fig. 1B). Figure 2 shows a schematic
representation of each phenotyping individual system.
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Figure 3 Individual growth units and ‘slip’ placement inside the growth unit. (A) Left and right side
of the growth unit showing germination paper placement before ‘slip’ positioning, (B) closed and ‘‘sand-
wiched’’ growth unit and secured with two metal binder clips (without ‘slip’), (C) ‘slip’ placement in the
middle of one side of the growth unit and, (D) completed growth unit showing ‘slip’ protruding outward.

Full-size DOI: 10.7717/peerj.15448/fig-3

Individual growth unit
Each plant growth unit consisted of two sheets of heavy weight germination paper (18 in.
H× 12 in. L, 76 lb; Anchor Paper Company, Saint Paul, MN, USA) followed by two sheets
of Steel Blue Seed germination paper (18 in. H× 12 in. L; 120 lb.; Anchor Paper Company,
Saint Paul, MN, USA) (Fig. 3A). The germination paper was then sandwiched between
two 0.157 in. thick white corrugated plastic sheets(15 in. H × 12 in. L, Coroplast Inc.
Chicago, IL, USA) (Fig. 3B) and then covered with six mm clear recycled polyethethylene
sheeting (15 in. H × 12 in. L; HDX, Home Depot, Atlanta, GA). Four 1 1

4 in. metal binder
clips (Staples, Framingham, MA, USA) were used to attached and hold together the clear
plastic sheeting around the white corrugated plastic sheets. All germination paper was
autoclaved (120 ◦C for 20 min) and plastic sheeting was surface sterilized with 70% sodium
hypochlorite and rinsed in deionized water.

Growth unit assembly and stem (‘slip’) placement in growth unit
With the rigid foam insulation lid covering the phenotyping system, each individual
growth unit with one protruding stem was positioned into one rectangular opening and
secured from the top with two 1 1

4 in. metal binder clips on each side (12 growth units per
phenotyping system box). One excised sweetpotato stem was used per individual growth
unit (Fig. 3C). In short, stems from each genotype tested were randomly chosen and all
mature leaves and petioles were excised leaving only two to three small immature leaves at
the top. Each stem was then cut to a uniform length and care was taken so that two to three
nodes were exposed and placed centered into the growth unit (pre-moisten with nutrient
solution) with the rest of the stem with leaves protruding out (Fig. 3D). Each growth unit
was then closed and fastened with the metal binder clips and hung through one rectangular
slot of the phenotyping platform.
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Irrigation system (ebb-and-flow system)
One 55-gallon heavy duty polypropylene tough tote with lid (45.43 in. L × 21.13 in. W ×
19.52 in. H. HDX Model # HDX55GONLINE(4), Home Depot, Atlanta, GA, USA) was
used as a nutrient storage tank. The tank was equipped with one 1/12 HP submersible
pump (Model: Little Giant 4E-34NR Series; Franklin Electric Co., Inc., Fort Wayne, IN,
USA). The pump was connected to a flexible 1

2 in. male national pipe thread hose (MNPT
hose). The hose was then connected via an Ebb-and-Flow fitting kit (HydroFlow Products,
Hawthorne Gardening Co., Vancouver, WA, USA) to one root phenotyping system. A
digital timer was connected to the pump system for periodic water supply. The nutrient
solution consisted of 7 mM N, 0.5 mM P2O5; 7.5 mM K2O; 2 mMMg; 2 mM S; 50 µM B;
10 µM Mn; 5 µM Zn; 2 µM Cu; 1 µM Mo. The nutrient solution stored in the nutrient
supply tank was delivered to the phenotyping platform via an automatic submersible pump
through a time controller. The periodic pumping was set as 10 min on and 240 min off
during a 24-hour period. The nutrient solution was refreshed weekly.

Location, genotypes, and growth condition
This study was conducted twice from September to October 2017 and from February
to March 2018 in a temperature-controlled greenhouse at Penn State University located
in University Park, PA, USA (40◦48′N, 77◦51′W). Greenhouse environmental growth
conditions exhibited a photoperiod of 14/10 h at 32/28 ◦C (light/darkness) with amaximum
midday photosynthetic flux density of 1200 µmol photons m−2 supplemented with
LED lights. The ambient humidity was 40%. One commercial and commonly available
sweetpotato clone, ‘Covington’, and one unreleased breeder line, ‘NC10-275’, were tested
throughout the system establishment of this root phenotyping platform.

Data collection
Root growth was monitored, photographed, and measured every five days for a total of
20 days. With care, each growth unit was removed from the phenotyping platform and
opened by removing the polyethethylene sheeting and white corrugated plastic sheets.
Each growth unit was placed centered inside a light tent with built-in LED lights (Angler)
and photographed with a standard DLSR camera (Canon; image size: 4000 × 6000 pixels;
image DPI: 70 pixels/inch; color model: RGB; file type: JPEG) positioned on an adjustable
overhead camera platform (Glide Gear) (Figs. 4A and 4B). To account for root image
scaling, a ruler was placed alongside each root.

Image analysis
All root images were pre-processed using Preview (Version 10.0; Apple Inc. Cupertino, CA,
USA) and FIJI (Version 2.0.0-rc-69/1.52i; LOCI; University of Wisconsin-Madison, WI,
USA). Preview was used to crop and remove the stem (i.e., stem/slip) segment from the
rest of the root system using the instant alpha tool (Fig. 5). This process was done manually
to all root images. Cropped images were loaded to FIJI and 32-bit RGB (red, green, blue)
images were converted to 8-bit grayscale LUT (look-up-table) for further processing. FIJI’s
subtract background and threshold commands were then applied to separate roots from
background (Fig. 5).
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Figure 4 Imaging and data acquisition platform. (A) PC laptop connected to a standard DLSR digital
camera positioned on an adjustable platform, and (B) light tent with built in LED lights showing the detail
of the opened growth unit and exposing the ‘slip’ and root growth after 5 days.

Full-size DOI: 10.7717/peerj.15448/fig-4
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Figure 5 Root image processing sequence for subsequent root analysis inWinRhizo. This image prepa-
ration method includes a cropping of the background germination paper and stem using the Instant Alpha
tool in Preview and then transferring the processed image to FIJI for image conversion and thresholding.

Full-size DOI: 10.7717/peerj.15448/fig-5

Root image descriptors
For root morphological descriptors, WinRHIZO (V.2009 Prol; Regent Instruments,
Montreal, QC, Canada) was used to detect root structures from each image. The diameter
classes were set at 200 µm, the equivalent of two pixel with 10 equal intervals. The
debris removal filter of WinRHIZO was set to remove objects with an area smaller than
0.02 cm2 and a length:width ratio lower than 10. WinRHIZO was able to distinguish
adventitious/nodal and lateral roots in all images analyzed. All root morphological traits
measured are listed in Table 1.
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Table 1 Description of 10 measured traits for both sweetpotato genotypes grown in the root phenotyping platform evaluated at 5, 10, 15 and 20
days after placement in the growth unit.

Trait Name Unit Trait Description

Total Root Length cm Cumulative length of all roots in entire root system
Total Root Surface Area cm2 Cumulative surface area of all roots in entire root system
Average Root Diameter mm Average diameter of all roots in entire root system
Total Root Volume cm3 Cumulative volume of all roots in entire root system
Number of Root Tips count Cumulative tips of all roots in entire root system
Number of Root Forks count Cumulative forks of all roots in entire root system
Root Length Pattern cm Root length by depth at each 10 cm depth
Root Depth Index % Percent vertical centroid of root distribution in the soil
Root Branching Density branch cm−1 Number of lateral branches per length unit along a root
Root Length Distribution by Diameter Class cm Cumulative root length by root diameter [very fine (0-0.6

mm), fine (>0.6 to ≤1.2 mm), large (>1.2 to ≤1.8 mm),
and very large (>1.8 mm)]

Statistical analysis
Analysis of variance was performed using JMP Pro 16 (SAS Institute, Cary, NC) on all
measured root traits. Tukey’s Honest Significant Difference test was used to identify
significant differences among means. Statistical significance was based on a p value of
<0.05.

RESULTS
Root phenotyping platform performance
The root phenotyping platform allowed for non-destructive root growth for up to 20
days and allowed for repeated quantification of root traits for both sweetpotato genotypes
examined. Compared to other phenotyping systems that utilize hydroponic or aeroponic
methods separately (as reviewed by Li et al., 2022), our phenotyping platform makes use
of a combination of both approaches similar to the system used by Chen et al. in 2011. It
is noteworthy that our system effectively minimized environmental stressors like hypoxia
and drought by optimizing nutrient water supply through an automated irrigation system
equippedwith a controller. By utilizing a nutrient solution through an ebb-and-flow system,
this platform offers the benefit of quicker and more precise analysis of root traits, while
eliminating the challenges of soil contamination and root loss during image capture and
phenotyping. The water and nutrient supply for each individual platform can be tailored,
providing a potential avenue for studying root plasticity and examining morphological and
physiological responses to water and nutrient availability.

Root development in the system
The root development for both genotypes tested were vigorous and presented root
phenotype variation within the phenotyping system. The root systems of both ‘Covington’
and ‘NC10-275’ consisted of several first-order adventitious roots (i.e., lateral roots)
originating from nodes placed with the phenotyping system and by the end of the
experiment, second-order root branching was also observed (Fig. 6).

Duque (2023), PeerJ, DOI 10.7717/peerj.15448 8/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.15448


A B C

Figure 6 Sweetpotato root morphology and development. Example images showing root morphology
and development of ‘NC10-275’ grown in the root phenotyping platform. Images were taken at (A) 5, (B)
10, and (C) 15 days after planting (scale bar= 10 cm).

Full-size DOI: 10.7717/peerj.15448/fig-6

Root phenotype variation
Phenotyping of both sweetpotato genotypes produced root systems that were imaged
and assessed every five days until day 20. Variations in several root traits between both
genotypes were substantial. Significant variations were detected after day 10 in total root
length (CV = 0.24 to 0.33, total root surface area (CV = 0.28 to 0.31), total root volume
(CV = 0.07 to 0.32), and number of tips (CV = 0.22 to 0.48). After day 20, all root traits
differed significantly for both genotypes (Table 2). Specifically, ‘NC10-275’ had a higher
total root length, greater total surface root area, and larger total root volume compared
to ‘Covington’. However, on average ‘Covington’ had a larger root diameter compared to
‘NC10-275’ on every sampling day (Table 2).

Root length pattern and root-depth index
Root length by depth between ‘Covington’ and ‘NC10-275’ was non-significant from 0 to
30 cm, however significantly different from 30 to 50 cm by day 20 (Fig. 7). Specifically,
‘Covington’ displayed the largest portion of root length from 20–30 cm (37.3%), followed
by 30–40 cm (26.2%) and 10–20 cm (25.4%). Whereas ‘NC10-275’ exhibited the largest
portion of root length at 30–40 cm (32.2%) followed by 40–50 cm (29.8%) and 20–30 cm
(15.8%). Lastly, ‘NC10-275’ showed a total higher root-depth index (35.4%) compared to
‘Covington’ (23.6%).

Root branching density
Both genotypes selected for this study showed different lateral root branching density
phenotypes when compared at each sampling day (Fig. 8). Under the phenotyping platform,
‘Covington’ displayed a lower lateral root branching density compared to ‘NC10-275’ at
day 5, however, this trend changed by day 10 until the end of the experiment. By day
10, both ‘Covington’ and ‘NC10-275’ presented similar lateral root branching density
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Table 2 Descriptive statistics of six measured root traits in ‘Covington’ and ‘NC10-275’ grown in a 2D semi-hydroponic phenotyping platform assessed every five
days until day 20.

DAY 5 DAY 10 DAY 15 DAY 20

Genotype Trait Unit Min Max Mean CV Sig Min Max Mean CV Sig Min Max Mean CV Sig Min Max Mean CV Sig

Total Root Length cm 20.3 77.8 44.1 0.44 d 122.2 276.4 183.9 0.33 cd 341.1 621.8 433.9 0.22 bc 600.0 1164.3 767.9 0.25 b

Total Root Surface
Area

cm2 2.2 7.2 4.1 0.46 d 8.8 19.7 13.2 0.31 cd 25.4 53.3 36.7 0.24 bc 39.2 76.4 51.4 0.25 b

Root Depth cm 25.2 42.3 36.3 0.15 e 49.1 60.2 56.7 0.06 de 53.8 76.9 67.8 0.11 d 58.6 77.9 70.4 0.10 c

Root Branching
Density

cm−1 2.0 4.0 3.0 0.22 e 2.2 4.0 3.0 0.24 abc 1.5 3.8 2.3 0.35 a 2.0 3.4 2.5 0.19 ab

Average Root Di-
ameter

mm 0.4 1.3 1.0 0.28 a 0.6 0.8 0.7 0.09 bcd 0.7 0.9 0.8 0.06 abc 0.6 0.8 0.7 0.12 cd

Total Root Volume cm3 0.1 0.8 0.3 0.68 d 0.5 1.1 0.7 0.32 cd 1.5 3.6 2.4 0.26 bc 1.9 3.9 2.7 0.29 b

Number of Tips – 44.0 274.0 106.6 0.80 d 180.0 761.0 386.6 0.48 cd 315.0 543.0 419.0 0.21 c 564.0 986.0 725.3 0.22 b

COVINGTON

Number of Forks – 31.0 464.0 161.6 0.94 c 374.0 1268.0 657.0 0.47 bc 621.0 1617.0 1100.3 0.35 bc 1146.0 2894.0 1772.0 0.36 b

Total Root Length cm 108.5 217.2 162.8 0.25 cd 556.0 1045.4 737.9 0.24 b 1106.9 2598.9 1862.7 0.23 a 1338.8 2646.2 2074.7 0.19 a

Total Root Surface
Area

cm2 28.0 64.9 46.4 0.29 cd 97.5 210.4 148.0 0.28 b 162.9 530.3 361.7 0.30 a 220.6 569.8 390.2 0.28 a

Root Depth cm 20.0 29.7 23.9 0.14 d 23.2 38.1 32.1 0.15 b 30.3 43.8 37.2 0.12 a 40.6 55.7 46.7 0.12 a

Root Branching
Density

cm−1 0.0 2.8 1.3 0.87 abcd 2.4 4.4 3.5 0.16 bcd 3.2 5.0 4.1 0.15 de 3.0 4.6 3.7 0.17 cd

Average Root Di-
ameter

mm 0.7 1.2 0.9 0.17 ab 0.6 0.7 0.6 0.07 d 0.5 0.7 0.6 0.11 d 0.5 0.7 0.6 0.15 d

Total Root Volume cm3 0.6 1.6 1.1 0.38 bcd 1.4 3.7 2.4 0.32 bc 1.9 8.6 5.6 0.36 a 2.9 10.5 6.0 0.41 a

Number of Tips – 66.0 457.0 192.6 0.62 cd 587.0 1107.0 744.5 0.22 b 892.0 1800.0 1201.8 0.24 a 1091.0 1958.0 1472.6 0.19 a

NC10-275

Number of Forks – 116.0 658.0 330.9 0.61 c 1124.0 2359.0 1672.1 0.29 b 2295.0 7488.0 4440.2 0.35 a 3223.0 6482.0 5084.0 0.24 a

Notes.
Traits with coefficients of variation (CVs) ≥ 0.3 appear in bold type. Means within a column followed by the same letter (a to d) are not significantly different at p< 0.05, according to Tukey’s HSD.
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quantities, although by day 15 and 20, ‘Covington’ had significantly greater lateral root
branching density when compared to ‘NC10-275’.

Root length distribution by diameter class
The total root length was divided into four diameter classes: very fine (0−0.6mm), fine
(>0.6 to ≤1.2 mm), large (>1.2 to ≤1.8 mm), and very large (>1.8 mm). In general, the
root length distribution by diameter class of ‘NC10-275’ was significantly larger when
compared to ‘Covington’ at each sampling day (Figs. 9A and 9B). Specifically, the very fine
and fine root length of ‘NC10-275’ was greater than that of ‘Covington’ at day 5 (very fine:
56.9 cm compared to 18.9 cm; fine: 95.3 cm compared to 14.5 cm), day 10 (very fine: 427.3
cm compared to 94 cm; fine: 312.4 cm compared to 78.3 cm), day 15 (very fine: 995.2 cm
compared to 180.7 cm; fine: 531.4 cm compared to 157.9), and day 20 (very fine: 1184.9
cm compared to 429.7 cm; fine: 541.5 cm compared to 240.9 cm) respectively. Overall,
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the very fine and fine root diameter classes represented the longest root length for both
‘NC10-275’ and ‘Covington’ (97.7% and 92.4% of the total length) respectively. There was
small to no significant differences in root length distribution for large to very large root
diameters between genotypes (Figs. 9A and 9B).

DISCUSSION
The main reasons for developing this study were two-fold: first, to development a
cheap, cost-effective, and efficient phenotyping system for examining stem-derived
(i.e., adventitious/nodal) roots and second, to examine the inherent genetic variations
in root traits among a commercially available sweetpotato clone and an unreleased breeder
line. The combination of these two approaches could provide the basis for future root
models and facilitate three-dimensional root architecture for selecting superior root traits

Duque (2023), PeerJ, DOI 10.7717/peerj.15448 12/20

https://peerj.com
https://doi.org/10.7717/peerj.15448/fig-8
https://doi.org/10.7717/peerj.15448/fig-9
http://dx.doi.org/10.7717/peerj.15448


for sweetpotato breeding programs worldwide. This experiment using sweetpotato was
devised to test the efficiency of the phenotyping system and the performance of cut and
prepared ‘slips’ in the system. The results of this pilot study will provide information for
future follow-up screening experiments using the same plant species. The rationale for the
use of sweetpotato, considered a root and tuber crop (RTC) model organism is that this
root crop species (as well as other RTCs), have lingered behind the well-studied ‘‘model’’
crop species like maize, rice, soybean, and wheat, where the knowledge of RSA has already
led to considerable advances in the ability of these crops to exploit soil resources under
low-input conditions.

The root growth phenotyping platform described here conforms to a ‘soilless 2D
root phenotyping platform’ that uses a semi-hydroponic medium similar to many
published reports (Chen et al., 2022; Adu et al., 2014; Chen et al., 2011; Le Marié et al.,
2014). Specifically, the phenotyping platform allowed for a clear visualization of sweetpotato
stem-derived adventitious roots growing on each of the individual growth units. In
addition, the platform allowed for the growing of 12 ‘slips’ simultaneously that could be
removed individually every five days for imaging. The root growth phenotyping platform
is comparable to the ‘pouch-and-wick’ system that allows for an in situ observation of
adventitious roots based on germination paper. We developed this system because it is
affordable, expandable, simple to operate, and can be used to evaluate early RSA with
high efficacy. Also, as the system is expandable, it can conform to increased repetitions if
necessary. However, attention is needed when removing the individual growth units for
imaging as sweetpotato’s root system are fragile and root damage may occur. During root
imaging, each individual growth unit was maintained moist and exposure time minimal to
avoid roots from drying out. Per our observations, the root growth phenotyping platform
is both semi-hydroponic and semi-aeroponic, which builds on the advantages of a strict
hydroponic or aeroponic system. Since the root growth phenotyping platform uses an
external and independent irrigation system (ebb-and-flow system) connected to each root
growth unit, nutrient solutions can be prepared and re-stocked minimizing disruptions to
the root growth unit. That said, this root growth phenotyping platform has the potential for
root plasticity studies under water and nutrient stress. To our knowledge, is the first report
of an in situ soilless 2-D root growth phenotyping system used on sweetpotato ‘slips’.

‘NC10-275’ is an unreleased breeder line that is considered ‘‘drought or wilt tolerant’’
andmainly used by the Sweetpotato Breeding andGenetics Program atNorthCarolina State
University as a parental line to exploit its abiotic stress tolerance for breeding ornamental
sweetpotato (pers. comm), whereas ‘Covington’’ is one of the most important commercial
sweetpotato grown in the United States characterized by high yields and quality. The root
systems of both ‘Covington’ and ‘NC10-275’ revealed unique root morphological features
and root traits when developed in the root growth phenotyping platform. The root system
of each genotype maintained comparable growth patterns until after day 5. We compared
images and data from each sampling day between both genotypes and determined that
after day 20 both root systems presented a higher diversity of root traits compared earlier
sampling days. Differences in root traits after day 10 included root length, surface root
area, root diameter, root volume, root depth, and root branching density. For example,
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it was noted that ‘NC10-275’ grew at a faster pace compared to ‘Covington’ increasing
the abovementioned traits in favor of ‘NC10-275’. However, average root diameter and
root branching density was higher in ‘Covington’. Also, it is noteworthy that the root
length distribution by diameter class of ‘NC10-275’ was greater in all instanced measured.
Root length pattern was increased only after 30 cm depth (measured at day 20) for both
genotypes, yet after 30 cm depth ‘NC10-275’ expanded its root length exceeding that of
‘Covington’. Taken as a whole, all root traits measured revealed contrasting differences
between both genotypes examined. ‘NC10-275’ exhibited an earlier root growth habit with
more deeply distributed root system than ‘Covington’, probably due to its inherent drought
tolerance where roots present a more vertical growth pattern. In contrast, ‘Covington’
revealed an overall reduced root volume, higher root branching density, and larger average
diameter roots. This phenomenon could be explained from the basis on current agricultural
management practices where fertilizer and water supply are abundant lessening the burden
of root exploration for soil nutrients and water and investingmore resources in storage root
formation and swelling. These results could be confirmed by the higher root depth index
(RDI) of the ‘NC10-275’, echoing the deeper root system of this genotype. Though root
spreading (root width growth) was not accounted for, together with root depth pattern and
root depth index are key traits for soil exploration for improving the acquisition of limiting
resources. Regardless of both genotypes belonging to the same species (I. batatas), these
results ratify the contrast that can be found between sweetpotato root systems. It is notable
that no previous studies on the RSA or root traits of both ‘Covington’ and NC10-275 have
been published. Nevertheless, the first published report measuring lateral root branching in
sweetpotato was in 1949 (Koshimizu & Nishida, 1949), followed by other published reports
years later (Villordon et al., 2012; Pardales & Yamauchi, 2003).

Though this research did not account for specific abiotic stress treatments [e.g., nitrogen
(N), phosphorus (P), potassium (K) deficiencies, and/or water stress)] within the root
growth phenotyping platform, there are now several published reports on the effects of N,
P, K, and B deficiencies on RSA and root traits using mesocosms filled with sand or other
substrates. For example, Villordon et al. (2013) demonstrated that lateral root branching
jointly measured as lateral root length, number of lateral roots and lateral root density in
‘Beauregard’ was altered in response to variation in overall available N. Also, Villordon,
Gregorie & LaBonte (2020) revealed the existence of genetic variation for inorganic P
efficiency in ‘Bayou Belle’, ‘Beauregard’ and ‘Orleans’ sweetpotato cultivars by measuring
root lateral root number and lateral root density and found that these two root traits have
been indirectly selected for inbreeding programs that focus on early storage root formation
and stable yields across environments. Furthermore, Liu et al. (2017) showed differences
in root length, surface area, root volume and average root diameter under controlled K
and deficient K using two cultivars, Ningzishu 1 (sensitive to K deficiency) and Xushu
32 (tolerant to K deficiency). These results suggest potential genotypic differences in RSA
and K absorption ability under K deficiency. Likewise, Wang et al. (2017), showed that
increased K improved total root length, average root diameter and significantly increased
the differentiation from adventitious roots to fibrous roots and tuberous roots. These root
traits coupled with additional K could be beneficial to the increased number of storage
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roots per plant, early formation of storage roots, root biomass, and overall yield. Under
differing B availability, Villordon & Gregorie (2021) showed evidence of cultivar-specific
responses for reduced lateral root length, root length, and reduced storage root swelling in
‘Beauregard’, ‘Murasaki’, and ‘Okinawa’ cultivars.

CONCLUSIONS
Root growth patterns for both genotypes tested retained comparable growth patterns until
after five days in the phenotyping platform. After 20 days in the phenotyping platform both
root systems showed the highest diversity and difference of root traits compared to earlier
sampling days. Root length, surface root area, root volume, and root depth were higher in
‘NC10-275’. Average root diameter and root branching density were higher in ‘Covington’.
Sweetpotato is a clonally propagated crop, sexual seeds are not used for planting, hence the
experiment was performed with ‘slips’, the central unit of sweetpotato planting material
used routinely in the field. In summary, this is the first report of a phenotyping system that
uses a stem and not a sexual seed as starting material. This experiment confirmed genotypic
variations in the early root system growth of sweetpotato using an ebb and flow soilless
phenotyping platform. This phenotyping study was reproducible across the whole growing
period and for both genotypes tested. However, one of the potential drawbacks of this
system is the early inference of the potential performance of these genotypes in the field.
Thus, under changing growing environments, roots may present specific responses making
their inherent phenotypic plasticity critical for mining edaphic resources (Lynch et al.,
2021). Yet, it is still possible to extrapolate early genotypic differences between sweetpotato
germplasm and phenotypic plasticity under imposed stress treatments.
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