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Randomized trials are often designed to collect outcomes at fixed points in time after randomization. In practice,
the number and timing of outcome assessments can vary among participants (i.e., irregular assessment). In
fact, the timing of assessments may be associated with the outcome of interest (i.e., informative assessment).
For example, in a trial evaluating the effectiveness of treatments for major depressive disorder, not only did the
timings of outcome assessments vary among participants but symptom scores were associated with assessment
frequency.This type of informative observation requires appropriate statistical analysis.Although analytic methods
have been developed, they are rarely used. In this article, we review the literature on irregular assessments with a
view toward developing recommendations for analyzing trials with irregular and potentially informative assessment
times. We show how the choice of analytic approach hinges on assumptions about the relationship between the
assessment and outcome processes. We argue that irregular assessment should be treated with the same care
as missing data, and we propose that trialists adopt strategies to minimize the extent of irregularity; describe the
extent of irregularity in assessment times; make their assumptions about the relationships between assessment
times and outcomes explicit; adopt analytic techniques that are appropriate to their assumptions; and assess the
sensitivity of trial results to their assumptions.

clinical trial; longitudinal studies; selection bias

Abbreviations: AAR, assessment at random; ACAR, assessment completely at random; DAG, directed acyclic graph; GEE,
generalized estimating equation; IIW, inverse-intensity weighting; QIDS, Quick Inventory of Depressive Symptomology; STAR∗D,
Sequenced Treatment Alternatives to Relieve Depression.

INTRODUCTION

Randomized trials are often designed to collect outcomes
at fixed points in time after randomization. In practice, the
number and timing of outcome assessments can vary among
participants (i.e., irregular assessment). In addition, the tim-
ing of assessments may be associated with the outcome
of interest (i.e., informative assessment). Analyzing data
from trials with these features requires special statistical
procedures.

There is a wide array of statistical methods capable of han-
dling longitudinal data subject to irregular and potentially
informative assessment times. These include methods based
on weighting (1–3), semiparametric joint models (4–10),
pairwise likelihoods (11, 12), and fully parametric methods

(13), some of which take a Bayesian approach (14, 15) (see
the article by Pullenayegum and Lim (16) for a statistically
focused review).

Despite the existence of these methods, they are rarely
used. In a systematic review of 44 longitudinal studies
analyzing repeatedly measured outcomes derived through
chart reviews, the authors found that only 1 study had used
a method to account for informative assessment times and
that the remaining studies did not report any assessment of
the potential for informative assessment times (17). Eleven
years after the publication of the first method to handle
irregular and informative assessment times, we were only
able to identify 4 applications of the method in clinical
articles (18–21). This poor uptake of methods to account
for informative assessment times may be due to the highly
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technical nature of most of the literature describing them.
Aside from 2 tutorial-style articles (20, 22), most of the
literature has been written by statisticians for statisticians.

Typically, researchers try to avoid the issue of irregular
assessment by creating assessment windows and conducting
analysis as if it was a structured longitudinal study with
missing outcome data. As we argue in the next section, this
is inadvisable and unnecessary. The methods discussed here
can be used to analyze the longitudinal data at the times
they are recorded. With this analytic paradigm shift, it is
then important for researchers to conduct the counterparts of
the steps that have been advised for analyzing longitudinal
data subject to missingness: 1) characterize the extent of
irregularity, 2) explore reasons for irregularity, 3) charac-
terize the assessment time process, 4) adopt a suitable ana-
lytic approach with explicit articulation of assumptions, and
5) conduct sensitivity analysis with respect to untestable
assumptions.

In the following sections, we discuss the distinction
between irregular and missing data, define targets of
inference, introduce notation, provide a motivating example,
discuss how irregularity in assessment times can be
explored, and outline analytic approaches. We conclude with
a discussion that includes a list of recommendations.

THE DISTINCTION BETWEEN IRREGULAR AND
MISSING DATA

Consider a randomized study in which participants are
scheduled to be assessed at times 1, 2, and 3 after ran-
domization. Figure 1 illustrates the assessment times for
6 hypothetical study participants. The top panel depicts a
scenario in which the participants are assessed exactly as
planned. The top right panel shows that when participants
are assessed, they are assessed at the scheduled times, but
some participants miss assessments; this is an example of a
repeated measures data structure subject to missingness. The
bottom left panel depicts a scenario in which all participants
have 3 assessments but not at the scheduled times; this is
an example of a repeated measures data structure subject to
irregular assessment times. In this example, it is not possible
to specify windows around each planned assessment such
that each participant exactly 1 assessment in each window.
The bottom right panel depicts a scenario in which there
is not only variation in the timing of assessments but also
variation in number of assessments across participants. Here,
both participants 1 and 5 have assessments that occur very
close in time; this may occur when participants develop
a condition that requires close monitoring. This raises the
concern that the frequency of assessments may be related to
the outcomes themselves.

Figure 1 shows that repeated measures subject to missing-
ness is a special case of longitudinal data subject to irregular
assessment: in the general case, the timing of assessments
varies between participants; however, when these timings
exhibit minor variation around a set of protocolized assess-
ment times, with some individuals not having an assess-
ment, we recover repeated measures subject to missingness.
Indeed, a common approach to handling irregular longitu-

dinal data is to convert them into repeated measures data
subject to missingness. This might be done by specifying
windows around the protocolized assessment times and, for
each participant in each window, selecting the closest obser-
vation to the time point of interest, setting the outcome value
to be missing for those participants with no assessments in a
given window.

There are at least 5 reasons not to convert irregular longi-
tudinal data into repeated measures subject to missingness.
First, the width of the assessment windows is usually arbi-
trary. Although clinical reasoning may suggest a width, it is
usually chosen by some form of rounding (e.g., to the nearest
week, nearest month, or a multiple of 10 days). Second,
using at most 1 observation per window means discarding
information. Third, 2 individuals who are assessed only 1
day apart could be treated differently, 1 yielding an observed
value and 1 yielding a missing value. Fourth, discarding
this information may lead to missingness not at random.
For example, once a patient has achieved remission, the
frequency with which assessments are clinically indicated
may decline. If, in converting the problem to a repeated
measures problem, we discard the assessment(s) that deter-
mine the time of remission, then missing assessments later
in follow-up would become not at random. Fifth, converting
the data is unnecessary: longitudinal data subject to irregular
assessment times is a generalization of repeated measures
subject to missingness.

TARGETS OF INFERENCE

In this article, we assume that individuals are not at risk
of dying due to the condition under investigation during
the scheduled follow-up period. We assume the existence of
outcomes and time-varying covariates during the scheduled
follow-up period regardless of whether they are measured.
(Note that there is an alternative viewpoint expressed by
Farewell et al. (23), which we do not discuss here.) We
also assume that measuring an outcome does not alter its
value. Our targets of inference will be treatment-specific
summaries of the distribution of outcomes, had they been
measured throughout the follow-up period, either uncon-
ditional or conditional on baseline covariates. Examples
include the treatment-specific mean outcome as a function
of time, the treatment-specific average mean outcome at a
fixed point in time, or the treatment-specific mean outcome
over a specified time frame.

MOTIVATING EXAMPLE: STAR∗D TRIAL

The Sequenced Treatment Alternatives to Relieve Depres-
sion (STAR∗D) trial (24) was designed to evaluate the effi-
cacy of treatments for major depressive disorder. The trial
involved 4 treatment levels, with randomization to an appro-
priate set of treatments among participants entering each
level. Each level had a target treatment period of 12 weeks;
however, participants could exit early or remain longer based
on their response to treatment. Within each level, clinical
visits were scheduled to occur at weeks 0, 2, 4, 6, 9, and 12;
extra visits were allowed if clinically indicated. At each visit,
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Figure 1. Irregular versus missing data. Each panel shows hypothetical data from 6 patients in a randomized trial with 3 scheduled assessment
times. The horizontal lines represent patients and the dots represent assessment times for each patient. (A) Repeated assessments with
no variation around the intended assessment times. (B) Repeated assessments subject to missingness. (C) Variation around the intended
assessment times is shown. (D) Variation around the intended assessment times, missingness, and additional assessments is shown.

the Quick Inventory of Depressive Symptomology (QIDS)
(25) was scheduled to be administered, with both the self-
reported QIDS (QIDS-SR) and clinician rated QIDS (QIDS-
CR) used at each visit.

According to the STAR∗D protocol, the decision on when
to exit a level was informed, in part, by the QIDS-CR.
Participants could exit a level prior to 12 weeks if they
experienced intolerable side effects. They could also exit
early if their side effects were tolerable and they experienced
partial or no symptom relief. If they had a partial response
at 12 weeks, the clinician could delay the exit. The protocol
allowed for dose adjustments to deal with side effects and
nonresponse.

For the purposes of illustration, we focus on the the 661
patients who entered level 2 and were randomized to receive

bupriopion, sertraline, or venlafaxine. We focus on the lon-
gitudinal data through 69 days, because it is reasonable to
believe that all patients could stay on this level through that
time. Our analysis focuses on the change from baseline in the
QIDS-SR. Table 1 lists descriptive statistics of covariates (at
level 2 entry) for these patients.

EXPLORING AND CHARACTERIZING IRREGULARITY

Reasons for irregularity

Understanding why assessement times vary is an impor-
tant step in determining how to handle irregularity. Four
common reasons for irregularity are random variation in
assessment times, missed assesments, extra assessments,
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Table 1. Demographics for the STAR∗D Trial at Level 2, Among Patients Randomized to Receive Venlafaxine, Bupropion, or Sertraline

Bupropion
(n = 223)

Sertraline
(n = 215)

Venlafaxine
(n = 223)

Variable

No. % No. % No. %

Age, yearsa 42.3 (13.0) 43.3 (12.7) 41.5 (12.5)

QIDS-SR at level entrya 13 (5.03) 13.20 (4.73) 13.33 (5.06)

QIDS-CR at level entrya 14 (4.55) 13.93 (4.37) 14.09 (4.63)

Male sex 96 43.0 98 45.6 85 38.1

On medical or psychaitric leave 21 9.4 16 7.4 21 9.4

Receiving public aid 17 7.6 11 5.1 15 6.7

Receiving Medicaid 39 17.6 23 10.7 22 9.9

Has private health insurance 99 44.4 88 40.9 102 45.7

Family and friends helpful 108 48.4 81 37.7 84 37.7

Married 72 32.3 70 32.6 75 33.6

Lives alone 60 26.9 55 25.6 49 22.0

Completed high school 115 51.6 122 56.7 121 54.3

Student 25 11.2 24 11.2 36 16.1

Working for pay 123 55.2 106 49.3 125 56.1

Volunteering 25 11.2 32 14.9 35 15.7

Able to make important decisions 104 46.6 98 45.6 97 43.5

Able to enjoy things 202 90.6 198 92.1 197 88.3

No. of assessments per patienta 3.3 (1.4) 3.4 (1.4) 3.5 (1.4)

Gaps between visits, daysa 17 (7) 17 (7) 18 (8)

Time of last visit, daysb 49 (33, 63) 49 (40, 63) 57 (37, 63)

Abbreviations: QIDS-CR, Quick Inventory of Depressive Symptomology, clinician-rated; QIDS-SR, Quick Inventory of Depressive Sympto-
mology, self-reported.

a Values are expressed as mean (standard deviation).
b Values are expressed as median (interquartile range).

and lack of prespecified assessment times. We consider each
of these reasons in the following paragraphs.

In most settings, it is unrealistic to expect assessments to
occur at exactly the protocolized times; this may be due to
capacity of the clinic or research team, due to the patient
having conflicting commitments, or simply due to week-
ends. Such events will lead to random deviation from the
intended assessment times and may be specifically stipulated
in the trial protocol. For example, the STAR∗D trial protocol
stipulated visits occur within 6 days of the protocolized
times.

Missed assessments occur even when best practices are
used in trials (e.g., see Bonk (26), Bootsmiller et al. (27),
Gourash et al. (28), and Hough et al. (29)). Neuhaus et
al. (30) noted that assessments may be missed for reasons
related to the outcome and that patients may have assess-
ments between scheduled measurement times due to the
patient feeling unwell or to physician concern. The proto-
col for the STAR∗D trial indicated that patients may visit
between protocol-specified times as clinically indicated;
because the QIDS-CR and QIDS-SR were administered

at each visit, some patients have extra assessments. Thus,
although there were 4 protocolized follow-up times in the
first 9 weeks of level 2, 10 patients had 5 visits and 2 patients
had 6 visits.

Finally, some trials do not specify assessment times at
all. Carroll et al. (31) reported on a randomized trial among
patients with stage 3 or 4 chronic kidney disease, in which
electronic health records were used to collect outcome data
(HbA1C and estimated glomerular filtration rate), with all
follow-up as part of usual care. A concern with such trials
is that assessments become more frequent in response to
deterioration in the patient’s health. For example, a sudden
decrease in estimated glomerular filtration rate would likely
prompt a repeated measurement within a few weeks (32).

Quantifying the extent of irregularity

There is evidence that greater degrees of irregularity carry
a greater risk of bias (33). Various approaches to quantifying
the extent of irregularity in longitudinal data have been
proposed. These include descriptive statistics and plots.

Epidemiol Rev. 2022;44:121–137
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Table 2. Treatment-Specific Number and Percentage of Individuals With at Least 1 Visit in the Each of the 4 Visit Windows

Bupropion Sertraline Venlafaxine
Visit No. of Days

No. % No. % No. %

1 8–21 145 65 137 64 149 67

2 22–35 122 55 118 55 116 52

3 36–49 93 42 105 49 95 43

4 50–70 78 35 73 34 96 43

Descriptive statistics. Some studies have reported descrip-
tive statistics on the number of outcome assessments per
participant, with larger variation among individuals in the
number of assessments being indicative of greater irregu-
larity. Moreover, variation among groups may suggest dif-
ferential assessment time mechanisms and potential bias in
estimating treatment contrasts using traditional methods. For
example, the STAR∗D trial reported a mean of 3.8 visits
per patient (standard deviation (SD), 1.8) in the bupropion
group, 4.0 (SD, 1.7) in the sertraline group, and 4.2 (SD,
1.8) in the velafaxine group. Table 2 displays the treatment-
specific number and percentage of individuals with at least 1
visit in the each of the 4 visit windows. Twenty-six percent of
individuals in each group had out-of-window visits. Among
visits, 13%, 14%, and 12% were out-of-window visits in the
bupropion, sertraline, and velafaxine groups, respectively.

Gaps between the visits may be more informative (34). In
the STAR∗D trial, the mean gap between visits was 19 (SD,
9) days in the bupropion and sertraline groups, and 20 (SD,
10) days in the venlafaxine group.

Plots. Abacus plots, similar to those in Figure 1, can pro-
vide a useful visual of the extent of irregularity. Each hor-
izontal line represents an individual, and the assessment
times are represented by dots. In practice, if the trial includes
many individuals, it can be helpful to take a random sub-
sample to avoid a cluttered graph. Figure 2 shows this plot
for level 2 of the STAR∗D trial, with the protocolized visit
windows shaded in gray. In this figure, patient 6 had a single
visit in each protocolized assessment and patient 12 had 2 of
the 4 follow-up visits falling just outside the assessment win-
dow. If we were to convert the data to a repeated measures
setup, we would discard important information.

Characterizing the irregularity mechanism

Having considered reasons for irregularity and quantified
the extent of irregularity, we now consider the irregularity
mechanism. This is the irregular assessment time counter-
part to the missingness mechanism and guides the choice of
analytic technique. The literature has used a range of terms to
describe the irregularity mechanism, including informative
observation (e.g, Liang et al. (6); Sisk et al. (35)); outcome
dependence (e.g., (Lin et al. (1); McCulloch and Neuhaus

(36)); ignorability (Farewell et al. (23)); and a generalization
of Rubin’s missingness taxonomy (Rubin (37)) to irregular
assessment times (Pullenayegum and Lim (16)).

Outcome dependence has been defined as any situation
where the assessment times are not independent of the
outcomes (36). Informative assessment is sometimes defined
as any dependence between the outcomes and the assessment
times (i.e., any setting where the number of assessments by
time t is dependent on the outcomes at time t) (38). For
the purposes of analysis, it is helpful to distinguish between
types of informative assessment times.

Pullenayegum and Lim (16) proposed characterizing the
assessment mechanism using an extension of Rubin’s tax-
onomy. Here, we present the following slight modification
of their characterization. Assumptions depend on the data
intended to be recorded and are given in Table 3. Note that
where Pullenayegum and Lim (16) used the term “visiting,”
here we use the more general term “assessment.”

The directed acyclic graphs (DAGs) in Figure 3 demon-
strate examples of these assumptions in the STAR∗D trial,
where, for simplicity, we ignore the auxiliary QIDS-CR
covariate (for the general case, see Web Appendix 1, and
Web Figures 1 and 2) (available at https://doi.org/10.1093/
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Figure 2. Abacus plot for level 2 of the STAR∗D trial.
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Table 3. Types of Irregularity According to Data to be Collected

Data Intended to be Recorded
Type of

Irregularity
Outcome and Baseline Covariates Outcome, Baseline, and Auxiliary Covariates

ACAR Assessment process is independent of the
underlying outcome process and baseline
covariates.

Assessment process is independent of the
underlying outcome process, underlying
auxiliary covariate process, and baseline
covariates.

ACAR-X Assessment process is conditionally
independent of the underlying outcome
process, given baseline covariates.

Assessment process is conditionally
independent of the underlying outcome
process and underlying auxiliary covariate
process, given baseline covariates.

AAR Assessment at any given time is conditionally
independent of the underlying outcome at that
time, given past observed outcomes, past
assessment history, and baseline covariates.

Assessment at any given time is conditionally
independent of the outcome at that time, given
past observed outcomes, past assessment
history, and past observed covariates
(auxiliary and baseline).

ANAR Assessment at any given time is not
conditionally independent of the underlying
outcome at that time, given past observed
outcomes, past assessment history, and
baseline covariates.

Assessment at any given time is not
conditionally independent of the outcome at
that time given past observed outcomes, past
assessment history, and past observed
covariates (auxiliary and baseline).

Abbreviations: AAR, assessment at random; ACAR, assessment completely at random; ACAR-X, assessment completely at random with
baseline covariates; ANAR, assessment not at random.

aje/mxac010); common concepts we shall use in discussing
these DAGs are as follows:

• Collider: A vertex V on a specified path from vertex A to
vertex B is a collider if V is neither A nor B and the path
takes the form: A · · · → V ← · · · B.

• Noncollider: A vertex V on a specified path from vertex A
to vertex B is a noncollider if V is neither A nor B and the
path takes 1 of the following forms: A · · · → V → · · · B,
A · · · ← V → · · · B. or A · · · ← V ← · · · B.

• Ancestor: A vertex A is said to be an ancestor of B if there
exists a directed path from A to B (i.e., A → · · · → B) or
if A = B.

• Blocked paths: A specified path from A to B is said to be
blocked given a set of vertices C if 1) there is a noncollider
on the path that is in C or 2) there is a collider on the path
that is not an ancestor of C. A is said to be conditionally
independent of B given C if all paths from A to B given
the set of vertices C are blocked.

Assessment completely at random (ACAR) occurs when
assessment times and outcome are independent. This is
depicted in Figure 3A: there are no backdoor paths between
assessment on day j and QIDS-SR on day j. Under assess-
ment completely at random given baseline covariates assess-
ment and QIDS-SR are conditionally independent given the
baseline covariates. This is shown in Figure 3B: the only
backdoor path between assessment on day j and QIDS-SR
on day j is through baseline covariates. Under assessment
at random (AAR), assessment on day j is conditionally
independent of QIDS-SR on day j given past observed
data. This is shown in Figure 3C: all backdoor paths from

assessment on day j to QIDS-SR on day j go through
either past observed QIDS-SR, past assessment history, or
baseline covariates. Assessment not at random (ANAR)
occurs when assessment times and outcomes are dependent
given previously observed data. This could occur because of
dependence on the current value of the outcome (Figure 3G)
(e.g., if an increase in depressive symptoms prompted an
additional visit) or due to dependence through correlated
random effects (Figure 3D–3F).

Testing (with caveats)

In general, it not possible to use statistical testing to
determine the true underlying data-generating mechanism.
There are 3 reasons for this. First, it is impossible to tell if the
unobservable outcome at any given time is affecting assess-
ment at that time. Second, DAGs specify whether any depen-
dence exists but not the specific type of dependence. For
example, a DAG does not tell us whether baseline covariates
influence the mean gap times between assessments, whether
they influence the variability of the gap times, or both. Third,
lack of statistical significance does not necessarily indicate
support for a simpler model; it may simply indicate that there
is not much evidence because of a small sample size (39).

For a given DAG, analyses involve fitting models. Sub-
ject to a proposed DAG being correct and assumptions of
analytic models holding, one can examine whether the data
provide evidence that this DAG is more appropriate than a
simpler DAG.

Suppose outcomes and baseline covariates are to be
recorded (Figure 3 for the STAR∗D trial, Web Figure 1
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Figure 3. Continued

for the general case). Here, notice that Figure 3 is a
submodel (special case) of Figure 3A, which is a submodel
of Figure 3C; the green arrows identify additional depen-

dencies assumed in Figure 3B compared with Figure 3A
and 3C, compared with 3B. If it is assumed that Figure 3B
holds and that baseline covariates act multiplicatively on
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the assessment intensity with the effect being constant over
time, one can examine whether the data provide evidence
that Figure 3B is to be preferred over Figure 3A by fitting
a recurrent events model for the assessment process with

baseline covariates as predictors; this can be done using
marginal (40) or frailty (41) models. Similarly, if it is
assumed that Figure 3C and a proportional intensity model
hold, one can test whether the data provide evidence that
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Figure 3. Directed acyclic graphs showing possible relationships between outcomes and assessments. Shaded nodes represent unobserved
data. (A) Independence: assessment times independent of Quick Inventory of Depressive Symptomology—Self-Rated (QIDS-SR). (B) Baseline
covariate dependence: assessment times and QIDS-SR conditionally independent given baseline. (C) Conditionally independent given
baseline covariate and previously observed (Obs) outcomes. (D) Shared random effect/baseline covariate dependence. (E) Correlated random
effects/baseline covariate dependence. (F) Correlated random effects/baseline; covariate/previous uutcome dependence. (G) Unobserved
outcome ependence. QIDS − SRobs

day j = QIDS − SRday j if assessment occurs on day j; otherwise, it is missing.

Figure 3C is to preferred to Figure 3B by fitting a marginal
or frailty recurrent-events model with baseline covariates
and past observed outcomes as predictors.

We may test whether there is evidence against conditional
independence of outcome and assessment processes given
observed data provided we are willing to assume a particular
model for dependence through random effects. McCulloch
and Neuhaus (36) considered the case where only outcomes
are recorded. They posited a DAG in which the outcome
and assessment processes are associated via a random effect
(Figure 3D without the baseline covariate). They proposed
a diagnostic test to assess whether the random effect is
associated with the assessment indicators. Their test relies
on correct specification of a fully parametric model for the
conditional distribution of the outcomes given the random
effect, a distribution for the random effect, and a model
for conditional distribution of the assessment times given
the random effect. Their proposal has the following essen-
tial elements: 1) fit a random effects model (e.g., general-
ized linear mixed model) based on the observed outcomes,
2) obtain predicted values of the random effects for each
individual, and 3) test whether the total number of assess-
ments per patient is associated with the predicted random
effects in step 2. Their procedure can be extended to incor-
porate baseline covariates.

Liang et al. (6) considered the case in which outcome and
assessment processes are influenced by separate but depen-
dent random effects (Figure 3E) with continuous outcomes.
They posited a semiparametric joint model that assumes
a proportional intensity model with a random effect that
acts multiplicatively, a distribution for the random effect
in the intensity model, a mean model for the outcomes
including a random effect, and a parametric model for the
expected value of the outcome random effect given the

assessment random effect. They provided an approach for
testing whether there is evidence that the simpler model
without dependence between the outcome and assessment
random effects (Figure 3B) does not hold. Their method
breaks down when the variance of the random effect for the
assessment process is 0, because, in this case, the parametric
model for the dependence between the outcome and assess-
ment random effects is not identifiable. Consequently, we
suggest estimating the variance of the assessment random
effect before implementing their procedure. This can be
done by fitting a frailty model for the assessment intensity.

Finally, if it is assumed that outcomes and assessment
times are independent given outcome and assessment ran-
dom effects, baseline covariates, and past observed out-
comes (Figure 3F) and that the past observed outcomes
act multiplicatively on the assessment intensities, one can
test whether there is evidence to prefer Figure 3F over its
submodel 3E, which posits conditional independence given
random effects and baseline covariates. This can be done
by fitting a recurrent-events model to the assessment times,
including past observed outcomes and baseline covariates
as predictors. Because of the presence of dependent random
effects, this must be done with a frailty model rather than a
marginal model. Similar testing procedures (with associated
caveats) can be applied when there is an auxiliary covariate
(as in Web Figure 2).

Assessment times in the STAR∗D trial

We use the above approaches to explore the assessment
mechanism in the STAR∗D trial. For the purposes of illus-
tration, we only consider the following baseline covariates:
age, sex, whether the patient was on medical or psychiatric
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Table 4. Intensity Rate Ratios (95% Confidence Intervals) for Predictors of Assessment Intensity in Level 2 of the STAR∗D Dataa

Bupropion Sertraline Venlafaxine
Covariate

IRR 95% CI IRR 95% CI IRR 95% CI

Male sex 1.08 0.91, 1.27 1.16 0.99, 1.36 1.02 0.88, 1.20

Age, years 1.04 0.96, 1.12 1.03 0.96, 1.11 1.07 0.99, 1.15

Medical/psychiatric leave 1.20 0.92, 1.56 0.86 0.63, 1.17 1.08 0.82, 1.44

QIDS-SR at baseline 1.00 0.98, 1.01 1.01 0.99, 1.02 0.99 0.97, 1.01

� QIDS-SR 1.01 0.98, 1.03 1.04 1.01, 1.06 1.01 0.98, 1.03

� QIDS-SR ×
(

(days−15)
7

)2
/100 0.93 0.84, 1.02 0.83 0.76, 0.92 0.89 0.83, 0.96

Abbreviations: CI, confidence interval, IRR, intensity rate ratio; QIDS-SR, Quick Inventory of Depressive Symptomology – self-rated; � QIDS-
SR, QIDS-SR at last visit minus QIDS-SR at baseline.

a Intensities measure the frequency of observation, with higher intensities indicating more frequent observation.

leave, and QIDS-SR score. For simplicity, we ignore the
longitudinally collected QIDS-CR; an analysis including
this auxiliary appears in Web Appendix 2, Web Table 1, and
Web Figure 3.

We first consider whether there is evidence to rule out
ACAR or ACAR given baseline covariates (Figure 3A and
3B) under the assumption that conditional independence
holds given baseline covariates and past observed QIDS-SR
(Figure 3C). In our analysis, we will assume that baseline
covariates and past outcomes act multiplicatively on the
assessment intensities. For each treatment, Table 4 shows
intensity ratios for baseline and lagged covariates, fitted
through a Cox model with robust standard errors (clustered
on subjects). There is a time-dependent association between
change from baseline in QIDS-SR at the last visit and assess-
ment intensity (Figure 4), generally in the first 4 weeks,
when QIDS-SR at the last visit was higher than QIDS-SR
at baseline assessments were more frequent; after the first
4 weeks, increases in QIDS-SR were associated with less
frequent assessment.

We next examine the SD of the assessment random effect
in Figure 3F, assuming that the random effect acts mul-
tiplicatively on the assessment intensity and that random
effects follow either a gamma distribution (via the frailty
option in the R function coxph) or a lognormal distribution
(via the coxme function in R). In both cases, we incorporated
the covariates listed in Table 4 as fixed effects. Assuming
a gamma distribution, the estimated SD was 0.007 for all
3 groups. Assuming a lognormal distribution, the estimated
SD was 0.009 for the bupropion and sertraline groups and
0.004 for the venlafaxine group. Consequently, if we assume
a gamma distribution, our best estimate of the 2.5th per-
centile of this distribution is 1.00 (to 2 decimal places); the
97.5th percentile is also 1.00. If we assume a lognormal
distribution, our best estimates of the 2.5th and 97.5th per-
centiles are 0.98 and 1.02, respectively, in the bupropion and
sertraline groups; in the venlafaxine group, they are 0.99 and
1.01, respectively. The variation in the random effect is so
small that any model for dependence between the assessment
and outcome random effects will be poorly identified.

Given the caveats expressed in the preceding section,
there is evidence of a relationship between the assessment
and outcome processes. Specifically, we can rule out inde-
pendence (Figure 3A), dependence solely through baseline
covariates (Figure 3B) and solely through baseline covari-
ates and random effects (Figure 3E and 3D). Dependence
induced through random effects in addition to past outcomes
is possible but is likely to have limited impact due to the
small estimated variance of the random effect in the assess-
ment time model. We thus suggest that analyses consider
outcome and assessment time processes that are dependent
through baseline covariates and past outcomes (the scenario
in Figure 3C, a case of AAR) and through a sensitivity
analysis that specifies the dependence of QIDS-SR on day
j with assessment on day j (the scenario Figure 3G, a case of
ANAR) (42).

It is instructive to consider what would happen if we
were to assume that assessment on day j is conditionally
independent of QIDS-SR on day j, given baseline covariates
and a common random effect (Figure 3D), even though we
have evidence (with caveats) that this is not the case. If
we additionally assume that the QIDS-SR scores follow a
normal distribution and are independent of one another and
the assessment times given a random intercept and slope,
and that the random effects have a multivariate normal dis-
tribution, the McCulloch and Neuhaus (36) test can be used
to assess whether there is evidence of a common random
effect that directly affects both the outcomes and assess-
ments. Figure 5 shows a plot of the number of assessments
per participant versus the estimated random effects. The
Spearman correlation coefficients are 0.08 (P = 0.3), 0.07
(P = 0.3), and 0.20 (P = 0.006) for the bupropion, sertraline,
and venlafaxine arms, respectively.

For the venlafaxine arm, the result of this test may seem
to be at odds with the finding that there is little variance
in the random effect for assessment time. However, this
can be explained by noting that the assumption behind the
McCulloch and Neuhaus test—that past observed QIDS-SR
scores do not directly affect assessment times—appears not
to hold. It is possible that in the venlafaxine arm, the test is
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Figure 4. Log intensity ratio for change from baseline in Quick Inventory of Depressive Symptomology—Self-Rated (QIDS-SR) score as a
function of time (in days) at the last visit, in a Cox model for assessment intensity for (A) the bupropion group, (B) the sertraline group, and
(C) the venlafaxine group. Solid lines indicate the estimated regression coefficient from a spline fit, and dashed lines indicate a 95% CI.

picking up the dependence of assessment times on previous
QIDS-SR scores.

STATISTICAL MODELS

To the extent possible, we recommend conducting anal-
yses separately by treatment arm. For each treatment arm,
we consider regression models for the longitudinal outcome.
We assume the regression function will include time and
possibly a subset of baseline covariates (e.g., stratifica-
tion variables). Postrandomization variables should not be
included in the regression model, because these may be fac-
tors affected by treatment. It may seem that a simple solution
to the problem of varying visit frequency is to include num-
ber of previous observed visits as a time-varying covariate
in an outcome regression model. There are 2 reasons not
to do this. First, it is a postrandomization variable. Second,
Neuhaus et al. (30) showed that this leads to increased bias
over ignoring the irregularity of the assessment times.

In the following sections, we describe statistical methods
appropriate for the analysis of longitudinal outcomes subject
to irregular assessment according to the postulated relation-
ships between assessment times and outcomes. Because our
aim is to provide an overview of methods that can be used in
practice, we restrict our attention to methods for which code
is available. Figure 6 provides a summary of the methods,
and Table 5 details functions that can be used to fit them in R
(R Foundation for Statistical Computing, Vienna, Austria),
SAS (SAS Institute, Inc., Cary, North Carolina), and Stata
(StataCorp LP, College Station, Texas).

Marginal models and generalized estimating equations

A marginal regression model fit using generalized esti-
mating equations (GEEs) is appropriate when ACAR holds
(Figure 3A for the STAR∗D trial, Web Figures 1A and 2A
for the general case). It can also be used under ACAR given
baseline covariates (Figure 3B, Web Figures 1B and 2B),
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Figure 5. McCulloch and Neuhaus (36) test for association between the estimated random effect and assessment time process for (A) the
bupropion group, (B) the sertraline group, and (C) the venlafaxine group. Solid lines represent the locally estimated scatterplot smoothing fit,
and shaded areas represent the 95% CI for the fit. The Spearman correlations are 0.08 (P = 0.3), 0.07 (P = 0.3), and 0.20 (P = 0.006) for the
bupropion, sertraline, and venlafaxine arms, respectively.

provided that the baseline covariates associated with both
the outcomes and the assessment times are included in the
marginal model.

Mixed models

Consider the special case of AAR where only baseline
covariates and past observed outcomes influence the assess-
ment times (Figure 3C, Web Figures 1C and 2C). In this
scenario, Lin et al. (1) showed that estimators of the parame-
ters of marginal regression model obtained using GEEs will
be biased. However, (generalized) linear mixed models may
be used (13, 23, 43), provided that any baseline covariates
associated with both outcomes and assessment times are
included in the model.

The validity of inference using mixed models depends
on correct model specification. Lipsitz et al. (13) demon-
strated that mis-specification of the correlation structure
of the outcomes can lead to biased estimates of regres-
sion coefficients. Thus, simply including a random intercept

in the model is not sufficient; the random intercept alone
describes a correlation structure in which the correlation
between any 2 assessments from the same participant is
the same no matter how far apart those assessments are. In
practice, the correlation often drops off as the time between
the assessments increases. There are 2 ways in which this
correlation structure can be modeled. The first is to include
other random effects, for example, a random effect for time
to allow for the possibility that the outcome trajectory varies
among participants. The second is to allow the residuals to be
correlated; exponential and Gaussian correlation structures
both allow autocorrelation to decrease as assessment times
get farther apart.

Marginal models and inverse-intensity weighting

In the general case of AAR, assessment times may be
influenced by an auxiliary time-dependent covariate (Web
Figure 2D). Because we do not wish to condition on a
time-dependent covariate, neither marginal models fit using
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Table 5. Options for Implementing the Statistical Models in R, SAS, and Stata Programs

Method R (Package) SAS (Proc) Stata

GEE gee (gee) GENMOD xtgee

geeglm (geepack) GEE

GLMM lmer or glmer (lme4) GLIMMIX meglm

IIW-GEE iiwgee (IrregLong)

or coxph and PHREG and stcox and

weights = in geeglm scwgt in GENMOD pweight in xtgee

Liang model Liang (IrregLong) n/a n/a

Multiple outputation mo (IrregLong) n/a n/a

Parametric joint model merlin (merlin) NLMIXED merlin

Abbreviations: GEE, generalized estimating equation; GLMM, generalized linear mixed model; IIW, inverse intensity weighted; n/a, not
applicable.

GEEs nor mixed models will yield a valid analysis. However,
marginal models using inverse-intensity weighting (IIW)
can be used.

The intuition behind IIW is similar to survey weighting.
With survey weights, we have some groups of people who
are overrepresented in the data and others who are underrep-
resented. We find the probability of each person in the data
having been sampled, and weight the data by its inverse (i.e.,
reciprocal) (44); consequently, people who are underrepre-
sented receive more weight than people who are overrepre-
sented. IIW works similarly except that it is not individuals
who are over- or underrepresented but rather the assessment
times within individuals. To capture the degree of over-
or underrepresentation, we model the assessment intensity
using a Cox model for the recurrent assessment times. This
model can be used to estimate, for each assessment, the
intensity of that assessment occurring. Each assessment is
then weighted by the inverse of its intensity.

IIW was initially proposed for estimating parameters of
marginal models through GEEs (1), and this has been its
primary use. However, the method has also been extended
to quantile regression (3).

Semiparametric joint models

When ANAR is induced solely by baseline covariates
and random effects (Figure 3D and 3E, Web Figures 1D
and 1E, 2E and 2F), semiparametric joint models can be
used. A number of semiparametric joint models have been
proposed (5–10, 38). They all assume that the assessment
and outcome processes are conditionally independent given
random effects and baseline covariates. We focus here on
the Liang et al. (6) model because this is the only model for
which code is publicly available.

The Liang et al. (6) model posits a random-effects model
for the outcome with a linear link function, an intensity
model with a multiplicative assessment random effect, and
a semiparametric linear model for the mean of the outcome

random effects conditionally on the assessment random
effects. Importantly, the model does not make distributional
assumptions about the outcome but does require assump-
tions about the distribution of the random effects for the
assessment times.

Fully parametric joint models

An alternative to semiparametric joint models are fully
parametric joint models, some of which are implemented in
a Bayesian context (14, 15). These models specify distribu-
tions for both the outcomes and the assessment times. This
added requirement comes with flexibility in the terms of the
types of outcomes and link functions that can be considered
(e.g., binary outcomes with logistic link functions). How-
ever, incorrectly specified parametric joint models may be
more biased than a simple mixed model (30).

Multiple outputation and semiparametric joint models

When dependence between the outcome and assessment
processes occurs through baseline covariates, random effects,
past observed outcomes, and auxiliary covariates (Web Fig-
ure 2G), neither the semiparametric joint model nor IIW is
appropriate. However, under the assumption that the assess-
ment intensity follows a multiplicative frailty model, it is
possible to use multiple outputation to create revised data
sets in which the assessment intensity depends solely on
random effects (a special case of Web Figure 2F); these
revised data sets can be analyzed using a semiparametric
joint model (45).

Multiple outputation can be thought of as the complement
of multiple imputation. Where multiple imputation stochas-
tically imputes missing data, multiple outputation stochasti-
cally discards excess data (46, 47). Multiple imputation does
the imputation multiple times to quantify uncertainty in the
imputations; multiple outputation discards excess data mul-
tiple times to make use of all the data. The outputation selects
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Figure 6. Analytic methods according to assumed dependence
between outcome and assessment processes. SPJM, semipara-
metric joint model; STAR∗D, Sequenced Treatment Alternatives to
Relieve Depression.

observations with probability inversely proportional to their
assessment intensity. Specifically, we assume that the assess-
ment times are independent given baseline covariates, past
outcomes, past time-varying auxiliaries, assessment time
history, and a random effect, and we assume a multiplicative
intensity model. By selecting observations with probability
inversely proportional to their estimated intensity given the
previously observed data, we create a data set in which the
assessment intensity depends solely on the random effect.

Asymptotically, multiple outputation is equivalent to
weighting (46) and is useful in settings where the estimating
equation cannot be weighted. This is the case for the Liang
et al. (6) semiparametric joint model. Combining multiple
outputation with a semiparametric joint model allows us to
handle assessment intensities that depend on both observed
time-dependent covariates and a random effect.

Worked example

Our earlier analyses of the assessment process suggest
that we focus on scenarios where assessment on day j and
outcome on day j are dependent through past observed
QIDS-SR scores (Figure 3C, a case of AAR) or where
assessment on day j depends directly on QIDS-SR on day j
(Figure 3G, a case of ANAR). Because no analytic methods
exist for latter the scenario, we focus on methods suitable for
the scenario represented by Figure 3C, (i.e., a linear mixed
model, an IIW GEE, or multiple outputation). For both IIW
and multiple outputation, we use the marginal multiplicative
intensity model given in Table 4. For the mixed model, we

adjust for the baseline covariates included in Table 4; these
are centered at their group-specific means to obtain mean-
ingful intercept estimates. For comparison, we also include
an unweighted GEE and the results from creating assessment
time windows and selecting 1 assessment per window. Code
for fitting the models is given in Web Appendix 3.

The results are shown in Table 6. The GEE based on re-
creating repeated measures data estimates the largest decline
in QIDS-SR scores over time. The GEE applied to all the
available data reduces the estimate of decline over time,
as does the mixed model. The IIW-GEE gives the smallest
decline. As expected, the IIW-GEE and multiple outputation
results are similar. Regarding standard errors, IIW-GEE and
multiple outputation generally had slightly larger standard
errors than the GEE. The mixed model had the smallest
standard errors for all the regression coefficients, whereas
the GEE applied to the binned data had the largest. The
ordering of standard errors is consistent with what we would
expect theoretically. The use of weighting, while correcting
bias, tends to have high standard errors; the mixed model
makes the strongest modeling assumptions, allowing for
efficient estimation via maximum likelihood; and binning
the data discards observations and hence has inflated stan-
dard errors.

DISCUSSION

We have argued that longitudinal data subject to irregular
assessment in randomized controlled trials should be treated
with the same care as missing data. We have reviewed
ways of describing the extent of irregularity, exploring the
informativeness of the assessment process, classifying the
assessment mechanism and choosing an appropriate analy-
sis. Table 7 summarizes our recommendations.

In this review, we have also highlighted areas for method-
ological development. Despite active research into analytic
methods, there are no published approaches to sensitivity
analysis, to our knowledge. This is a major oversight, given
the unverifiable nature of the assumptions that must be made
to handle such data.

Given the need for assumptions, one may question
whether a randomized controlled trial should use longitudi-
nal data but rather favor the traditional approach of choosing
a primary time point at which to evaluate the outcome,
with other time points treated as secondary. Although this
has merit, restricting to only this approach still requires
assumptions to handle missing data issues, ignores the fact
that there is usually variation in the assessment times, limits
our ability to study treatment responses over time, and
precludes improvements in precision that a longitudinal
analysis has to offer. Furthermore, with trials that use
registries to collect outcome data, we may be faced with a
choice: study the outcome we are truly interested in (which
is measured longitudinally subject to irregularity) or study
an alternative outcome that can be ascertained fully (e.g.,
hospitalization or death). It would be unfortunate either not
to address the question of interest or to avoid the efficiencies
of registry-based data collection, because of reluctance to
handle irregular assessment.
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Table 6. Estimated Regression Coefficients for Change in the Quick Inventory of Depressive Symptomology—Self Rated

Method Buproprion Sertraline Venlafaxine S-B V-B V-S

Intercepts (Standard Error)

Binned GEE −3.22 (1.47) −3.34 (1.48) −2.10 (1.37) −0.12 (2.08) −1.12 (2.01) −1.24 (2.02)

GEE −0.65 (1.08) −1.82 (0.96) −0.82 (0.89) −1.17 (1.44) −0.17 (1.40) −1.00 (1.31)

IIW-GEE −0.00 (1.13) −0.96 (0.97) −0.23 (0.96) −0.96 (1.49) −0.23 (1.48) −1.19 (1.37)

MO −0.02 (1.11) −0.97 (0.97) −0.24 (1.00) −0.99 (1.48) −0.22 (1.50) −1.21 (1.39)

Mixed model −1.07 (0.85) −1.65 (0.83) −0.13 (0.86) −0.58 (1.19) −0.94 (1.21) −1.53 (1.19)

Slopes for Logarithm of Days in Level (Standard Error)

Binned GEE −1.63 (0.43) −1.71 (0.42) −1.39 (0.39) −0.08 (0.61) −0.24 (0.59) −0.32 (0.58)

GEE −0.98 (0.34) −1.37 (0.29) −1.10 (0.27) −0.39 (0.44) −0.12 (0.44) −0.27 (0.39)

IIW-GEE −0.75 (0.36) −1.09 (0.29) −0.78 (0.29) −0.34 (0.46) −0.03 (0.46) −0.31 (0.41)

MO −0.74(0.36) −1.10 (0.29) −0.78(0.30) −0.35 (0.46) −0.03 (0.47) −0.32 (0.42)

Mixed model −1.07 (0.26) −1.28 (0.25) −0.84 (0.25) −0.21 (0.36) −0.24 (0.36) −0.45 (0.35)

Abbreviations: GEE, generalized estimating equation; IIW, inverse intensity weighted generalized estimating equation; MO, multiple
outputation; S-B, sertraline–bupropion; V-B, venlafaxine–bupropion; V-S, venlafaxine–sertraline.

Careful design can reduce the risk of bias in trials with
longitudinal data, particularly when the intention is to collect
outcomes through electronic health records as part of usual
care. Suggestions from the literature are to include some
scheduled visits, extract physician-recommended time to
next assessment when working with electronic health record
data, and include a baseline measurement of the outcome of
interest. We review these briefly.

If data are to be collected as part of usual care, including
some time points when everyone is requested to be assessed
reduces the risk of bias; in simulation studies, the bias of
mixed models was reduced when some scheduled measure-

ments were included (30). The Partnerships for Reducing
Overweight and Obesity With Patient-Centered Strategies
(PROPS) trial (49) provides an example of this: in addition
to data collection through the electronic health record, a
research assistant contacted patients to schedule a visit at
12 months. Furthermore, it is useful to record the physician-
recommended time to next visit; this time-varying covariate
can be used to improve the chances of correct specification
of IIW models (50).

When the outcome is continuous and the visit and out-
come processes are assumed to share correlated random
effects, recording and adjusting for a baseline value of the

Table 7. Recommendations for the Design and Analysis of Randomized Controlled Trials Involving Longitudinal Data With Irregular Assessment

Recommendation Reason Reference

For studies using naturalistic follow-up, include some
scheduled assessments for everyone.

Improves robustness of mixed models to informative
assessments

30

Measure the outcome variable at baseline. Can study change from baseline (eliminates random
intercepts)

54

Document reasons for irregularity (recommended time to
next visit and whether visit is scheduled or as
needed).

Reasons for irregularity can help specify a DAG.

Quantify the extent of irregularity (and, in studies with
protocolized visit times, include extent of irregularity in
DMC reports).

Greater irregularity is associated with greater risk of bias. 33

Specify a DAG, and choose an analytic approach that is
appropriate given assumed DAG.

Appropriateness of any given analytic model depends on
assumptions made about interrelationships among
outcomes and assessment time.

1, 6, 16, 23

Conduct sensitivity analysis. Cannot ascertain whether the proposed DAG and model
are correct; results may be sensitive to mis-specification

1, 30, 50

Abbreviations: DAG, directed acyclic graph; DMC, Data Monitoring Committee.
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outcome can reduce the variance of the random effects,
possibly obviating their need for inclusion.

Despite considerable interest in the statistical literature,
irregular and potentially informative assessment has gone
largely unnoticed in the clinical literature, with a few excep-
tions (18–22, 51). Researchers may be unaware of the poten-
tial for bias or be under the false impression that converting
the data to a repeated measures problem resolves the bias
(when, in fact, it may create increased bias (30)). Moreover,
there have been limited attempts at knowledge transfer out-
side of the statistical literature.

In other areas, guidance documents developed through
consensus among key stakeholders have proven effective in
helping researchers use best practices in their work (e.g., the
Consolidated Standards of Reporting Trials statement (52)
improved in the quality of reporting of randomized trials
(53)). We suggest that developing such a guidance document
for longitudinal data subject to irregular and potentially
informative assessment times would be a logical next step.
This review, and Table 7 in particular, could provide a start-
ing point for such an endeavor.

Irregular and potentially informative assessment times
are a generalization of missing data, yet although there is
agreement that missing data must be carefully considered,
irregular observation times are typically ignored. Moreover,
with the advent of electronic health records and registry
randomized trials, irregular observation times are likely to
become increasingly prevalent. Statistical methods exist to
handle the problem, and we hope this review provides inves-
tigators with guidance on how to design and analyze studies
with the potential for irregular and informative assessment
times.

ACKNOWLEDGMENTS

Author affiliations: Child Health Evaluative Sciences,
Hospital for Sick Children, Toronto, Ontario, Canada
(Eleanor M. Pullenayegum); Dalla Lana School of Public
Health, University of Toronto, Toronto, Ontario, Canada
(Eleanor M. Pullenayegum); and Division of Biostastistics,
Department of Population Health Sciences, School of
Medicine, University of Utah, Salt Lake City, Utah, United
States (Daniel O. Scharfstein).

This work was funded by Natural Sciences and
Engineering Research Council Discovery grant
RGPIN-2021-02733.

Data used in the preparation of this manuscript were
obtained from the National Institute of Mental Health Data
Archive (NDA). NDA is a collaborative informatics system
created by the National Institutes of Health (NIH) to
provide a national resource to support and accelerate
research in mental health. The data set identifier is
10.15154/1522579.

This manuscript reflects the views of the authors and
may not reflect the opinions or views of the NIH or of the
submitters submitting original data to NDA.

Conflict of interest: none declared.

REFERENCES

1. Lin H, Scharfstein D, Rosenheck R. Analysis of longitudinal
data with irregular, outcome-dependent follow-up. J R Stat
Soc Series B. 2004;66(3):791–813.

2. Buzkova P, Lumley T. Semi-parametric modeling of repeated
measurements under outcome-dependent follow-up. Stat
Med. 2009;28(6):987–1003.

3. Sun X, Peng L, Manatunga A, et al. Quantile regression
analysis of censored longitudinal data with irregular outcome-
dependent follow-up. Biometrics. 2016;72(1):64–73.

4. Lin D, Ying Z. Semiparametric and nonparametric regression
analysis of longitudinal data. J Am Stat Assoc. 2001;96(453):
103–126.

5. Lin D, Ying Z. Semiparametric regression analysis of
longitudinal data with informative dropouts. Biostatistics.
2003;4(3):385–398.

6. Liang Y, Lu W, Ying Z. Joint modeling and analysis of
longitudinal data with informative observation times.
Biometrics. 2009;65(2):377–384.

7. Sun L, Mu X, Sun Z, et al. Semiparameteric analysis of
longitudinal data with informative observation times. Acta
Math Appl Sin. 2011;27(11):29–42.

8. Sun L, Song X, Zhou J. Regression analysis of longitudinal
data with time-dependent covariates in the presence of
informative observation and censoring times. J Stat Plan
Inference. 2011;141(2):2902–2919.

9. Sun L, Song X, Zhou J, et al. Joint analysis of longitudinal
data with informative observation times and a dependent
terminal event. J Am Stat Assoc. 2012;107(498):688–700.

10. Zhu L, Sun J, Tong X, et al. Regression analysis of
longitudinal data with informative observation times and
application to medical cost data. Stat Med. 2011;30(12):
1429–1440.

11. Chen Y, Ning J, Cai C. Regression analysis of longitudinal
data with irregular and informative observation times.
Biostatistics. 2015;16(4):727–739.

12. Shen W, Liu S, Chen Y, et al. Regression analysis of
longitudinal data with outcome-dependent sampling and
informative censoring. Scand Stat Theory Appl. 2019;46(3):
831–847.

13. Lipsitz SR, Fitzmaurice GM, Ibrahim JG, et al. Parameter
estimation in longitudinal studies with outcome-dependent
follow-up. Biometrics. 2002;58(3):621–630.

14. Gasparini A, Abrams KR, Barrett JK, et al. Mixed-effects
models for health care longitudinal data with an informative
visiting process: a Monte Carlo simulation study. Stat Neerl.
2020;74(1):5–23.

15. Ryu D, Sinha D, Mallick B, et al. Longitudinal studies with
outcome-dependent follow-up: models and Bayesian
regression. J Am Stat Assoc. 2007;102(479):952–961.

16. Pullenayegum EM, Lim LS. Longitudinal data subject to
irregular observation: a review of methods with a focus on
visit processes, assumptions, and study design. Stat Methods
Med Res. 2016;25(6):2992–3014.

17. Farzanfar D, Abumuamar A, Kim J, et al. Longitudinal
studies that use data collected as part of usual care risk
reporting biased results: a systematic review. BMC Med Res
Methodol. 2017;17(1):133.

18. Alley DE, Hicks GE, Shardell M, et al. Meaningful
improvement in gait speed in hip fracture recovery. J Am
Geriatr Soc. 2011;59(9):1650–1657.

19. Arterburn DE, Bogart A, Sherwood NE, et al. A multisite
study of long-term remission and relapse of type 2 diabetes
mellitus following gastric bypass. Obes Surg. 2013;23(1):
93–102.

Epidemiol Rev. 2022;44:121–137

10.15154/1522579


Irregular Assessment Times in Randomized Trials 137

20. Van Ness PH, Allore HG, Fried TR, et al. Inverse intensity
weighting in generalized linear models as an option for
analyzing longitudinal data with triggered observations. Am J
Epidemiol. 2010;171(1):105–112.

21. Wong ES, Wang BC, Alfonso-Cristancho R, et al. BMI
trajectories among the severely obese: results from an
electronic medical record population. Obesity (Silver Spring).
2012;20(10):2107–2112.

22. Buzkova P, Brown E, John-Stewart G. Longitudinal data
analysis for generalized linear models under
participant-driven informative follow-up: an application in
maternal health epidemiology. Am J Epidemiol. 2010;171(2):
189–197.

23. Farewell DM, Huang C, Didelez V. Ignorability for
general longitudinal data. Biometrika. 2017;104(2):
317–326.

24. Rush AJ, Fava M, Wisniewski SR, et al. Sequenced treatment
alternatives to relieve depression (STAR∗D): rationale and
design. Control Clin Trials. 2004;25(1):119–142.

25. Rush AJ, Trivedi MH, Ibrahim HM, et al. The 16-item quick
inventory of depressive symptomatology (QIDS), clinician
rating (QIDS-C), and self-report (QIDS-SR): a psychometric
evaluation in patients with chronic major depression. Biol
Psychiatry. 2003;54(5):573–583.

26. Bonk J. A road map for recruitment and retention of older
adult participants in longitudinal studies. J Amer Geriat Soc.
2010;58(Suppl 2):S303–S307.

27. Bootsmiller BJ, Ribisl KM, Mowbray CT, et al. Methods of
ensuring high follow-up rates: lessons from a longitudinal
study of dual diagnosed participants. Subst Use Misuse. 1998;
33(13):2665–2685.

28. Gourash W, Ebel F, Lancaster K, et al. LABS Consortium
Retention Writing Group. Longitudinal assessment of
bariatric surgery (LABS): retention strategy and results at 24
months. Surg Obes Relat Dis. 2013;9(4):514–519.

29. Hough R, Tarke H, Renke V, et al. Recruitment and retention
of homeless mentally ill participants in research. J Consult
Clin Psychol. 1996;64(5):881–891.

30. Neuhaus JM, McCulloch CE, Boylan RD. Analysis of
longitudinal data from outcome-dependent visit processes:
failure of proposed methods in realistic settings and potential
improvements. Stat Med. 2018;37(29):4457–4471.

31. Carroll JK, Pulver G, Dickinson LM, et al. Effect of 2 clinical
decision support strategies on chronic kidney disease
outcomes in primary care: a cluster randomized trial. JAMA
Netw Open. 2018;1(6):e183377.

32. Weber C, Beaulieu M, Karr G, et al. Demystifying chronic
kidney disease: clinical caveats for the family physician. BC
Med J. 2008;50(6):304–309.

33. Lokku A. Summary Measures for Quantifying the Extent of
Visit Irregularity in Longitudinal Data [dissertation].
Toronto, ON, Canada: University of Toronto; 2020.

34. Nazeri Rad N, Lawless JF. Estimation of state occupancy
probabilities in multistate models with dependent intermittent
observation, with application to hiv viral rebounds. Stat Med.
2017;36(8):1256–1271.

35. Sisk R, Lin L, Sperrin M, et al. Informative presence and
observation in routine health data: a review of methodology
for clinical risk prediction. J Am Med Inform Assoc. 2021;
28(1):155–166.

36. McCulloch CE, Neuhaus JM. Diagnostic methods for
uncovering outcome dependent visit processes. Biostatistics.
2020;21(3):483–498.

37. Rubin D. Inference and missing data. Biometrika. 1976;63(3):
581–592.

38. Sun J, Sun L, Liu D. Regression analysis of longitudinal data
in the presence of informative observation and censoring
times. J Am Stat Assoc. 2007;102:1397–1406.

39. Altman D, Bland J. Absence of evidence is not evidence of
absence. Br Med J. 1995;311:485.

40. Andersen P, Gill R. Cox’s regression model for counting
processes: a large sample study. Ann Stat. 1982;10(4):
1100–1120.

41. Hougaard P. Frailty models for survival data. Lifetime Data
Anal. 1995;1(3):255–273.

42. Smith B, Yang S, Apter AJ, et al. Trials with irregular and
informative assessment times: a sensitivity analysis approach
[preprint]. arXiv:2204.11979. (https://doi.org/10.48550/
ARXIV.2204.11979). Accessed November 2, 2022.

43. Fitzmaurice GM, Lipsitz SR, Ibrahim JG, et al. Estimation in
regression models for longitudinal binary data with outcome-
dependent follow-up. Biostatistics. 2006;7(3):469–485.

44. Horvitz D, Thompson D. A generalization of sampling
without replacement from a finite universe. J Am Stat Assoc.
1952;47(260):663–685.

45. Pullenayegum EM. Multiple outputation for the analysis of
longitudinal data subject to irregular observation. Stat Med.
2016;35(11):1800–1818.

46. Hoffman E, Sen P, Weinberg C. Within-cluster resampling.
Biometrika. 2001;88(2):1121–1134.

47. Follmann D, Proschan M, Leifer E. Multiple outputation:
inference for complex clustered data by averaging analyses
from independent data. Biometrics. 2003;59(2):420–429.

48. Williamson J, Datta S, Satten G. Marginal analyses of
clustered data when cluster size is informative. Biometrics.
2003;59(1):36–42.

49. Baer HJ, Wee CC, DeVito K, et al. Design of a
cluster-randomized trial of electronic health record-based
tools to address overweight and obesity in primary care. Clin
Trials. 2015;12(4):374–383.

50. Pullenayegum E. Meeting the assumptions of
inverse-intensity weighting for longitudinal data subject to
irregular follow-up: suggestions for the design and analysis of
clinic-based cohort studies. Epidemiologic Methods. 2020;
9(1):20180016.

51. Lim LSH, Pullenayegum E, Lim L, et al. From childhood to
adulthood: the trajectory of damage in patients with
juvenile-onset systemic lupus erythematosus. Arthritis Care
Res (Hoboken). 2017;69(11):1627–1635.

52. Schulz KF, Altman DG, Moher D. for the CONSORT Group.
Consort 2010 statement: updated guidelines for reporting
parallel group randomised trials. BMJ. 2010;8:18.

53. Turner L, Shamseer L, Altman D, et al. Does use of the
consort statement impact the completeness of reporting of
randomised controlled trials published in medical journals? A
Cochrane review. Syst Rev. 2012;1:60.

54. Pullenayegum E, Feldman B. Doubly robust estimation,
optimally truncated inverse-intensity weighting and
increment-based methods for the analysis of irregularly
observed longitudinal data. Stat Med. 2013;32(6):1054–1072.

Epidemiol Rev. 2022;44:121–137

arXiv:2204.11979
https://doi.org/10.48550/ARXIV.2204.11979
https://doi.org/10.48550/ARXIV.2204.11979

	Randomized Trials With Repeatedly Measured Outcomes: Handling Irregular and Potentially Informative Assessment Times
	INTRODUCTION 
	THE DISTINCTION BETWEEN IRREGULAR AND MISSING DATA
	TARGETS OF INFERENCE
	MOTIVATING EXAMPLE: STAR *D TRIAL
	EXPLORING AND CHARACTERIZING IRREGULARITY
	STATISTICAL MODELS
	DISCUSSION


