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Abstract

Several recently developed methods have the potential to harness machine learning in the 

pursuit of target quantities inspired by causal inference, including inverse weighting, doubly 

robust estimating equations and substitution estimators like targeted maximum likelihood 

estimation. There are even more recent augmentations of these procedures that can increase 

robustness, by adding a layer of cross-validation (cross-validated targeted maximum likelihood 

estimation and double machine learning, as applied to substitution and estimating equation 

approaches, respectively). While these methods have been evaluated individually on simulated 

and experimental data sets, a comprehensive analysis of their performance across real data 

based simulations have yet to be conducted. In this work, we benchmark multiple widely used 

methods for estimation of the average treatment effect using ten different nutrition intervention 

studies data. A nonparametric regression method, undersmoothed highly adaptive lasso, is used to 

generate the simulated distribution which preserves important features from the observed data and 

reproduces a set of true target parameters. For each simulated data, we apply the methods above 

to estimate the average treatment effects as well as their standard errors and resulting confidence 

intervals. Based on the analytic results, a general recommendation is put forth for use of the 

cross-validated variants of both substitution and estimating equation estimators. We conclude that 

the additional layer of cross-validation helps in avoiding unintentional over-fitting of nuisance 

parameter functionals and leads to more robust inferences.
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1 ∣ INTRODUCTION

Epidemiological studies, particularly based on randomized trials, often aim to estimate the 

average treatment effect (ATE), or another causal parameter of interest, to understand the 

effect of a health intervention or exposure on an outcome of interest. Most commonly, 

in observational studies, inverse probability of treatment weighted (IPTW) estimation and 

its variants have been used for this purpose.1-3 Alternative estimators for causal inference 

include substitution (or direct) estimators based on G-computation,4-7 those based on the 

approach of estimating equations (EE),8,9 including IPTW and its augmented variant (A-

IPTW), and substitution estimators developed within the framework of targeted learning 

(TL) (we also refer to targeted maximum likelihood estimator, TMLE, a product of 

this framework10). The latter of these has seen increasing use in recent years, both in 

biostatistical methodological research and applied public health and medical research.11-15 

In Table 1, we provide a list of studies that have examined the relative performance of TL-

based and competing estimators (mainly against EE-based methods), including a summary 

of whether the results suggested superior, neutral, or poorer relative performance of TL-

based estimators in comparison to other estimators (the “Pro/Con” column). Thus, while 

this work is contextualized within dozens of previous studies, few such studies performed 

“realistic” simulations, and even fewer compared several variants of TL estimators alongside 

corresponding EE approaches. For example, in Zivich and Breskin’s paper,16 the authors 

compared G-computation, IPTW, A-IPTW, TMLE, and double cross-fit estimators with 

data generated from predefined parametric models. Exceptions are efforts that used the 

proposed realistic bootstrap17 to evaluate the performance for data-generating distributions 

modeled semiparametrically (using ensemble machine learning) from an existing data set. 

These include a study of estimating variable importance under positivity violations using 

collaborative targeted maximum likelihood estimation (C-TMLE).18 In this article, we use 

an augmentation of this proposed methodology to examine the relative performance of 

several versions of both TL and EE estimators in ten realistic data simulations, each based 

on data collected as part of the Knowledge Integration (KI) database from the Bill & 

Melinda Gates Foundation.19 In so doing, we provide a realistic survey, across both different 

data-generating distributions and different study designs, of the relative performance of 

estimators of causal parameters.

2 ∣ BACKGROUND

As large and complex data sets have become increasingly more commonplace, traditional 

parametric approaches can suffer from a large bias when the assumed functional form is 

different from the truth. This has led to machine learning (ML) taking a more central role 

in deriving estimators of causal impacts in very big statistical models (semi-parametric). The 

theory for the use of ML in the estimators discussed herein has been continuously refined, 

from developing double robust estimators (both A-IPTW and TMLE substitution estimators) 
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to augmentations of these estimators that are more robust to the overfitting potentially 

introduced by flexible ML fits. The latter modifications to the original estimators are the 

cross-validated TMLE (or CV-TMLE, chapter 27 in van der Laan10 and Zheng48), and 

subsequently the proposal for an analogous modification to estimating equation approaches 

(double machine learning or cross-fitting49).

While simulation studies have investigated all of these estimators, they have yet to be 

analyzed together in a single series of realistic simulation studies. Here, we seek to 

determine how well these estimators perform in realistic settings, under which conditions 

they perform best, which augmentations provide the most robustness, and whether or not 

the results support more general recommendations. In addition, there exist other choices of 

target parameter when the one being analyzed fails to have adequate performance for any of 

the competing estimators, such as realistic rules.50 A recently developed machine learning 

algorithm (the highly adaptive lasso; HAL51), is potentially an important improvement 

in constructing realistic data-generating distributions (DGD) for simulation studies such 

as ours. It can be optimally undersmoothed to dependably generate efficient estimates of 

the actual data generating distributions. HAL is particularly well suited to these types of 

simulations, as it uses a very large nonparametric model and can be tuned to be as flexible 

as the data support. In this article, we explore the use of undersmoothed HAL as a basis 

in conducting realistic data-inspired simulations. The results suggest the proposed use of 

HAL for realistic data-generating simulations could provide a general method for choosing 

between machine-learning-based estimators for a particular parameter and data set.

We first introduce the data sets that were selected to motivate our realistic simulations, 

describe the steps taken for simulating data, including a short description of the estimators 

tested, and discuss the results. The simulations suggest a general recommendation for the 

use of an additional layer of cross-validation (CV-TMLE and CV-A-IPTW) to ensure robust 

inference in finite samples.

3 ∣ METHODS

3.1 ∣ Study selection

We utilized data from ten nutrition intervention trials conducted in Africa and South 

Asia. In all studies, the measured outcome was a height-to-age Z-score for children from 

birth to 24 months, which was calculated using World Health Organization (WHO) 2006 

child growth standards.52 Details about the resulting composite data, study design and 

data processing, can be found in companion technical reports.19,53,54 All interventions 

were nutrition-based, and for the purposes of this analysis, multilevel interventions were 

simplified to a binary treatment variable (eg, nutrition intervention—yes/no). Although 

different baseline covariates were measured among these studies, there was significant 

overlap. The sample size of each study is shown in Table 2. We anonymized the study IDs 

and removed the location information due to confidentiality concerns. Details on each study 

can be found in the shuffled list in Appendix B.
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3.2 ∣ Data processing

Data from each study was cleaned and processed for this analysis. Our goal for defining the 

analysis data used to simulate is different from the goals of the original studies and thus 

our data processing might differ from that used in the resulting publications of the study 

results. We note that the data are used to motivate the simulations, but, since we define the 

true DGD to be one that we estimate for each study, and at that point differences with the 

original study become irrelevant to our comparisons of estimators. Data was filtered down to 

the last height-to-age Z-score measurement taken at the end of each study for each subject. 

Subjects were dropped if either their treatment assignment (A) or outcome measurement (Y )
were missing. For covariates (W ) that were missing, those that were continuous and discrete 

were imputed using the median and mode, respectively. In both cases, missingness indicator 

variables were added to the data set for each covariate with missing rows. As mentioned 

above, the treatment assignment variable (A) was binarized if it consisted of more than two 

treatment arms. The control and treatment groups were originally assigned in each study as 

described in Appendix B.

3.3 ∣ Simulation with undersmoothed highly adaptive lasso

To make the simulation more realistic, we want to simulate data from a distribution which 

is “close” to the true distribution that generates the observed data. Here, “close” means a 

rich set of target parameters of the simulated distribution are efficient estimators of the true 

target parameters. To that end, we estimate the true data distribution with the undersmoothed 

highly adaptive lasso, which is known to efficiently estimate smooth features of the true 

data distribution and also approximates the true data density at a rate n−1 ∕ 3 up to log(n)
factors.55 Another reason for using undersmoothed highly adaptive lasso instead of other 

popular methods is that we want to keep the simulation independent of the estimation by 

avoiding using same algorithms for both.

It is also worth pointing out that the simulation method proposed in this analysis is not 

the only option. Since the simulation process should serve as a black box that generates 

data for estimation later, one can use any other valid methods to implement real data based 

simulation and evaluate the estimators with that. Below we introduce our method in Section 

3.3.1, the data simulating process in Section 3.3.2, and the true effect calculation in Section 

3.3.3.

3.3.1 ∣ Undersmoothed highly adaptive lasso—Highly adaptive lasso (HAL) is 

a nonparametric regression estimator, which is capable of estimating complex functional 

parameters with mild assumptions that the true functional parameter is right-hand 

continuous with left-hand limits and has variation norm smaller than a constant, but 

neither relies upon local smoothness assumptions nor is constructed using local smoothing 

techniques.51 HAL has been shown to have competitive finite-sample performance relative 

to many other popular machine learning algorithms.51 The HAL estimator can be 

represented in the following form (the zeroth-order formulation51,55):
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ψβ = β0 + ∑
s ⊂ {1, 2, …, p}

∑
i = 1

n
βs, iϕs, i with β0 + ∑

s ⊂ {1, 2, …, p}
∑

i = 1

n
βs, i < C,

where n is the sample size, p is the number of covariates, s denotes any subset of {1, 2, … , p}, 

and ϕs, i :xs I(xs, i ≤ xs) are the indicator basis functions defined by the support points xs, i

from the observations. In other words, the HAL estimator constructs a linear combination 

of indicator basis functions to minimize the loss-specific empirical risk under the constraint 

that the L1-norm of the vector of coefficients is bounded by a finite constant matching the 

sectional variation norm of the target functional.56

Depending on the dimension of the data, the HAL estimator might start with a very large 

number (the size of the double sum in the equation above is at most n ∗ (2p − 1)) of basis 

functions. In practice, when some covariates are categorical or binary, the number of unique 

basis functions will be much fewer. Moreover, the dimension of basis functions can be 

restricted in practice. For example, one can consider only main-term indicators for each 

of the original predictors as well as all second order tensor products (interaction terms 

involving the main effect terms). As for selecting the L1-norm, one can use cross-validation 

to optimize the fit of the model to future observations from the DGD.

In addition to the standard implementation of HAL, in which the L1-norm is selected with 

cross-validation, we undersmooth the HAL fit by updating the L1-norm adaptively based 

on a criterion that guarantees that it will be efficient for a class of smooth features of the 

data density (see next paragraph and the Algorithm 1 below for more details). We call this 

whole process the undersmoothed HAL. It has been recently shown that undersmoothed 

HAL can yield asymptotically efficient estimators for functionals of the relevant portions of 

the DGD while preserving the same rate of convergence, and also solving the efficient score 

equation for any desired path-wise differentiable target feature of the data distribution.55 

This nice property is achieved by the fact that undersmoothed HAL is capable of solving 

lots of score equations in the form of the product of the basis functions and the residual, 

and thereby solving the linear combination of these score equations. This motivates the use 

of undersmoothed HAL in our settings; that is, to estimate the DGD by undersmoothed 

HAL in a way that optimally preserves the relevant functionals. More intuitively, HAL, 

with the properly chosen C, will result in a DGD for simulations that is as close as one 

can get nonparametrically to the true DGD, in the sense that a set of target parameters 

of the simulated distribution are efficient estimators of the true parameters Therefore, the 

key difference between using undersmoothed HAL and other methods (parametric models, 

sampling from the empirical, ML) for simulation is that the former captures the features of 

interest instead of mimicking the distributions of variables. More technical details can be 

found in van der Laan, Benkeser and Cai.55 Thus, we argue that it can serve as the basis of a 

realistic simulation where one wishes to compare estimators for the data in hand.

In our study, the stopping criterion for this undersmoothing process is to iteratively increase 

the initial L1-norm bound Ccv (or equivalently decrease the penalty parameter λ) and refit the 

HAL model until the score equations formed by the product of basis functions and residuals 
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are solved at the rate of σn

n log(n) .57 Namely, for all basis functions ϕs, i from the initial HAL 

fit, we want:

∣ Pn ϕs, i(Y − Qn, C) ∣ ≤ σn

nlog(n) , (1)

where Pn is the empirical average function and σn
2 = V ar ϕs, i(Y − Qn, Ccv) . We provide more 

detailed justification for choosing this criterion in Appendix C.

Algorithm 1. Undersmoothing procedure

Require:
Observed outcome yk from data, k = 1, 2, …, n .
Penalty parameter λcv, basis functions ϕs, l, and predictions yλcv from the initial HAL fit .
Let S denote the set of basis functions ϕs, l with nonzero coefficients from the initial HAL fit .
Let ϵ be a small positive number .

σn = 1
n ∑n

k = 1[(yk − yλcv)ϕs, l − 1
n ∑n

k = 1(yk − yλcv)ϕs, l]2 ∀ϕs, l ∈ S

λ = λcv

while maxS
1
n ∑n

k = 1[(yk − yλ)ϕs, l] ∕ σn > 1
n log(n) do

λ = λ − ϵ
Refit HAL with λ
Obtain new predictions yλ frome the update HAL fit

end while

In practice, we speed up the algorithm by controlling the number of basis functions in the 

initial HAL fits. First, we set the maximum interaction degree to I(p ≥ 20) ∗ 2 + I(p < 20) ∗ 3, 

where p is the number of covariates. Second, we use binning method to restrict the 

maximum number of knots to n ∕ (2d − 1) for the dth degree basis functions. These 

hyperparameters can be set through the hal9001 package.58,59 We make the decisions 

on hyperparameters based on two factors: they can help form a rich model with complex 

interaction terms and the computing time is acceptable. To make it more rigorous, a cross-

validation-based tuning procedure can be considered in future practice.

In Appendix A, we provide a list showing the variables included in the Q models after 

undersmoothing (Table A1).

3.3.2 ∣ Data generating process—The DGD for each study was based upon the 

following structural causal model (SCM):

W = fW (UW ),
A = fA(W , UA),
Y = fY (W , A, UY ),
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where W , A, and Y  are, in time ordering, the confounders, the binary intervention of interest 

and the outcome, respectively, with the U exogenous independent errors and deterministic 

functions, f .. Specifically, the following steps were taken:

1. Covariates W  were sampled with replacement from the study data sets with 

sample size n, where n is the size of the original data set.

2. Apply the undersmoothed HAL procedure twice to the observed data: first fit the 

model with A as the outcome and W  as covariates, then fit the model with Y  as 

the outcome and A and W  as covariates.

3. The first undersmoothed HAL fit was then used to predict ℙ(A = 1 ∣ W ). The 

simulated A was then sampled using a binomial distribution with the predicted 

ℙ(A = 1 ∣ W ).

4. The second undersmoothed HAL fit was then used to predict Y  given the 

sampled W  and simulated A. Then we simulate Y  by adding random errors 

drawing from N(0, σ2) to the predictions, where σ2 is the residual variance of this 

undersmoothed HAL fit.

Note, we could have used other ways of estimating the error distribution in step 4, including 

density estimation using HAL,60 but we left this for future studies.

Steps 1 through 4 were repeated 500 times to generate the data sets for each simulation. For 

each of the study data (Table 2), we repeated these steps and analyzed the performance of 

the competing estimators separately by study.

3.3.3 ∣ Target parameter—Our treatment variable A is binary, and our outcome Y  is 

continuous, indicating a height-to-age Z-score. W  represents the measured covariates in 

each study. The data structure is defined as: O = (W , A, Y ) ∼ ℙ0 ∈ ℳ with n independent and 

identically distributed (i.i.d.) observations O1, …, On, where ℳ denotes the set of possible 

probability distributions of ℙ0. The target parameter is a feature of ℙ0 that is our quantity 

of interest.29 We selected as our target parameter the average treatment effect (ATE), 

or ΨF(ℙU, X) = EU, X(Y (1) − Y (0)), ℙU, X ∈ ℳF; where ℳF  denotes the collection of possible 

distributions of (U, X) as described by the SCM, and Y (a) is the outcome for a subject if, 

possibly contrary to fact, they received nutrition intervention A = a. Given we simulated 

the data based upon on our causal model, under randomization assumption and positivity 

assumption we can show that this causal parameter is identified by the following statistical 

estimand:61

Ψ(ℙ0) = EW , 0[E0(Y ∣ A = 1, W ) − E0(Y ∣ A = 0, W )] .

We calculate the true ATE value for each study by first randomly drawing a large number of 

observations (N = 50 000) from the empirical of W  and using:
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ψ0 = 1
N ∑

i = 1

N
[E0(Y ∣ A = 1, W ) − E0(Y ∣ A = 0, W )],

where we define the E0(Y ∣ A = 1, W ) and E0(Y ∣ A = 0, W ) term using the fitted undersmooth 

HAL model. Note that our simulation process insures the randomization assumption is true 

and there is no asymptotic violation of the positivity assumption. However, there can be 

practical violations of positivity (close to 0 or 1 estimated probabilities of getting treatment 

for some observations given the W ) which can deferentially impact estimator performance.

3.4 ∣ The estimation problem

The target parameter depends on the true DGD, ℙ0, through the conditional mean 

Q0(A, W ) = E0(Y ∣ A, W ) and the marginal distribution QW , 0 = ℙ0(W ) of W , so we can 

write Ψ(Q0), where Q0 = (Q0, QW , 0). Our targeted learning estimation procedure begins with 

estimating the relevant part Q0 of the data-generating distribution ℙ0 needed for evaluating 

the target parameter.62

The two general methods we compare are substitution and estimating equation estimators. 

Depending on the specific estimator, they can depend on estimators of the propensity score, 

g0(W ) = ℙ(A = 1, W ), the outcome model, Q0(A, W ), and sometimes both. We use consistent 

settings when modeling the outcome and the propensity score via super learner (see Section 

3.8 below for details).

The estimators we compare are not exhaustive and new methods will be developed, so such 

studies will continue to be important sources of information for deciding what to do in 

practice. We quickly describe the particular estimators compared in our study below.

3.5 ∣ Inverse probability of treatment weighting estimator

The inverse probability of treatment weighting (IPTW) is a method that relies on estimates 

of the conditional probability of treatment given covariates g(W ) = ℙ(A = 1 ∣ W ), referred 

to as the propensity score.63 After it is estimated, the propensity score is used to weight 

observations such that a simple weighted average is a consistent estimate of the particular 

causal parameter if the propensity score model is consistent.29 For the ATE (if g were 

known) the weight is A
g(W ) + 1 − A

1 − g(W ) .

The average treatment effect is then estimated by:64

ψIPTW , n = 1
n ∑

i = 1

n Ai
gn(W i) ∗ Y i − 1

n ∑
i = 1

n 1 − Ai
(1 − gn(W i)) ∗ Y i ,

where gn(W ) is the estimate of the true propensity score (g0(W )). IPTW is not a double 

robust estimator, in that its consistency depends on consistent estimation of the propensity 

score.9 As it is not a substitution estimator, it is not as robust to sparsity.29 However, it is a 
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commonly used estimator of the ATE, and its form and relationship to well-known inverse 

probability methods in the analysis of survey data make it relatively popular.

We derived statistical inference using a conservative standard error which assumes that g
is known (there is an extensive literature on IPTW estimators, but9 is a good reference 

for technical details). Specifically, the standard error for this estimator was constructed by 

multiplying 1 ∕ n by the standard deviation of the plug-in resulting influence curve:

Y A
gn(W ) − 1 − A

1 − gn(W ) − ψIPTW , n .

Since IPTW estimator has many problems such as not invariant to location transformation of 

the outcome and suffering from the extreme predictions of g(W ) (close to 0 or 1), we use the 

Hajek/stabilized IPTW2 by normalizing the weights of Y  as follows:

ψIPTW − Hajek, n =
∑i = 1

n Ai
gn(W i) ∗ Y i

∑i = 1
n Ai

gn(W i)
−

∑i = 1
n 1 − Ai

1 − gn(W i) ∗ Y i

∑i = 1
n 1 − Ai

1 − gn(W i)
.

3.5.1 ∣ Cross-validated inverse probability of treatment weighting (CV-IPTW) 
estimator—To avoid problems that arise when g(W ) is overfit, we also implemented 

the CV-IPTW estimator by adding another layer of cross-validation when estimating the 

propensity score.49 Specifically, the same SL fitting procedure was implemented on training 

sets. Then, we use this estimate of g on the corresponding validation sets; as such, we 

employ a nested cross-validation. In practice, we used the “Split Sequential SL” method, 

an approximation to the nested cross-validation proposed by Coyle,65 to speed up the 

estimation while obtaining similar results to standard nested cross-validation. More details 

on the implementation can be found in Section 3.8 below.

3.6 ∣ Augmented inverse probability of treatment weighted (A-IPTW) estimator

The other estimating equation method included in our study is an augmented version of 

the IPTW estimator, aptly named the augmented inverse probability of treatment weighted 

(A-IPTW) estimator.66 It is a double robust estimator that is consistent for the ATE as long 

as either the propensity score model (g0(W )) or the outcome regression (Q0(A, W )) is correctly 

specified. When compared with the IPTW estimator in a Monte Carlo simulation, A-IPTW 

typically outperformed IPTW with a lower mean squared error when either the propensity 

score or outcome model was misspecified.66

Intuitively, the A-IPTW improves upon IPTW by fully utilizing the information in the 

conditioning set of covariates W , which contains both information about the probability of 

treatment and information about the outcome variable.66 More formal justification comes 

from the fact that the A-IPTW estimator arises as the solution to the efficient influence curve 

(a key quantity in semiparametric theory), and thus is locally efficient if both Q and g are 

correctly specified.
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For the ATE, A-IPTW estimator solves the mean of the empirical efficient influence curve 

and can be expressed explicitly for the average treatment effect as follows:

ψA − IPTW = 1
n ∑

i = 1

n AiY i
g(W i) − (1 − Ai)Y i

1 − g(W i) − (Ai − g(W i))
g(W i)(1 − g(W i))

(1 − g(W i))E(Y i ∣ Ai = 1, W i) + g(W i)E(Y i ∣ Ai = 0, W i) .

The standard error for this estimator was constructed by multiplying 1 ∕ n by the standard 

deviation of the plug-in efficient influence curve:

(Y − Qn(A, W )) A
gn(W ) − 1 − A

1 − gn(W ) + (Qn(1, W ) − Qn(0, W )) − ψA − IPTW , n .

where Qn( ⋅ , W ) is the estimate of the true conditional mean Q0( ⋅ , W ).

3.6.1 ∣ Cross-validated augmented inverse probability of treatment weighted 
(CV-A-IPTW) estimator—Similar to CV-IPTW, to avoid overfitting of the outcome model 

(Q) or propensity score model (g), we implemented the CV-A-IPTW estimator by adding 

another layer of cross-validation when estimating the Q and g. In practice, as discussed 

above for the IPTW estimator, we used the “Split Sequential SL” method proposed by 

Coyle65 to speed up the estimation (for more details, see Section 3.8 below).

3.7 ∣ Targeted maximum likelihood estimator (TMLE)

The targeted maximum likelihood estimator (TMLE) is an augmented substitution estimator 

that, in context of the ATE, adds a targeting step to the original outcome model 

fit to optimize the bias-variance trade-off for the parameter of interest.62 Similar to 

A-IPTW, TMLE is doubly robust, producing consistent estimates if either Qn(A, W ) is 

consistent for Q0(A, W ) (ie, E0(Y ∣ A, W )) or gn(W ) is consistent for g0(W ) (ie, ℙ0(A = 1 ∣ W )). 
It is asymptotically efficient when both quantities are consistently estimated and 

Qn − Q0 2 gn − g0 2 converges to zero at faster rate than 1 ∕ n (chapter 5 in van der Laan10). 

As it is a substitution estimator, it is typically more robust to outliers and sparsity than EE 

estimators.29 A finite sample advantage over estimating equation methods comes from the 

fact that the estimator respects constraints on the parameter bound, such as ensuring that an 

estimated probability in the [0, 1] range.62

The TMLE, like the A-IPTW estimator, requires preliminary estimates of both g and Q. The 

first step in TMLE is finding an initial estimate of the relevant part Q0 of data-generating 

distribution ℙ0. For all estimators, we use an ensemble machine learning algorithm, the 

Super Learner (SL) algorithm. This avoids arbitrarily using a single algorithm and ensures 

that the corresponding fit will be optimal (with respect to the true risk) relative to the 

candidate algorithms used in the estimation. Once this initial estimate has been found, 

TMLE updates the initial fit to make an optimal bias-variance trade-off for the target 

parameter.62
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For the ATE, the TMLE first requires Qn(A, W ), the estimate of the conditional expectation 

of the outcome given the treatment and covariates Q0(A, W ).29 Next is the targeting step for 

optimizing the bias-variance trade-off for the parameter of interest. The propensity score 

(g0) can also be estimated with a flexible algorithm like the super learner,67 and these 

fits are used to predict the conditional probability of treatment and no treatment for each 

subject (gn(W ), 1 − gn(W )). These probabilities are used for updating the initial estimate of 

the outcome model. This updated estimate is then used to generate potential outcomes for 

when A = 1 and A = 0. Like the G-computation estimator, the TMLE estimate of the ATE is 

calculated as the mean difference between these pairs.29

With the ATE as our target parameter, the Super Learner substitution estimator is:10

ψMLE, n = Ψ(Qn) = 1
n ∑

i = 1

n
[Qn

0(1, W i) − Qn
0(0, W i)],

where Qn is the estimate of Q0 and Qn
0( ⋅ , W ) the initial estimate of Q0( ⋅ , W ).

The next step is to update the estimator above toward the parameter of interest. The 

targeting process uses gn in a so-called clever covariate to define a one-dimensional model 

for fluctuating the initial estimator. The clever covariate is defined as:

Hn
∗(A, W ) = I(A = 1)

gn(W ) − I(A = 0)
1 − gn(W ) .

A simple, one-variable logistic regression is then run for the outcome Y  on the clever 

covariate, using logitQn
0(A, W ) as the offset to estimate the fluctuation parameter ϵ. This is 

used for updating the initial estimate Qn
0 into a new estimate Qn

1 as follows:

logitQn
1(A, W ) = logitQn

0(A, W ) + ϵnHn
∗(A, W ),

where ϵn is the estimate of ϵ.

The updated fit is used to calculate the expected outcome under A = 1(Qn
1(1, W )) and 

A = 0(Qn
1(0, W )) for all subjects. These estimates are then plugged into the following equation 

for the final TMLE estimate of the ATE:

ψTMLE, n = Ψ(Qn
∗) = 1

n ∑
i = 1

n
[Qn

1(1, W i) − Qn
1(0, W i)] .

The fitting of both the Q and g models to the entire data set for the substitution estimator 

requires entropy assumptions on the fits and underlying true models. It is possible to violate 

this assumption by an overfit of the models of the DGD, and this can occur even when 

cross-validation is used to choose the resulting fits (though, this helps tremendously). One 

can generalize both the estimating equation approach and TMLE to estimators that do 
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not need these entropy assumptions by inclusion of an additional layer of cross-validation 

(similar idea on sample splitting was mentioned in Bickel, Klaassen, and Robins68-70). This 

has also been described as double-machine learning in the context of estimating equations,49 

though it had previously been proposed as a way of robustifying the TMLE.10,48

The standard error estimate for TMLE can be constructed by multiplying 1 ∕ n by the 

standard deviation of the plug-in efficient influence curve:

(Y − Qn(A, W )) A
gn(W ) − 1 − A

1 − gn(W ) + (Qn(1, W ) − Qn(0, W )) − ψTMLE, n .

3.7.1 ∣ Cross-validated targeted maximum likelihood estimation (CV-TMLE)—
Though TMLE is a doubly robust and efficient estimator, its performance suffers when the 

initial estimator is too adaptive.10 Intuitively, if the initial estimator of Q is overfit, there is 

not realistic residual variation left for the targeting step and the update is unable to reduce 

residual bias.

To address these shortcomings of TMLE, cross-validated targeted maximum likelihood 

estimation (CV-TMLE) was developed.48 This modified implementation of TMLE utilizes 

10-fold cross-validation for the initial estimator to make TMLE more robust in its bias 

reduction step. The result is that one has greater leeway to use adaptive methods to estimate 

components of the DGD while keeping realistic residual variation in the validation sample.

Whereas CV-TMLE can add robustness by making the estimator consistent in a larger 

statistical model, there is still another way for finite sample performance issues to enter 

estimation. Specifically, if the data suffers from a lack of experimentation such that 

gn(W ) gets too close to 0 or 1, then the estimator can begin to suffer from the unstable 

inverse weighting in the targeting step, a violation “positivity”. There are simple methods 

to avoid this, by choosing a fixed truncation point, such as truncating the estimate of 

g:gn
∗ = max(min(1 − δ, gn), δ), for some small δ (typical value is δ = 0.025). However, there 

exists a more sophisticated method that does a type of model selection in estimating the g
model which prevents the update from hurting the fit of the Q model. This is an area of 

active research and several collaborative-TMLE (C-TMLE) estimators have been proposed, 

including adaptive selection of the truncation level δ.23,62

3.7.2 ∣ Collaborative targeted maximum likelihood estimation (C-TMLE)—
Collaborative targeted maximum likelihood estimation (C-TMLE) is an extension of TMLE. 

In the version used for estimation in this study, it applies variable/model selection for 

nuisance parameter (eg, the propensity score) estimation in a “collaborative” way, by 

directly optimizing the empirical metric on the causal estimator.71 In this case, we used 

the original C-TMLE proposed by van der Laan and Gruber,71 which is also called “the 

greedy C-TMLE algorithm”. It consists of two major steps: first, a sequence of candidate 

estimators of the nuisance parameter is constructed from a greedy forward stepwise 

selection procedure; second, cross-validation is used to select the candidate from this 

sequence which minimizes a criterion that incorporates a measure of bias and variance 

with respect to the targeted parameter.71 More recent development on C-TMLE includes 
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scalable variable-selection C-TMLE22 and glmnet-C-TMLE algorithm,72 which might have 

improved computational efficiency in high-dimensional setting.

3.8 ∣ Computation

Our simulation study was coded in the statistical programming language R.73 We used 

hal900158,59 and glmnet74 packages to generate the data via undersmoothed HAL. We 

used sl3,75 tmle376 and ctmle77 packages to implement each of the estimators described 

above. To estimate the propensity score and the conditional expectation of the outcome, 

linear models, mean, GAMv (general additive models),78 ranger (random forest),79 glmnet 

(lasso), and XGBoost80 with different tuning parameters were used to form the SL library. 

For “Study 9”, we dropped GAM and ranger from the learner library to improve the 

computational efficiency. Ten-fold cross-validation was chosen by default of sl3 package 

for every SL fit. We used logistic regression meta-learner for propensity scores, and non-

negative least squares meta-learner for estimating conditional expectation of the outcome. 

We truncated the propensity score estimates gn(W ) between [0.025,0.975] for all estimators.

Theoretically, when constructing CV-TMLE, CV-IPTW, and CV-A-IPTW estimators, we 

need to implement nested SL by adding one more layer of cross-validation. Namely, we 

first split the data, then fit the SL model (which itself uses a cross-validation) on the 

training set and make predictions on the validation set. Then we rotate the roles of the 

validation set and finally obtain a vector of cross-validated predictions of propensity scores 

and conditional expectations. As discussed above, in practice we used the “Split Sequential 

SL” approximation method proposed by Coyle.65

After we estimated the relevant parts of the DGD separately for each of the data study data 

using undersmoothed HAL, the resulting fits were used to simulate data 500 times for each 

of the 10 studies. Details of the implementation, including the code, can be found in the 

GitHub repository: https://github.com/HaodongL/realistic_simu.git

4 ∣ RESULTS

4.1 ∣ Undersmoothed HAL models and the true average treatment effect

We implemented undersmoothed HAL on the real data and used the fitted model to generate 

sample for each simulation. Details of each model and the resulting true ATE values are 

presented in Table 3.

For Study 7, 8, and 10, the initial HAL fits of g models contain no variables, so one 

A is randomized as in a clinical trial. Thereby, the undersoomthing process for g model 

was omitted for these three studies, and the initial HAL models were used instead. This 

is not surprising since all ten studies were randomized controlled trials (RCT). Grouping 

categorical intervention variables into binary variables at data cleaning step might preserve 

or change the randomization. The remainder of the studies included basis functions in W
and so are more akin to observational studies. However, most of the HAL fits of g are lower 

dimensional than the HAL fit of Q, thereby making these simulations not representative 

of studies in which the treatment mechanism is associated with measured confounders in 
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complex ways. For Study 7, 8, and 10, we also compare the performance of the estimators 

above with the standard difference-in-means estimates, which is also provides consistent 

estimators for the ATE for these three data-generating distributions. On the other hand, the 

counts of nonzero coefficients (“Num.coef.” in Table 3) in the undersmoothed Q models 

are large for the remaining studies, and so, regardless of the original treatment mechanism 

that underlied these studies, these ones do not come from a simple treatment randomization 

model. The details on the variables included after undersmoothing can be found in Table A1.

4.2 ∣ Estimators’ performance

The results are shown in Figure 1 and Table 4. Variance dominates bias for all estimators 

and so contributes overwhelmingly to the mean squared error (MSE) and the relative MSE 

(rMSE), where rMSE was relative to the IPTW estimator’s MSE. Putting aside Study 1 for 

now, the MSE/rMSE results suggest that the A-IPTW generally is more efficient than the 

other estimators, the TMLE, CV-TMLE, CV-A-IPTW, and C-TMLE with similar MSE to 

each other, and the IPTW and CV-IPTW having more erratic performance. The bar plots 

of the main performance metrics in Table 4 can be found in the Appendix A (see Figures 

A1-A5)

The 95% confidence interval (CI) coverage, however, shows different relative performance 

(Figure 1 and Table 4). The CV-A-IPTW had roughly 95% coverage for all studies. The 

CV-TMLE and C-TMLE had had roughly 95% coverage for all studies except Study 1. The 

TMLE and A-IPTW had coverage ranging from 90% to 95% for most studies. IPTW and 

CV-IPTW estimates of CI had very conservative coverage (close to 100%) for most studies.

To examine more closely issues of CI coverage, we removed the bias introduced by the 

estimation procedure for the standard error by using the true sample variance of each 

estimator (ie, the sample variance of the estimator across 500 simulations) to derive the 

standard error (“Coverage2” in Table 4). The coverage of this CI is the oracle coverage one 

would obtain if one is given the true variance. For this measurement, both CV-TMLE and 

CV-A-IPTW achieved 95% coverage in all studies, followed by TMLE, C-TMLE, IPTW 

and CV-IPTW with 95% coverage for nine studies. A-IPTW had 95% coverage for eight 

studies.

The simulations suggest, across 10 realistic data-generating distributions, that CV-A-IPTW, 

CV-TMLE, and C-TMLE has overall relatively good performance in terms of MSE and 

reliable 95% coverage. The A-IPTW estimator had superior MSE-based performance, 

though the confidence interval coverage was sometimes between 90% and 95%. However, 

plugging in the true standard deviation of the A-IPTW estimator instead of the plug-

in influence-curve based one typically used resulted in good coverage. This suggests 

more robust SE estimators could make it a more compelling choice than the empirical 

performance in these simulations. In addition, CV-A-IPTW can improve the coverage of A-

IPTW in most cases, but, due to the estimator being consistent in a bigger model, will have 

bigger MSE. Overall, the results at least show that both the CV-A-IPTW and the CV-TMLE 

as implemented in the tmle3 package76 can provide robust inferences, suggesting using them 

“off the shelf” provides reliable results. In next section, we will discuss situations where 
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even the CV-TMLE under-performed, potentially because of small sample size and related 

empirical positivity violations.17

4.3 ∣ Exploration on positivity violation

We now consider Study 1, where the TMLE and CV-TMLE had significantly 

anticonservative coverage. In this case, certainly one cause appears to insufficient 

experimentation of treatment within some covariate groups. Specifically, consider Figure 

2, which shows the distributions of the adjustment variable, W_perdiar24 in Study 1. This 

variable represents the percent of days monitored under 24 months with pediatric diarrhea. 

As one can see, there are large differences in the marginal distribution of this covariate; 

in fact, a fit gn without smoothing would result in a perfect positivity violation. However, 

given the variance-bias trade-off resulting in the estimators, it is possible that these empirical 

violations are smoothed over. A potential consequence of this positivity violation is that the 

resulting estimator, for the parameter which requires support in the data, will be unstable and 

biased. Table 5 shows the performance of estimators before and after dropping the variable 

W_perdiar24 in Study 1. We can observe that all estimators can benefit from removing the 

problematic variable in terms of higher coverage or lower MSE.

4.4 ∣ Estimators’ efficiency in randomized experiment setting

As mentioned in earlier section, the initial HAL models for propensity score include 

no variables for Study 7, 8, and 10, which leads to randomized experiments in the 

corresponding simulations. In these cases, we add the “difference-in-means” estimator (ie, 
1
n1

∑i = 1
n AiY i − 1

n0
∑i = 1

n (1 − Ai)Y i) with its variance estimator proposed by Neyman in 1923.81 

Table 6 shows that the CV-TMLE and CV-A-IPTW estimators still gain efficiency in the 

randomized experiments setting. This is consistent with proposals for using doubly robust 

estimators of the ATE in randomized trials if there are informative covariates that can 

increase efficiency over simple, unadjusted estimates.46,82

5 ∣ CONCLUSION

The ultimate goal of studies, such as ours, is to move incrementally toward algorithms that 

can take information on the design, causal model and known constrains in order to produce 

a data-adaptively optimized estimator without relying on arbitrary model assumptions. 

Asymptotic theory can provide guidance on some of the choices, but asymptotic efficiency 

is not a guarantee for superior performance in finite samples. Thus, simulation studies that 

are based on realistic DGD’s are invaluable for both evaluating estimators and modifying 

them to increase finite-sample robustness. We provided results supporting the use of a 

strategically undersmoothed HAL for estimating the relevant components of the DGD in 

data-driven simulations. Though much remains unresolved, such an approach could be an 

approach for generating synthetic data.83

Our results suggest that if accurate inferences are the highest priority, then the CV-A-IPTW, 

CV-TMLE, and C-TMLE are good choices for providing robust inferences. Specifically, the 

results suggest that CV-A-IPTW and CV-TMLE might serve as “off the shelf” algorithms 

given that (1) they are asymptotically linear estimators; (2) they are consistent in a large 
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class of statistical models; (3) they allow for the use of aggressive ensemble learning, while 

protecting the final performance of the estimator with an outer layer of cross-validation; 

(4) their influence-curve-based standard error combined with the well-behaved (normal) 

distribution of the estimator results in near perfect coverage In addition, the cross-validated 

estimators appear to be more robust for small sample with positivity violation. This implies 

the importance of using cross-validation in the longitudinal setting, where much more 

positivity violations can be expected. Our results also suggest that modifications to the 

algorithms for other estimators (such as improving the SE estimator for the A-IPTW) would 

result in an estimator with acceptable CI coverage and relatively low MSE. We also suggest 

one basis for deciding which estimator to use for particular data is to perform a similar 

simulation study for the data based upon fitting the undersmoothed HAL to derive the 

DGD. Then, one could choose to report the results from the estimator that provided the 

most reliable performance in such a simulation study. Of course, this is itself a form of 

over-fitting, since it uses the data both for estimator selection and for reporting the results 

of that estimator applied to the original data. However, it seems better than applying an 

arbitrary estimator and hoping that the advertised asymptotic performance matches the 

performance on the data of interest. Finally, our results support the observations that careful 

use of covariate information can be used to gain efficiency in the randomized experiment 

setting.
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FIGURE 1. 
Dot plot of the main metrics of performance
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FIGURE 2. 
Distributions of W_perdiar24 in Study 1 by intervention group
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TABLE 1

Overview of literature on comparison of TMLE and other estimators

Authors Title Year Description of results Pro/Con

Chatton, et al20 G-computation, propensity score-
based methods, and targeted 
maximum likelihood estimator for 
causal inference with different 
covariates sets: a comparative 
simulation study

2020 Article compares different semiparametic approaches, 
including TMLE and matching, but finds G-computation 
performs relatively best. Given their simulation, this was 
predictable because they simulated from a parametric model 
and used the same model for estimating the regression, thus 
showing the superiority of maximum likelihood estimation in 
parametric models. This is not a realistic setting.

Con

Talbot and 
Beaudoin21

A generalized double robust 
Bayesian model averaging approach 
to causal effect estimation with 
application to the study of 
osteoporotic fractures

2020 Proposed a generalized Bayesian causal effect 
estimation (GBCEE), which outperformed double robust 
alternatives(including C-TMLE). Also showed “target” A-
IPTW is superior than C-TMLE in a nonrealistic setting(only 
using true confounders).

Con

Zivich and 
Breskin16

Machine learning for causal 
inference: on the use of cross-fit 
estimators

2020 A simulation study assessing the performance of G-
computation, IPW, AIPW, TMLE, doubly robust cross-
fit (DC) AIPW and DC-TMLE. With correctly specified 
parametric models, all of the estimators performed well. 
When used with machine learning, the DC estimators 
outperformed other estimators.

Neutral

Ju, et al22 Scalable collaborative targeted 
learning for high-dimensional data

2019 Results from simulations suggested superior performance 
of C-TMLE relative to both A-IPTW and noncollaborative 
(“standard”) TMLE estimators.

Pro

Ju, et al23 On adaptive propensity score 
truncation in causal inference

2019 By adaptively truncating the estimated propensity score 
with a more targeted objective function, the Positivity-C-
TMLE estimator achieves the best performance for both 
point estimation and confidence interval coverage among all 
estimators considered.

Pro

Bahamyirou, et 
al24

Understanding and diagnosing the 
potential for bias when using 
machine learning methods with 
doubly robust causal estimators

2019 Simulation results showed superior performance of C-TMLE 
and TMLE relative to IPTW.

Pro

Wei, et al25 A data-adaptive targeted learning 
approach of evaluating viscoelastic 
assay driven trauma treatment 
protocols

2019 C-TMLE outperformed the other doubly robust estimators 
(IPTW, A-IPTW, stabilized IPTW, TMLE) in the simulation 
study.

Pro

Rudolph, et al.26 Complier stochastic direct 
effects: identification and Robust 
Estimation

2019 Showed that the EE and TMLE estimators have advantages 
over the IPTW estimator in terms of efficiency and reduced 
reliance on correct parametric model specification.

Pro

Pirracchio, et al.18 Collaborative targeted maximum 
likelihood estimation for variable 
importance measure: illustration for 
functional outcome prediction in 
mild traumatic brain injuries

2018 Showed much more robust performance of C-TMLE relative 
to TMLE using the same type of realistic parametric bootstrap 
as used in this paper. This was under severe near-positivity 
violations.

Pro

Luque-Fernandez, 
et al.27

Targeted maximum likelihood 
estimation for a binary treatment: A 
tutorial

2018 Showed relatively superior performance of TMLE when 
compared with A-IPTW estimator in terms of bias.

Pro

Levy, et al28 A fundamental measure of 
treatment effect heterogeneity

2018 Showed the advantage of CV-TMLE over TMLE in that 
TMLE was affected by overfitting while CV-TMLE appeared 
unaffected.

Pro

Schuler and 
Rose29

Targeted maximum likelihood 
estimation for causal inference in 
observational studies

2017 Showed superior performance of TMLE relative to 
misspecified parametric models.

Pro

Pang, et al30 Effect estimation in point-exposure 
studies with binary outcomes and 
high-dimensional covariate data—a 
comparison of targeted maximum 
likelihood estimation and inverse 
probability of treatment weighting

2016 Showed relatively superior performance for the TMLE to 
IPTW, which showed greater instability when positivity 
violations occurred.

Pro

Schnitzer, et al31 Variable selection for confounder 
control, flexible modeling and 

2016 Using IPTW with flexible prediction for the propensity score 
can result in inferior estimation, while TMLE and C-TMLE 

Pro
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Authors Title Year Description of results Pro/Con

collaborative targeted minimum 
loss-based estimation in causal 
inference

may benefit from flexible prediction and remain robust to the 
presence of variables that are highly correlated with treatment.

Zheng, et al32 Doubly robust and efficient 
estimation of marginal structural 
models for the hazard function

2016 Showed that the TMLE for marginal structual model (MSM) 
for a hazard function has relatively superior performance. The 
bias reduction over a misspecified IPTW or Gcomp estimator 
is clear in the simulation studies even for a moderate sample 
size.

Pro

Schnitzer, et al33 Double robust and efficient 
estimation of a prognostic model 
for events in the presence of 
dependent censoring

2016 This study demonstrated that even when the analyst is 
ignorant of the true data generating form, TMLE with super 
learner can perform about as well as IPTW or TMLE with 
correct parametric model specification.

Pro

Kreif, et al34 Evaluating treatment effectiveness 
under model misspecification: A 
comparison of targeted maximum 
likelihood estimation with bias-
corrected matching

2014 Examined the relative performance of TMLE, EE, and 
matching estimators showing superior performance of TMLE 
when the outcome regression is misspecified.

Pro

Schnitzer, et al35 Effect of breastfeeding on 
gastrointestinal infection in infants: 
A targeted maximum likelihood 
approach for clustered longitudinal 
data

2014 Compared TMLE with IPTW and G-computation, under the 
plausible scenario of being given transformed versions of 
the confounders. Only TMLE with super learner was able to 
unbiasedly estimate the parameter of interest.

Pro

Gruber and van 
der Laan36

An application of targeted 
maximum likelihood estimation to 
the meta-analysis of safety data

2013 Reported superiority of both TMLE and A-IPTW to 
misspecified parametric models, but the data-generating 
distributions used resulted in little difference between the 
semiparametric approaches.

Neutral

Lendle, et al37 Targeted maximum likelihood 
estimation in safety analysis

2013 Showed superior performance of TMLE and C-TMLE relative 
to A-IPTW estimators in the context of positivity violations.

Pro

Díaz and van der 
Laan38

Targeted data adaptive estimation of 
the causal dose response curve

2013 Showed relatively superior performance of CV-TMLE relative 
to CV-A-IPTW estimators, especially in the presence of 
empirical violations of the positivity assumption.

Pro

Schnitzer, et al39 Targeted maximum likelihood 
estimation for marginal time-
dependent treatment effects under 
density misspecification

2013 In the simulation study, TMLE did not produce a reduction in 
finite-sample bias or variance for correctly specified densities 
compared with the G-computation estimator, but it had much 
better performance than G-computation when the outcome 
model was misspecified.

Neutral

Petersen, et al17 Diagnosing and responding to 
violations in the positivity 
assumption

2012 Showed superior performance of TMLE relative to 
misspecified parametric models, in comparison with A-IPTW, 
IPTW and G-computation.

Pro

van der Laan and 
Gruber40

Targeted minimum loss based 
estimation of causal effects of 
multiple time point interventions

2012 In the setting of multiple time point interventions, showed 
TMLE outperformed IPTW and MLE estimators.

Pro

Porter, et al.41 The relative performance of 
targeted maximum likelihood 
estimators

2011 Showed relatively superior performance of C-TMLE relative 
to A-IPTW estimators particularly when there are covariates 
that are strongly associated with the missingness, while being 
weakly or not at all associated with the outcome.

Pro

Wang, et al42 Finding quantitative trait loci 
genes with collaborative targeted 
maximum likelihood learning

2011 Based on actual genetic data, results suggested greater 
robustness of findings using C-TMLE relative to parametric 
approaches for high throughput genetic data.

Pro

Díaz and van der 
Laan43

Population intervention causal 
effects based on stochastic 
interventions

2011 Paper focused on new estimators for stochastic (eg, 
shift) interventions relevant to estimating causal effects of 
continuous interventions. In their simulation, they did not 
observe significant differences between the TMLE and the 
A-IPTW.

Neutral

Gruber and van 
der Laan44

An application of collaborative 
targeted maximum likelihood 
estimation in causal inference and 
genomics

2010 Showed more robust performance in high-dimensional 
simulations comparing TMLE to estimating equation 
approaches (A-IPTW).

Pro

Stitelman and van 
der Laan45

Collaborative Targeted Maximum 
Likelihood for Time to Event Data

2010 The results show that, compared with TMLE, IPTW, and 
A-IPTW, the C-TMLE method does at least as well as the 
best estimator under every scenario and, in many of the more 

Pro
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Authors Title Year Description of results Pro/Con

realistic scenarios, behaves much better than the next best 
estimator in terms of both bias and variance.

Moore and van 
der Laan46

Covariate adjustment in randomized 
trials with binary outcomes: 
targeted maximum likelihood 
estimation

2009 Demonstrated how the use of covariate information in 
randomized clinical trials could use the TMLE framework, 
which results in improved performance, without bias, relative 
to standard methods.

Pro

Rose and van der 
Laan47

Simple optimal weighting of cases 
and controls in case-control studies

2008 IPTW method for causal parameter estimation was 
outperformed in conditions similar to a practical setting by 
the new case-control weighted TMLE methodology.

Pro

Note: The Pro/Con column refers to a simple binary classification of the relative performance of the TMLE estimators reported in the paper, “Pro” 
indicating that the TMLE performed superior to other competing estimators.
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TABLE 2

Dimensions of datasets of nutrition intervention trials, with n representing the number of children in sample 

and p being the number of covariates

Study ID n p
1 418 20

2 4863 26

3 7399 22

4 1204 36

5 2396 42

6 3265 18

7 1931 38

8 840 30

9 27 275 42

10 5443 35
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TABLE 3

Statistics of the undersmoothed HAL fits to the individual studies, including the sample size, dimension, and 

number of basis functions used for the treatment model (g) and the corresponding outcome model (Q), the 

corresponding lambda penalty and the resulting L1 norm

Study ID n p TrueATE Model Undersmoothed Num. coef. Lambda_cv Lambda L1-norm_cv L1-norm

Q T 167 2.6e+02 2.4e+01 5.0e−04 5.6e−03

1 418 20 −0.0109 g T 180 7.7e+00 7.2e−01 1.6e−02 6.2e−02

Q T 1747 4.4e−01 3.1e−02 2.9e−02 4.5e−01

2 4863 26 0.0507 g T 124 4.8e+00 3.9e−01 2.8e−04 1.4e−02

Q T 1496 2.3e−01 3.0e−02 3.5e−02 1.9e−01

3 7399 22 0.0007 g T 6 5.2e+01 2.6e+01 7.0e−07 1.6e−03

Q T 503 4.9e+01 2.3e+00 5.0e−04 2.1e−02

4 1204 36 −0.0468 g T 5 1.8e+03 3.8e+02 6.0e−07 2.2e−06

Q T 448 1.2e+02 4.5e+00 1.0e−04 6.9e−03

5 2396 42 −0.0136 g T 15 8.5e+02 1.8e+02 7.0e−07 9.0e−06

Q T 2724 5.9e+00 3.9e−01 4.8e−03 7.6e−02

6 3265 18 0.2523 g T 497 8.6e+00 1.1e+00 1.9e−03 2.4e−02

Q T 2274 5.7e−01 2.3e−02 7.6e−02 1.7e+00

7 1931 38 −0.0310 g F 0 9.7e+01 9.7e+01 0.0e+00 0.0e+00

Q T 138 1.2e+01 1.4e+00 2.0e−03 2.1e−02

8 840 30 −0.0442 g F 0 1.1e+02 1.1e+02 0.0e+00 0.0e+00

Q T 3700 5.4e+00 1.8e−01 2.2e−03 3.1e−02

9 27275 42 0.0089 g T 102 1.9e+02 2.7e+01 2.2e−06 7.9e−06

Q T 503 1.0e+01 1.2e+00 9.0e−04 7.3e−03

10 5443 35 0.0203 g F 0 3.5e+03 3.5e+03 0.0e+00 0.0e+00

Note: Lambda_cv and L1-norm_cv from the initial HAL fit are also listed for comparison.
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TABLE 4

Performance of targeted learning and estimating equation estimators by study within the HAL-based 

simulations

Method Study ID TrueATE Variance Bias MSE rMSE Coverage Coverage2 CIwidth

A-IPTW 1 −0.0109 0.0056 −0.0373 0.0070 0.704 0.912 0.1658

2 0.0507 0.0005 −0.0012 0.0005 0.934 0.958 0.0849

3 0.0007 0.0003 0.0007 0.0003 0.954 0.948 0.0737

4 −0.0468 0.0019 0.0109 0.0020 0.928 0.950 0.1612

5 −0.0136 0.0020 −0.0046 0.0020 0.926 0.952 0.1640

6 0.2523 0.0010 −0.0266 0.0017 0.672 0.868 0.0829

7 −0.0310 0.0012 0.0093 0.0013 0.862 0.938 0.1098

8 −0.0442 0.0037 0.0037 0.0037 0.914 0.952 0.2112

9 0.0089 0.0001 −0.0005 0.0001 0.940 0.948 0.0362

10 0.0203 0.0006 −0.0001 0.0006 0.954 0.954 0.0961

C-TMLE 1 −0.0109 0.0219 −0.0947 0.0309 0.836 0.890 0.4956

2 0.0507 0.0006 0.0016 0.0006 0.956 0.954 0.0993

3 0.0007 0.0004 0.0018 0.0004 0.948 0.948 0.0782

4 −0.0468 0.0026 0.0046 0.0026 0.948 0.950 0.2005

5 −0.0136 0.0027 −0.0087 0.0027 0.928 0.950 0.1882

6 0.2523 0.0011 −0.0124 0.0012 0.942 0.944 0.1295

7 −0.0310 0.0025 0.0012 0.0025 0.936 0.948 0.1875

8 −0.0442 0.0049 −0.0014 0.0049 0.922 0.960 0.2524

9 0.0089 0.0001 −0.0008 0.0001 0.942 0.950 0.0409

10 0.0203 0.0006 0.0007 0.0006 0.952 0.940 0.1037

CV-A-IPTW 1 −0.0109 0.0565 −0.0262 0.0572 0.926 0.954 0.7789

2 0.0507 0.0006 0.0031 0.0006 0.960 0.954 0.0985
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Method Study ID TrueATE Variance Bias MSE rMSE Coverage Coverage2 CIwidth

3 0.0007 0.0004 0.0009 0.0004 0.966 0.950 0.0793

4 −0.0468 0.0025 0.0063 0.0025 0.956 0.948 0.2008

5 −0.0136 0.0024 −0.0062 0.0024 0.940 0.946 0.1881

6 0.2523 0.0012 −0.0045 0.0012 0.938 0.944 0.1301

7 −0.0310 0.0020 0.0030 0.0020 0.936 0.940 0.1737

8 −0.0442 0.0045 0.0000 0.0045 0.950 0.952 0.2553

9 0.0089 0.0001 −0.0002 0.0001 0.942 0.948 0.0394

10 0.0203 0.0006 0.0011 0.0006 0.962 0.944 0.1026

CV-IPTW 1 −0.0109 0.1632 −0.1129 0.1759 0.984 0.944 2.3263

2 0.0507 0.0008 −0.0012 0.0008 1.000 0.948 0.2686

3 0.0007 0.0005 0.0020 0.0005 1.000 0.954 0.1831

4 −0.0468 0.0032 0.0270 0.0040 1.000 0.936 0.5065

5 −0.0136 0.0028 −0.0202 0.0032 0.982 0.936 0.2817

6 0.2523 0.0014 −0.0057 0.0014 1.000 0.954 0.3305

7 −0.0310 0.0033 0.0017 0.0033 1.000 0.948 0.5111

8 −0.0442 0.0062 0.0006 0.0062 1.000 0.948 0.6842

9 0.0089 0.0001 0.0143 0.0003 0.998 0.756 0.1016

10 0.0203 0.0007 0.0006 0.0007 1.000 0.956 0.2451

CV-TMLE 1 −0.0109 0.1868 −0.0291 0.1876 0.590 0.938 0.7006

2 0.0507 0.0006 0.0031 0.0006 0.958 0.966 0.0985

3 0.0007 0.0004 0.0009 0.0004 0.966 0.958 0.0793

4 −0.0468 0.0025 0.0064 0.0025 0.956 0.954 0.2008

5 −0.0136 0.0024 −0.0063 0.0024 0.940 0.958 0.1881

6 0.2523 0.0013 0.0046 0.0013 0.936 0.958 0.1301

7 −0.0310 0.0020 0.0030 0.0020 0.938 0.946 0.1737
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Method Study ID TrueATE Variance Bias MSE rMSE Coverage Coverage2 CIwidth

8 −0.0442 0.0044 0.0000 0.0044 0.950 0.964 0.2551

9 0.0089 0.0001 −0.0002 0.0001 0.942 0.952 0.0394

10 0.0203 0.0006 0.0011 0.0006 0.962 0.956 0.1026

IPTW 1 −0.0109 0.0280 −0.0736 0.0334 0.890 0.932 0.5945

2 0.0507 0.0008 −0.0028 0.0008 1.000 0.948 0.2544

3 0.0007 0.0005 0.0022 0.0005 1.000 0.954 0.1789

4 −0.0468 0.0033 0.0276 0.0040 1.000 0.926 0.4889

5 −0.0136 0.0028 −0.0201 0.0032 0.978 0.940 0.2712

6 0.2523 0.0014 −0.0091 0.0015 0.998 0.942 0.2536

7 −0.0310 0.0033 0.0023 0.0033 1.000 0.946 0.4838

8 −0.0442 0.0062 0.0003 0.0062 1.000 0.950 0.6504

9 0.0089 0.0001 0.0172 0.0004 0.992 0.684 0.0990

10 0.0203 0.0007 0.0007 0.0007 1.000 0.958 0.2410

TMLE 1 −0.0109 0.3860 −0.3235 0.4906 0.100 0.920 0.1681

2 0.0507 0.0006 0.0005 0.0006 0.932 0.960 0.0849

3 0.0007 0.0004 0.0007 0.0004 0.946 0.948 0.0737

4 −0.0468 0.0020 0.0099 0.0021 0.916 0.950 0.1611

5 −0.0136 0.0022 −0.0052 0.0022 0.922 0.948 0.1640

6 0.2523 0.0010 −0.0015 0.0010 0.806 0.942 0.0828

7 −0.0310 0.0013 0.0079 0.0014 0.852 0.932 0.1098

8 −0.0442 0.0040 0.0020 0.0040 0.900 0.952 0.2111

9 0.0089 0.0001 −0.0003 0.0001 0.936 0.948 0.0362

10 0.0203 0.0006 0.0001 0.0006 0.952 0.954 0.0961

Abbreviations: Coverage, coverage using 95% Wald-type confidence intervals (CI) based upon standard error estimates, where “Coverage2” uses 
the true sample variance; CI width, average width of the “Coverage” CI’s; Variance, true sample variance; MSE, mean-squared error; rMSE, 
relative (to the IPTW estimator in denominator) mean-squared error.

Stat Med. Author manuscript; available in PMC 2023 July 22.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Li et al. Page 32

TABLE 5

Estimators’ performance with/without W_perdiar24 in Study 1 to show the impact of one covariate on 

performance due to positivity violations

Method Dropperdiar TrueATE Variance Bias MSE Coverage Coverage2 CIwidth

A-IPTW No −0.0109 0.0056 −0.0373 0.0070 0.704 0.912 0.1658

Yes 0.0104 0.0084 −0.0010 0.0084 0.908 0.944 0.3117

C-TMLE No −0.0109 0.0219 −0.0947 0.0309 0.836 0.890 0.4956

Yes 0.0104 0.0171 0.0020 0.0171 0.930 0.952 0.4829

CV-A-IPTW No −0.0109 0.0565 −0.0262 0.0572 0.926 0.954 0.7789

Yes 0.0104 0.0131 0.0027 0.0131 0.950 0.940 0.4604

CV-IPTW No −0.0109 0.1632 −0.1129 0.1759 0.984 0.944 2.3263

Yes 0.0104 0.0198 0.0097 0.0199 1.000 0.948 1.3311

CV-TMLE No −0.0109 0.1868 −0.0291 0.1876 0.590 0.938 0.7006

Yes 0.0104 0.0132 0.0030 0.0132 0.950 0.946 0.4600

IPTW No −0.0109 0.0280 −0.0736 0.0334 0.890 0.932 0.5945

Yes 0.0104 0.0202 0.0113 0.0203 1.000 0.948 1.2379

TMLE No −0.0109 0.3860 −0.3235 0.4906 0.100 0.920 0.1681

Yes 0.0104 0.0096 −0.0006 0.0096 0.878 0.942 0.3116

Note: Columns are defined as in Table 4.
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TABLE 6

Relative performance of the two CV-estimators with a simple difference in means in the context of the three 

studies for which treatment was unrelated to covariates (thus equivalent to randomized clinical trial)

Study ID Method TrueATE Variance Bias MSE Coverage Coverage2 CIwidth

7 CV-A-IPTW −0.0310 0.0020 0.0030 0.0020 0.936 0.940 0.1737

CV-TMLE −0.0310 0.0020 0.0030 0.0020 0.938 0.946 0.1737

Diff-in-Mean −0.0310 0.0036 0.0021 0.0036 0.944 0.942 0.2435

8 CV-A-IPTW −0.0442 0.0045 0.0000 0.0045 0.950 0.952 0.2553

CV-TMLE −0.0442 0.0044 0.0000 0.0044 0.950 0.964 0.2551

Diff-in-Mean −0.0442 0.0068 −0.0001 0.0068 0.942 0.952 0.3115

10 CV-A-IPTW 0.0203 0.0006 0.0011 0.0006 0.962 0.944 0.1026

CV-TMLE 0.0203 0.0006 0.0011 0.0006 0.962 0.956 0.1026

Diff-in-Mean 0.0203 0.0008 0.0007 0.0008 0.964 0.948 0.1167

Note: Columns are defined as in Table 4.
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