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Prospective economic evaluations conducted alongside clinical trials have become an increasingly popular
approach in evaluating the cost-effectiveness of a public health initiative or treatment intervention. These types
of economic studies provide improved internal validity and accuracy of cost and effectiveness estimates of
health interventions and, compared with simulation or decision-analytic models, have the advantage of jointly
observing health and economics outcomes of trial participants.However, missing data due to incomplete response
or patient attrition, and sampling uncertainty are common concerns in econometric analysis of clinical trials.
Missing data are a particular problem for comparative effectiveness trials of substance use disorder interventions.
Multiple imputation and inverse probability weighting are 2 widely recommended methods to address missing
data bias, and the nonparametric bootstrap is recommended to address uncertainty in predicted mean cost and
effectiveness between trial interventions. Although these methods have been studied extensively by themselves,
little is known about how to appropriately combine them and about the potential pitfalls and advantages of different
approaches. We provide a review of statistical methods used in 29 economic evaluations of substance use
disorder intervention identified from 4 published systematic reviews and a targeted search of the literature. We
evaluate how each study addressed missing data bias, whether the recommended nonparametric bootstrap was
used, how these 2 methods were combined, and conclude with recommendations for future research.

missing data mechanism; models, econometric; multiple imputation; nonparametric bootstrap;
substance-related disorders; inverse probability weighting

Abbreviations: HRQoL, health-related quality of life; IPW, inverse probability weight; MAR, missing at random; MI, multiple
imputation; MNAR, missing not at random; SUD, substance use disorder.

INTRODUCTION

Economic evaluations of treatment interventions or health
programs provide necessary information regarding the
comparative use of scarce health care and societal resources
to maximize public health while limiting the growth of
health expenditures when possible. An increasingly popular
approach to conducting economic evaluations is to assess the
cost and effectiveness of competing health interventions or
treatment modalities alongside a randomized controlled trial
(1).Trial-based economic evaluations prospectively collect
participant-level health economic data at multiple time
points throughout the study, such as the participant’s health

care resource utilization, time commitment for receiving
care (including travel time), use of tangible and intangible
societal resources, and their health-related quality-of-life
(HRQoL) for purposes of generating quality-adjusted life
years. These types of economic analyses provide multiple
advantages for researchers. They generate data from vali-
dated trial instruments instead of relying solely on electronic
health records or insurance claims, which, although less
subject to recall bias (albeit small for recall periods typically
used in trials) (2–6), rarely provide a comprehensive
record of health care resource utilization. The collection of
detailed, baseline, participant-level data allows for the use
of robust methods for addressing missingness and sampling
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uncertainty, as determined by the missing data mechanism.
Furthermore, participant-level data are linked across mea-
sures and, therefore, researchers have the advantage of
jointly observing health and economic outcomes of trial
participants over time, as compared with decision-analytic
models that typically rely on publicly available epidemio-
logic data from the literature; they also provide improved
internal validity and accuracy of cost and effectiveness
estimates, including the uncertainty around those estimates.

Regression analysis is an important tool for clinical trial
researchers to estimate the causal relationship between inter-
vention and outcome variables longitudinally while con-
trolling for potential confounding factors that may remain
after randomization or when intent-to-treat analyses are not
appropriate. Missing data due to loss to follow-up, failure to
initiate treatment, and participant attrition or nonresponse to
a survey item are common challenges of clinical trials and
limit an intent-to-treat study design (7, 8). Missing data are a
particular problem for clinical trials of substance use disor-
der (SUD) interventions, because participants with chronic
SUD face increased stigma (9, 10), barriers to accessing
health care services (11, 12), risk of unstable housing (13,
14), and rates of involvement with the criminal legal system
(15), all of which contribute to higher rates of item or
unit nonresponse and participant attrition. Although trials
of treatment interventions for other chronic conditions may
face similar issues, we chose to focus on economic eval-
uations of SUD interventions, given the extent to which
these factors intersect among participants with SUD and
contribute to missingness in both clinical and nonclinical
data.

Multiple imputation (MI) and inverse probability weights
(IPWs) are 2 of the most widely recommended regression-
based approaches to reduce missing data bias given common
causes of missingness (discussed in the next section) while
using all available data from all participants (16–21). Upon
estimating the adjusted mean cost or effectiveness for each
arm, the nonparametric bootstrap is recommended to gen-
erate standard errors while accounting for potential sample
selection bias (1, 22). Although these methods have been
studied extensively by themselves (23, 24), little is known
about how to appropriately combine them or about the
relative advantages and disadvantages of approaches used in
the literature to maintain unbiased results and computational
efficiency.

We provide a review of methods used to address missing
variable bias of multivariable-adjusted mean values within
the nonparametric bootstrap to evaluate uncertainty. We lim-
ited our search to published economic evaluations of SUD
interventions in the context of a clinical trial and identified
studies that reported missing data or patient attrition in the
trial. We discuss the methods used in these studies to address
missing data bias, whether recommended guidelines were
followed to evaluate uncertainty in predicted mean costs and
effects between trial interventions using the nonparametric
bootstrap, and how these 2 methods were combined in those
studies. For example, investigators may impute missing val-
ues or calculate IPWs prior to bootstrapped resampling,
embed the MI or calculate IPWs for each participant within
the bootstrap, or simply sample complete cases and ignore

missing data in the bootstrap procedure. We end our discus-
sion with recommendations for future research on expanding
the methodologies used in economic evaluations of SUD
interventions alongside clinical trials.

Missing data mechanisms

Addressing missing data requires understanding the mech-
anisms of the missingness, most specifically whether the
data are 1) missing completely at random (MCAR); 2) miss-
ing at random (MAR); or 3) missing not at random (MNAR)
(18, 25). MCAR implies that missing observations are nei-
ther related to nor a function of observed factors, such
as patient demographics, disease severity, study site, or
provider characteristics, or unobserved confounders. In such
cases, listwise deletion (i.e., complete case analysis), theo-
retically, can be justified, because correcting for missingness
would not be necessary to obtain unbiased estimates of
covariate-adjusted arithmetic means. However, the propor-
tion of missing data will limit the total sample size for the
analysis, reducing degrees of freedom, and directly affecting
the power to detect a meaningful difference in cost and
effectiveness outcomes. Thus, missing data techniques that
allow for the inclusion of all observed data across par-
ticipants, such as MI or IPW, are still preferrable (1, 17,
26, 27).

MAR describes the case where missing observations are
assumed to be related to observed or measured variables
but are unrelated to unobserved confounding variables. Both
MI and IPW perform well in addressing missing data bias
under MAR conditions, though MI has been suggested as a
more efficient approach (28). In addition, imputation models
that generate new data are not necessarily invariant across
outcome measures and must generate data that appropriately
fit the observed distribution and characteristics of cost (e.g.,
strictly positive and asymmetric) and effectiveness (e.g.,
bounded at 1 for health utility data). MNAR is a more seri-
ous problem for researchers, because there are no effective
methods for removing the bias, given that the missingness is
associated with unobserved factors (27, 29).

Resampling with missing data

The nonparametric bootstrap is recommended for eval-
uating the distribution of predicted means of commonly re-
ported cost-effectiveness measures, such as the incremental
cost-effectiveness ratio, and accounts for sampling uncer-
tainty. The nonparametric bootstrap addresses sampling
uncertainty through successive resampling of participants
in the trial with replacement, stratified by treatment arm and
trial selection criteria (e.g., 1:1 sex ratio), generating a new
sample and repeatedly calculating the statistics of interest
in the economic evaluation to calculate confidence intervals
(1). In the presence of missing data, investigators can either
resample complete cases only or include incomplete cases
in the resampling procedure to avoid potentially biased
statistical inference when data are not MCAR. Combining
the method used to address missing data with the non-
parametric bootstrap in economic evaluations has received
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scant attention. Both MI and IPW can be embedded within
the bootstrap, or the data can be imputed and propensity
scores for the IPW estimated prior to resampling. IPW
estimated within the nonparametric bootstrap is commonly
used in applied studies but may produce highly variable
propensity scores in trials with a small, randomized sample
(30). Embedding MI within the nonparametric bootstrap can
be computationally intensive, depending on the number of
imputations chosen within each iteration of the bootstrap,
and there are no standardized methods to ensure that each
multiply imputed data set within the bootstrap is valid
(31). In the case of MI embedded within the nonparametric
bootstrap, N × M estimations are necessary, where N is
the number of bootstrap samples, and M is the number of
imputations. Brand et al. (32) recommended in a simulation
study that single imputation within the nonparametric
bootstrap can be both valid and improve computational
efficiency compared with the bootstrap resampling nested
within MI or MI within the bootstrap, whereas other
researchers have recommended the latter methods based
on similar simulation study designs (33).

METHODS

We identified studies from 4 systematic reviews of eco-
nomic evaluations of opioid use disorder (34–36) and SUD
interventions (37). In their systematic review, Murphy and
Polsky (34) covered the years 2007 to 2015 and built upon
a prior systematic review by Doran (36), in which that
author studied economic evaluations of opioid use disorder
interventions prior to 2007. Onuoha et al. (35) picked up
where Murphy and Polsky left off, covering 2015 through
2019. Jalali et al. (37) reviewed economic evaluations of
treatments for SUDs and related conditions in the National
Drug Abuse Treatment Clinical Trials Network from 2000
to September 2019.

We first identified all studies within the 4 aforementioned
systematic reviews that met the following criteria: 1) a
randomized controlled trial study design; 2) applied econo-
metric methods in estimating cost and effectiveness data
using participant-level data; and 3) reported missing data
in the study sample. These articles were then supplemented
with a targeted search of the PubMed/Medline and Google
Scholar electronic databases to identify economic evalua-
tions meeting the same criteria for SUDs other than opioid
use disorder. The targeted literature search included the
intersection of the following or related terms: 1) substance-
related disorder; 2) cost, cost-effectiveness, or cost-benefit
analysis; and 3) missing, imputation, probability weight,
propensity score, bootstrap, parametric, or nonparametric.
The PubMed and Google Scholar search terms are available
online in the Web Appendix (available at https://doi.
org/10.1093/aje/mxac006). Partial economic evaluations
(e.g., cost-offset studies) that did not evaluate both cost and
effectiveness outcomes were excluded.

All articles meeting the inclusion criteria were read to
assess the use of statistical methods to address uncertainty;
whether missing data or participant attrition in the trial were
reported; the method used for addressing missing data, when
possible; and the type of resampling used in combination

with the method to address missingness. We then provided
a detailed discussion of the identified methodologies.

RESULTS

We identified 29 published economic evaluations that
met our inclusion criteria. The trial data in these studies
were of treatments for SUDs, including cannabis, stimulants,
alcohol, opioids (including heroin), and polysubstance, in a
variety of settings among both adolescents and adults. All
articles addressed missing data using 1 possible method,
including 3 that were categorized as complete case analysis
by default (because they did not explicitly address miss-
ing data). In 23 studies, researchers used the nonparamet-
ric bootstrap method recommended to address statistical
uncertainty in the point estimates of outcome variables (1).
Some form of complete case analysis for at least 1 missing
outcome variable was used in 12 of the articles, 3 applied
some variation of the last-observation carried forward, linear
interpolation was used in 1 study for nonmonotonic missing
data, 6 used IPW, 3 applied baseline observation carried
forward, and a parametric method (using mean and variance
estimates from complete cases to randomly replace missing
cases) was used in 1 study. The rest of the studies applied
some form of single-imputation method, including regres-
sion adjusted, mean imputation, within-group matching, or
even applying cost and effect values based on opinion or
plausible assumptions of the authors. No study in this review
incorporated MI to address missingness in the analysis.

Of those economic evaluations that applied the non-
parametric bootstrap, 7 used compete case resampling, 11
followed an imputation-before-resampling approach to
combining these methods, 6 did not report the use of resam-
pling, and 5 conducted IPW within (or after) resampling.
Table 1 summarizes results of these findings.

DISCUSSION

Complete case analysis

Three studies did not explicitly address missingness in our
review (38–40). These studies were early economic evalua-
tions (prior to 2000) and predate some of the computational
improvements in resampling and imputation methods in
popular statistical software. These studies also used statisti-
cal tests of unadjusted mean differences, instead of adjusted
costs and effectiveness using regression analysis. For the
purpose of our review, they were categorized as applying
complete case analysis to address missingness by default.

Complete case analysis, in which only observations with
complete data in all relevant variables are used, is the least
rigorous approach to addressing missing data and is rarely
recommended, given that it will only produce unbiased
estimates when data are MCAR (41). However, the potential
bias from missingness may drop as the percentage of missing
data approaches 0, or the sample size increases (42). Of
the 8 studies identified in our review in which authors only
used complete case analysis, 4 reported proportions of miss-
ing data small enough to potentially justify this approach.
Olmstead and Petry (43) reported missing data on health
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care utilization of a single participant out of 142; similarly,
Olmstead et al. (44) and Sindelar et al. (45) reported missing
health care utilization data on 3 and 5 participants out of
415 and 388, respectively. Another study reported that a trial
produced complete economic data for 94.5% of participants
(46). However, economic evaluations by Bell et al. (47) and
Avants et al. (38) that relied on complete case analysis and
reported 18% and 22% missing data, respectively, are less
likely to be valid and unbiased.

Imputation methods

Imputation involves the replacement of a missing obser-
vation with a single estimate, or multiple “good” estimates in
the case of MI, for person-period observations missing in the
study. The rigor and concomitant effectiveness of imputation
methods used to control for missing data bias vary widely.
A number of studies addressed missingness via an informed
guess or conservative estimates; for example, Ruger et al.
(48) and Sindelar et al. (45) assumed that missing substance
use data would be imputed as positive for drug use. This
approach could be biased if there are differences in retention
to treatment across arms, because it is possible that not all
missing data of this sort are the result of relapse; especially
because urinalysis was the only measure of abstinence,
unlike other studies that supplemented missing urinalysis
data with self-report and medication adherence data (e.g., the
Murphy et al. study (49)). Other studies made more qualified
assumptions; for example, Busch et al. (50) indicated that
for half of the 25% of participants for whom cost data
were missing, sufficient information regarding the reason for
failure to complete trial assessments was available to make
assumptions on costs; for example, participants who were
incarcerated were assumed to incur $0 in health care costs,
and participants who did not complete cost assessments
because they were in inpatient treatment at the time were
assumed to incur costs equivalent to 14 days of residential
treatment.

Carry-forward imputation. A number of studies between
2005 and 2018 used prior observations to replace miss-
ing data over time, including methods of last-observation
carried forward, baseline observation carried forward, or
alternatives (51–56). For example, the last-observation car-
ried forward method of imputing missing data was used by
Dijkgraaf et al. (52) on HRQoL assessments to calculate
average quality-adjusted life years by treatment arm. This
method involved applying the last value observed to subse-
quent incomplete observations. Doran et al. (53) reported
imputation of missing heroin-use data based on “pre-trial
behavioral patterns.” Their approach to evaluate abstinence
is commonly referred to as regression toward a value or
baseline observation carried forward, where missing data
are replaced with patient baseline observations, the mean, or
worst or best outcome value. Baseline observation carried
forward also was used in studies by Dunlop et al. (54) and
Dunlap et al. (55), and Fals-Stewart and Lam (56) imputed
values based on the worst outcome observed for each par-
ticipant. The carry-forward approaches and their variants
are not recommended, because they require investigators

to assume that the intervention ceased to have an affect
on outcome variables for participants with missing data,
thereby implying the participant’s health returns to preinter-
vention values or that the short-term effects of the interven-
tion are sustained. The corresponding assumption for cost
is that health care utilization patterns observed in a prior
period remain constant over the missing period. We have not
found supportive research in the use of these approaches to
addressing missing data in economic evaluations. Moreover,
additional bias can be introduced if there is differential
attrition or missingness between arms, or if differences exist
between participants with and without missing observations
(57). For instance, Dijkgraaf et al. (52) observed differential
missingness by study intervention, indicating that the last-
observation carry-forward method applied in their study
may not have been a valid approach, because potential
confounding factors leading to differential missingness were
not addressed using last-observation carried forward.

Linear imputation. The last-observation or baseline carry-
forward methods are less intuitive approaches when data are
missing nonmonotonically (e.g., missing data in the middle
of the trial and complete cases at end points). Goorden
et al. (58) used linear interpolation to address nonmono-
tonic missing HRQoL data among persons with cannabis
use disorder. The linear interpolation method described by
Goorden et al. (58) simply fits a linear line between the
complete data points and imputes the midpoint value (if the
observation period is equidistant) to replace missing data
for each participant. Goorden et al. (58) reported that 51%
of HRQoL participant data was missing at the midpoint of
the trial but that subsequent participant HRQoL data were
available at the study endpoint, with only 7% missing. This
approach can be a valid method of imputing nonmonotonic
missing HRQoL data if, and only if, the HRQoL of each
participant evolves linearly over time, on average, and there
is little to no heterogeneity in HRQoL patterns among study
participants. However, a recent study of HRQoL among
persons with opioid use disorder demonstrated nonlinear and
heterogenous quality of life patterns (59). Although Goorden
et al. (58) also reported nonmonotonically missing health
care cost data (36.5% missing at month 6, 3.5% missing at
month 12), they imputed missingness by assuming $0 for
missing costs. Goorden et al. (58) argued that an imputa-
tion model to estimate missing costs would not be feasible
because there were many 0 observations in the complete case
data. However, if HRQoL and costs were correlated over
time, the differential methods of addressing missing data
across costs and effectiveness measures may have biased
the cost-effectiveness outcome (i.e., the incremental cost-
effectiveness ratio). For example, if participants who incur
higher costs (e.g., use more care) over the trial period fare
better in terms of HRQoL than those with lower costs, then
the results will not account for the additional costs required
to gain an additional unit of effectiveness, casting doubt on
the cost-effectiveness of the treatment.

Regression-based single imputation. Some studies pub-
lished between 2012 and 2019 used regression-based single-
imputation methods to address missing data (60–62).
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Unlike last-observation carry forward or its variants
explained above, regression-based imputation uses available
participant data in a statistical model to impute missing
outcome values. This approach is superior to the last-
observation carry forward and linear interpolation because it
can preserve the correlation among participant characteris-
tics, costs, and effectiveness. However, there are 2 principal
disadvantages of regression-based single imputation. First,
unbiased estimates of cost and effect will only be a good
approximation of missingness if the statistical model for
the imputation is the “correct” model (63). MI is less
affected by this limitation compared with single imputation,
because it produces multiple approximations for each
missing value instead of just a single imputed value. Second,
although single-imputation regressions can preserve the
observed correlation between cost and effectiveness of an
intervention, it can overestimate the relationship between
these 2 measures over the study period. For example, an
intervention may require providing medications continually
to participants, thereby incurring costs over time, but the
intervention may only lead to short-term effectiveness. In
this example, the correlation between cost and effectiveness
is not consistent over the study period. Single imputation
may not identify this change.

Other imputation methods. Additional eccentric methods
of imputation were observed in our review, including meth-
ods that were motivated by limited research resources. Doran
et al. (64, 65) evaluated resource costs by using a retro-
spective chart review of 50% of study participants in each
arm and imputing missing follow-up data using either site-
specific averages (64) or parametric imputation based on
clinical review (65). In their 2006 article (65), Doran et al.
used parametric values from the distribution of the observed
data (i.e., mean and variance) to randomly generate values
for missing data from that distribution. This method relies
on the assumption that the 50% of participant data col-
lected from retrospective review is a good representation of
the entire population of participants randomized—in other
words, the unobserved data are MCAR.

Proportion of missingness

The proportion of missing data can affect the validity of
methods to address missingness. In an economic evaluation,
Drost et al. (66) reported missing data at baseline and follow-
up at greater than 70%. These authors argued that imputation
for such a high percentage of missing data may lead to type 2
error; consequently, they conducted a complete case analysis
with nonparametric bootstrapping. To address potential bias
from missingness, however, Drost et al. (66) supplemented
their study by conducting multiple sensitivity and subgroup
analyses with the nonparametric bootstrap to assess the level
of heterogeneity in the study by different subgroups (e.g.,
sex, age, education, religion, ethnicity). Identifying hetero-
geneity and examining the variability of results based on
subgroup analysis, while informative for stakeholders, does
not specifically address missingness. Patterns of missing
data can be correlated by subgroups themselves in clinical
trials, casting doubt on the validity of the approach used by

Drost et al. Furthermore, recent research suggests that MI
under an MAR assumption can be a valid approach even in
cases of a large proportion of missing data (67).

Shortcomings of MI. When combining MI with the non-
parametric bootstrap, 2 potential disadvantages arise when
evaluating clinical trial data with a large proportion of miss-
ingness. First, the estimates from the MI model may be
characterized by high variance, thereby introducing a large
degree of uncertainty in the estimates and making it diffi-
cult to find statistically significant differences in estimated
cost and effectiveness outcomes between study arms when
applying the nonparametric bootstrap after MI. Second, it is
unclear if the correct imputation model can be determined
when there is a large proportion of missingness, because
only a minority of the variation in the relationship between
outcomes and covariates is observed (63). Although Madley-
Dowd et al. (67) argued that the proportion of missing data
should not prevent the use of the recommended MI method,
they cautioned that bias reductions are only achieved if the
“imputation model was correctly specified and included all
variables related to missingness” (67, p. 69). More research
is needed to assess the validity and robustness of MI as
a preferred method in economic evaluations with a large
proportion of missing data.

Inverse probability weights

The IPW is a popular statistical approach to address-
ing missing data in regression analysis, conditional on the
assumption of MAR (19). One of the primary objectives of
applying weights to a regression model is to rebalance the
distribution of participant characteristics and other observed
data to reduce potential bias from differential attrition or
missingness after randomization. IPWs are calculated in a 2-
step process whereby, first, the probability of an observation
being a complete case is estimated, most commonly via
multivariable logistic regression; then second, it is inverted
to and used as a regression weight. Several economic evalu-
ations in our review used IPW between 2010 and 2019 (49,
68–72), and all these studies embedded the IPW within the
nonparametric bootstrap.

Shortcomings of IPW. Although IPW provides valid infer-
ences when data are MAR, there are several limitations
to this approach in addressing missingness. As noted by
Zubizarreta (73), the standard 2-step procedure of estimating
IPWs does not guarantee a balanced sample but merely
a propensity score of being a complete case. Unlike MI,
IPW requires complete data on all covariates to estimate the
initial probability model, and bias may result in instances
of highly variable weights (20, 73, 74). Additionally, the
logistic regression used to estimate each participant’s prob-
ability of being a complete case can be affected by partial
or complete separation bias (75). Partial or complete sep-
aration can occur when covariates in the first step, logistic
regression, are highly or perfectly correlated with complete
cases or missing cases. Because the procedure requires
regressing a dichotomous variable on a set of explanatory
variables, the estimated odds ratio of the logistic regression
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Table 2. Outline of Potential Issues by Analytic Method

Analytic Method Potential Issues to Consider

Complete case analysis Not recommended

Least rigorous approach to addressing missingness

Produces biased estimates of cost and effectiveness if data are MAR and MNAR

Reduces statistical power in analysis

Complete case resampling is not recommended in generating cost-effectiveness acceptability curves.

Carry-forward imputation Rarely recommended

Produces biased estimates of cost and effectiveness if data are MAR and MNAR

Imposes relatively strong assumptions on the longitudinal values of missing data

Introduces bias if trial data are affected by differential attrition or missingness between treatment arms

Introduces bias if cost and effectiveness data are correlated

No standard procedure recommended in combining carry-forward imputation with the nonparametric
bootstrap

Linear imputation Rarely recommended

Only applicable for nonmonotonically missing longitudinal data

Produces biased estimates of cost and effectiveness if data are MAR and MNAR

Assumes missing data evolve linearly between nonmissing data points

Introduces bias if cost and effectiveness data are correlated

No standard procedure recommended in combining linear imputation with the nonparametric bootstrap

Single-regression imputation Rarely recommended

Requires “correct” imputation model to be identified

Does not account for uncertainty in imputed values of missing data

May over or underestimate the correlation between cost and effectiveness variables

No standard procedure recommended in combining single regression imputation with the
nonparametric bootstrap

Inverse probability weighting Standard 2-step estimation procedure does not guarantee a balanced sample.

Requires compete data on all covariates to estimate the initial probability model

Propensity scores may exhibit high variance.

Probability models (e.g., logit or probit) may be affected by partial separation when dichotomous
explanatory variables are highly correlated with incomplete cases.

Multiple imputation Requires “correct” imputation model to be identified

No standard method recommended to ensure that each multiply imputed data set within the
nonparametric bootstrap is valid

No standard procedure recommended in combining multiple imputation with the nonparametric
bootstrap

Computation efficiency of multiple imputation embedded within resampling limits its application.

Abbreviations: MAR, missing at random; MNAR, missing not at random.

can be very large (or small) when these covariates are highly
correlated with complete or missing cases (76). For example,
economic evaluations of SUD interventions often collect
criminal activity data for purposes of estimating societal
costs. Investigators may rightly assume that criminal activ-
ity is an important determinant of being a complete case,
because incarceration could result in dropout from a study.
However, in a relatively small sample of participants, only
a few instances of criminal activity may be observed in the
data set, and many of them could be missing cases. In this
scenario, the propensity score from the logistic regression

model would be very small, but the IPW would be very
large, potentially overweighting the participants with crimi-
nal activity who were complete cases in the analysis of cost
and effectiveness outcomes.

There is a tradeoff, however, to the potential limitation
of IPW in addressing missing data in economic evaluations
compared with MI. It is general practice in the applied
literature to combine the IPW and the nonparametric boot-
strap by embedding the IPW estimation within the boot-
strap. This standard approach of combining IPWs with the
nonparametric bootstrap prevents highly variable estimates
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of the distribution of predicted mean cost and effectiveness
outcomes, because the probability of the prebootstrap values
of the IPWs in a given iteration being large or small is
nonzero. To our knowledge, there is no standard proce-
dure of combining MI with the nonparametric bootstrap for
use in economic evaluations. Although MI is arguably a
more efficient approach to addressing missing data in small
samples and data with a high proportion of missingness,
this approach requires greater computational capacity when
combined with the nonparametric bootstrap. Table 2 sum-
marizes the potential issues that may arise for each analytic
method discussed in our review.

CONCLUSION

The goal of an economic evaluation is to provide unbiased
estimates of the relative costs and effectiveness between
study arms that are as generalizable as possible within
the limitations of the study design (1, 77). An economic
evaluation conducted alongside a clinical trial relies on
prospectively collected resource utilization and cost and
effectiveness data to estimate the economic value of new
interventions as well as the uncertainty around those esti-
mates. Regression analysis allows for the estimation of the
arithmetic mean costs and effectiveness across study arms
while controlling for potential confounding variables at all
time points. As previously discussed, collection of partici-
pant data through trial instruments often results in missing
data, which can bias estimates from the study. Investigators
should carefully consider the missing data mechanism when
developing a statistical analysis plan to address missingness.
Complete case analysis is inefficient and only applicable
when data are MCAR. Last-observation and baseline carry-
forward methods are invalid approaches to address missing
data bias when there is differential missingness, and single-
imputation methods are not as robust as MI. MI and IPW
are 2 widely recommended approaches to addressing miss-
ing data bias, but they may require greater computational
resources when combined with the nonparametric bootstrap
(18, 20, 23).

Although IPW is a popular method to address missing
data bias and unequal sampling, IPW faces limitations com-
pared with MI, which has been suggested as a superior
method, on average, by some authors (21, 28). Investigators
should avoid the use of IPW in economic evaluations of
clinical trials with a small sample size or a large propor-
tion of incomplete cases, and use MI. However, imputation
methods, in general, require sufficient data to construct a
valid statistical model to approximate missing values from
complete cases (23, 63), which may be more difficult than
simply weighting the treatment effect with IPWs.

In our review of missing data methods in combination
with the nonparametric bootstrap, we found that the majority
of studies that met our inclusion criteria applied a single-
imputation approach prior to bootstrap resampling. The sec-
ond most popular approach was complete case resampling.
No study that imputed missing data in our review embed-
ded the imputation model in the nonparametric bootstrap.
A potential barrier to single imputation or MI within the

nonparametric bootstrap is likely the computation resources
required to conduct such a procedure. Single imputation
embedded within the nonparametric bootstrap can be a com-
putationally efficient alternative (32), though other studies
have recommended MI-embedded bootstrapping based on
similar simulation study designs (33). Insofar as the popu-
larity of IPW appears to have increased over time and little
is currently known about the comparative benefits of MI
within or before resampling, our findings indicate that IPW
embedded within resampling is likely to grow in popularity
and define the future direction of the field.

Determining the most appropriate method to address
missingness in combination with the nonparametric boot-
strap requires consideration of the missing data mechanism,
computation resources, and a variety of other potential
factors, such as the proportion of missingness in the study.
Although embedding the IPW method within the bootstrap
resampling procedure is a standard practice in the literature,
more research is required with both simulation and real-
world clinical trial data to assess the most valid and
computationally efficient approach of combining MI and the
nonparametric bootstrap, given the advantages of MI com-
pared with IPW outlined in our study. It is, however, always
best to prevent the occurrence of missing cases in the
trial when possible. Moreover, the scope and complexity
of potential statistical issues that arise with the choice of
analytic methods discussed in our review warrant broader
interdisciplinary collaboration between economists and
clinical scientists. We recommend that clinical researchers
interested in incorporating an economic evaluation in their
study consult and engage with economic investigators early
in the trial-design process. Funding agencies can help
promote such interdisciplinary collaboration by supporting
prospective economic analyses as secondary aims of clinical
trial grant proposals.
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