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Abstract

Recent surges in mass spectrometry-based proteomics studies demand a concurrent rise in speedy 

and optimized data processing tools and pipelines. Although several stand-alone bioinformatics 

tools exist that provide protein–protein interaction (PPI) data, we developed Protein Interaction 

Network Extractor (PINE) as a fully automated, user-friendly, graphical user interface application 

for visualization and exploration of global proteome and post-translational modification (PTM) 

based networks. PINE also supports overlaying differential expression, statistical significance 

thresholds, and PTM sites on functionally enriched visualization networks to gain insights into 

Corresponding Author Vidya Venkatraman – Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars 
Sinai Medical Center, Los Angeles, California 90048, United States; Phone: 310-423-2998; vidya.venkatraman@cshs.org.
Author Contributions
All authors have given approval to the final version of the manuscript.

The authors declare no competing financial interest.

HHS Public Access
Author manuscript
J Am Soc Mass Spectrom. Author manuscript; available in PMC 2023 July 22.

Published in final edited form as:
J Am Soc Mass Spectrom. 2020 July 01; 31(7): 1410–1421. doi:10.1021/jasms.0c00032.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



proteome-wide regulatory mechanisms and PTM-mediated networks. To illustrate the relevance 

of the tool, we explore the total proteome and its PTM-associated relationships in two different 

nonalcoholic steatohepatitis (NASH) mouse models to demonstrate different context-specific case 

studies. The strength of this tool relies in its ability to (1) perform accurate protein identifier 

mapping to resolve ambiguity, (2) retrieve interaction data from multiple publicly available 

PPI databases, and (3) assimilate these complex networks into functionally enriched pathways, 

ontology categories, and terms. Ultimately, PINE can be used as an extremely powerful tool for 

novel hypothesis generation to understand underlying disease mechanisms.

Graphical Abstract
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INTRODUCTION

The aim of mass spectrometry (MS) based proteomics studies is to identify and quantify 

a wide range of proteins and PTMs in biological samples of interest to uncover 

disease mechanisms and novel protein biomarkers.1,2 For the last two decades, liquid 

chromatography–tandem mass spectrometry (LC–MS/MS) of complex mixtures of proteins 

in data-dependent acquisition (DDA) mode3 has been the standard in proteomics for 

sampling breadth and discovery. Recent improvements in mass spectrometer design and 

bioinformatics algorithms have resulted in the development of another peptide sampling 

method: data-independent acquisition (DIA)4 which aims to combine identification breadth 

of DDA with the sensitivity and reproducibility of targeted MS assays such as multiple 

reaction monitoring (MRM) or parallel reaction monitoring (PRM).5,6 These proteomic 

technological developments have led to a software evolution going from stand-alone 

software tools for MS data processing to large-scale complex computational pipelines 

transforming raw data into biological discoveries.7 With these advances, we can now 

routinely analyze large-scale quantitative differences between samples but more importantly 

we can also detect and quantify an array of protein PTMs that were previously 

challenging.8-10
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The unambiguous identification and quantitation of PTM sites by classical bottom up 

methods still relies on proteotypic peptide identification, modified amino acid residue 

localization, peptide ionization and fragmentation, MS instrument accuracy, as well as its 

abundance in the biological sample of interest.11,12 Despite these challenges, PTMs can be 

biologically insightful since they serve to diversify the function of proteins by acting as key 

regulators of protein function, structure, and PPIs in response to perturbations.13 PTMs can 

occur on multiple sites of the same protein or the same site of a protein modified by different 

types of PTMs that could potentially serve as mechanistic switches.14-16 An emerging 

challenge is therefore to decipher how PTMs, individually or in combination, modulate 

protein interactions to ultimately inform our understanding of key molecular processes and 

regulatory functions.17

Several existing bioinformatics tools are available for visualizing and analyzing PPI 

networks. Databases targeted at collecting and storing PPIs, such as STRING,18 GeneMA-

NIA,19 and Reactome20 are publicly available and easily accessible. Similarly, KEGG 

(Kyoto Encyclopedia of Genes and Genomes),21 Reactome, WikiPathways,22 and Gene 

Ontology (GO)23,24 act as knowledge bases to provide functional and biological 

implications of proteins. Ingenuity Pathway Analysis (IPA)25 builds on its comprehensive, 

manually curated knowledge base to provide biological insights from expression analysis 

experiments. PTMapper,26 Phospho-Path,27 and PTMOracle28 allow users to covisualize and 

coanalyze PTM data in the realm of PPI networks and helps improve our understanding 

of PTM-associated relationships. Analogously, piNET,29 another PTM-centric visualization 

tool, maps peptides to proteins, performs upstream analysis of PTM sites, and conducts 

pathway analysis. Despite this, however, there is a sparsity of tools that (1) perform 

protein-centric PPIs and functional enrichment analysis while maintaining the protein-gene 

relationship from public databases which predominantly contains gene-centric information, 

(2) address ambiguity arising from combining data retrieved through various independent 

databases, and (3) simultaneously explore the regulatory role of PTMs and their involvement 

in PPIs and biological function.

With the goal of addressing these challenges, PINE has been developed as a fully automated, 

versatile, and easy to use Cytoscape-based tool30 to facilitate mapping, annotation, and 

visualization of protein and PTM-level quantitative data generated by either targeted, 

discovery (DDA and DIA), or other proteomics approaches. It allows users to develop 

systematic searches for proteins of interest and explore complex network visualizations 

depicting PPIs and functional relationships. In order to improve proteome-wide coverage 

of PPIs, PINE supports extraction and integration of PPIs from different publicly available 

databases such as STRING and GeneMANIA with the ability to apply score thresholds 

based on the nature and quality of the supporting evidence, all while maintaining the 

protein–gene relationship and resolving ambiguity in the data. PINE utilizes ClueGO31 for 

functional enrichment analysis over other tools such as BiNGO32 and PIPE33 because of 

its ability to (1) integrate GO terms and pathway analysis from multiple databases, (2) 

dynamically create annotation networks based on user query list, and (3) cluster genes 

and compare functional differences to provide accurate term statistics. PINE also supports 

overlaying differential expression, statistical significance thresholds, and PTM sites (if 
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applicable) on functionally enriched visualization networks to gain insights into proteome-

wide regulatory mechanisms as well as how PTMs might regulate PPIs.

To illustrate how PINE can be used to explore global proteomic signatures, crosstalk 

between PTMs, and their involvement in PPIs, we present case studies using two mouse 

models of nonalcoholic steatohepatitis,34 each chosen due to their extreme cellular 

methylation potential. Nonalcoholic fatty liver disease (NAFLD), the leading cause of 

chronic liver disease in Western countries, starts as a consequence of defects in diverse 

metabolic pathways that involve hepatic accumulation of triglycerides. In some cases, 

this progresses to nonalcoholic steatohepatitis (NASH), a condition characterized by 

the appearance of inflammation, cellular injury with or without fibrosis, together with 

steatosis.35 Because there are different causes that can lead to steatosis, we hypothesized 

that different NASH subtypes may exist, reflecting the variety of mechanisms causing 

liver fat accumulation, and that identifying each subtype would help us characterize early 

proteomic changes in NAFLD development as well as key PTMs driving the progression 

toward NAFLD and subsequent NASH. We assessed this hypothesis by analyzing two 

mouse models of nonalcoholic steatohepatitis (NASH), (l) the glycine N-methyltransferase 

knockout (Gnmt −/−) mouse model, which has increased hepatic SAMe and is biologically 

hypermethylated, and (2) the methionine adenosyltransferase 1A knockout (Mat1a −/−) 

mouse model, which has hepatic SAMe deficiency and therefore is hypomethylated, to 

understand the different mechanisms causing liver fat accumulation in NASH.34,36-39 Both 

animal models spontaneously develop NASH and resemble many aspects of the major 

subtypes of human disease.34,40 Interestingly, disease in both animal models can be treated 

by normalization of SAMe levels ,highlighting the importance of maintaining normal 

hepatic SAMe level and methylation capacity in NASH.34,39,42 This is relevant because 

it may provide a better understanding of early molecular drivers of NASH and key PTMs 

that may drive disease progression which would be beneficial in developing early stage 

biomarkers and therapies for NASH.

METHODS

Sample Preparation for Proteomic Analysis.

Livers were obtained from 10-month old Mat1a −/− male mice in a C57Bl/6 background 

with hepatic lipid accumulation and their aged-matched wild-type (WT) male sibling 

littermates,34 and three-month old Gnmt −/− mice in a C57Bl/6 background with hepatic 

lipid accumulation with age matched WT littermates.36,37 Frozen mouse livers were ground 

while frozen in a liquid N2-cooled cryohomoginizer (Retsch). Samples were denatured in 8 

M urea and 100 mM Tris–HCl, pH 8.0 and ultrasonicated (QSonica) at 4 °C for 10 min in 10 

s repeating on/off intervals of 10 s and centrifuged at 16000x for 10 min at 4 °C. The soluble 

fraction was reduced with DTT (15 mM) for 1 h at 37 °C, alkylated with iodoacetamide (30 

mM) for 30 min at room temperature in the dark, diluted to a final concentration of 2 M urea 

with 100 mM Tris–HCl, pH 8.0, and digested for 16 h on a shaker at 37 °C with a 1:40 ratio 

of Trypsin/Lys-C mix (Promega). Each sample was desalted using HLB plates (Oasis HLB 

30 μm, 5 mg sorbent, Waters).42
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Titanium Dioxide Phospho Enrichment.

Titanium dioxide (TiO2) phospho enrichment was performed as previously described.43 

Briefly, 400 μg of sample was digested as described above, individually desalted on Oasis 

HLB cartridges (Water, 10 mg), and eluted in 300 μL of 80% ACN, 5% TFA, 1 mM 

glycolic acid. Each sample was then incubated in 50 μL of titanium dioxide (TiO2) slurry 

(30 mg/mL, Glygen Corp, Columbia, MD) at room temperature on a shaker overnight. Then 

the TiO2 beads were washed twice with 200 μL of 80% ACN, 5% TFA, once with 200 μL 

of 80% ACN, 0.1% TFA, and eluted in 180 μL of 30% ACN/1% NH4OH and neutralized 

with 200 μL of 10% FA. Samples were then desalted on Oasis HLB μ-elution plates (Waters) 

and eluted in 80% ACN, 0.1% FA, dried in a speedvac, and then resuspended in 0.1% FA for 

LC–MS/MS analysis.

MS Acquisition.

MS data were acquired on Orbitrap Fusion Lumos (Thermo) mass spectrometer connected 

to an Ultimate 3000 nano LC system (Thermo Scientific) with a 60 min or 120 min gradient 

operating in DDA-MS or DIA-MS mode.42 Briefly, for DDA analysis, precursor ions were 

fragmented using HCD and analyzed in the Orbitrap at 15000 K resolution. Monoisotopic 

precursor selection and dynamic exclusion was enabled and only MS1 signals exceeding 

50000 counts triggered the MS2 scans. For DIA analysis, MS1 scans were acquired at 

60,000 Hz from mass range 400–1000m/z. DIA MS2 scans were acquired in the Orbitrap at 

15,000 Hz with fragmentation in the HCD cell. DIA was performed using 4 Da (150 scan 

events) windows over the precursor mass range of 400–1000 m/z, and the MS2 mass range 

was set from 100 to 1500 m/z.

Generation of Spectral Libraries and DIA Analysis.

A lysine PTM enriched peptide assay library42 was used for the DIA analysis and 

quantitation of individual specimens. Briefly, a hypermethylated DIA assay library was 

created by DDA acquisitions of 5 SCX fractions from Gnmt −/− mouse livers. This library 

was supplemented with a DDA acquisition of a methyl-Lys immunoprecipitation from a 

hepatoma cell line derived from Gnmt −/− mice.41 The library was further supplemented 

with DDA acquisitions of a “one-pot” acetyl-Lys and succinyl-Lys immunoaffinity 

enrichment of mitochondrial extract and whole liver lysate as previously described.44

Briefly, raw intensity data for peptide fragments was extracted from DIA files using the 

open source openSWATH workflow45 against the lysine PTM enriched peptide assay 

library. Target and decoy peptides were then extracted, scored, and analyzed using the 

mProphet algorithm46 to determine scoring cut-offs consistent with 1% FDR. Peak group 

extraction data from each DIA file was combined using the “feature alignment” script, 

which performs data alignment and modeling analysis across an experimental data set.47 

Normalized transition-level data was then processed using the mapDIA software to perform 

pairwise comparisons between groups at the peptide level.48 All data sets have been 

made publicly available at Panorama (PXD ID: PXD012621): https://panoramaweb.org/

methylation_methods_1.url.
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Phospho Enrichment Database Searches and Quantification.

DDA files were converted to mzXML and searched through the Trans Proteomic Pipeline 

(TPP) using three algorithms, (1) Comet,49 (2) X!tandem! Native scoring,50 and (3) 

X!tandem! K-scoring51 against a reviewed, mouse canonical protein sequence database, 

downloaded from the Uniprot52 database on January 24th, 2019, containing 17002 target 

proteins and 17002 randomized decoy proteins. Target-decoy modeling of peptide spectral 

matches was performed with PeptideProphet,53 and peptides with a probability score 

of >95% from the entire experimental data set were imported into Skyline software54 

for quantification of precursor extracted ion intensities (XICs). Precursor XICs from 

each experimental file were extracted against the Skyline library, and peptide XICs with 

isotope dot product scores >0.8 were filtered for final statistical analysis of proteomic 

differences.55 Raw peptide intensities were used to calculate pairwise comparisons between 

experimental groups using the linear mixed effects model built into the open sources 

MSSTATs (v3.2.2) software suite.56 Peptide abundance differences with an adjusted p-value 

<0.05 were considered significantly different. The Skyline documents containing precursor 

XICs from each experimental file are available at Panorama (PXD ID: PXD017324): https://

panoramaweb.org/qt1CeZ.url

Software Design and Availability.

PINE is a tool designed to enable visualization of PPI networks and aids in forging 

biological interpretation through the creation of annotation networks. It allows users to 

integrate other types of protein data including fold changes, p-values, category, or PTM 

sites. To facilitate this, all the protein data must be formatted into a comma-separated (CSV) 

file. Protein data that is formatted into the required input format is parsed and visualized as 

PPIs networks on the visualization platform, Cytoscape, with nodes representing individual 

proteins and other protein data mapped onto the nodes. Concurrently, a list of annotation 

terms is generated from which users can select their terms of interest to create subnetworks 

depicting annotations linked to their related proteins. The features of PINE are described in 

more detail in the Results section. PINE is programmed in Python3, and the graphical user 

interface (GUI) for PINE was created with the Electron framework v6.0.7. Pyinstaller v3.4 

was used to wrap PINE’s Python code into an executable for use by the GUI. Prerequisites 

for using PINE include Cytoscape v3.7 or higher to be installed by users along with 

Cytoscape apps GeneMANIA and ClueGO. Programmatic access for the PINE workflow is 

enabled through Cytoscape’s RESTful API methods57 and the py2cytoscape58 utility. The 

source code for PINE that invoke these respective APIs and the GUI along with additional 

usage documentation are included in the public GitHub repository, https://github.com/csmc-

vaneykjlab/pine, and an executable release is available for Windows 10.

RESULTS

Overview and Features of PINE.

PINE is a visualization tool that provides users with PPI and annotation networks for the 

integration of different types of protein data. To do so, the PINE framework consists of 

six primary steps: (1) preprocessing of input, (2) Uniprot mapping for protein to gene 

transformation, (3) retrieval of STRING PPIs, (4) simultaneous retrieval of GeneMANIA 
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PPIs, (5) merging from both public databases to construct single PPI network, and (6) 

performing enrichment analysis using Cytoscape plug-in, ClueGO to drive subnetwork 

creation (Figure 1A).

The preprocessing step parses the input containing proteins and their auxiliary data to 

accurately map protein data onto nodes in the final network. Considerations are made to 

ensure input data is valid (i.e., fold changes and p-values must be numeric), readily available 

(i.e., modified peptides must contain PTMs), and nonredundant. This step also allows the 

user to exclude ambiguous PTM sites with oxidized methionines, missed cleavages, and 

ragged ends.59,60 Next, the Uniprot mapping step performs an API call to Uniprot to map 

proteins to their corresponding primary genes. All subsequent steps use the primary gene 

to represent the input protein in order to remain consistent with various publicly available 

PPI databases. This step also conducts checks to ensure information is valid (i.e., protein 

identifiers are truly Uniprot IDs), readily available (i.e., proteins are successfully mapped to 

a primary gene), and nonredundant. At this level, data ambiguity is resolved by picking the 

first protein-to-gene match in cases such as (1) many proteoforms mapping to one primary 

gene and (2) one protein mapping to many primary genes. Additionally, the user also has an 

option to exclude all ambiguous identifiers from the analysis.

The next step retrieves PPIs from STRING and GeneMANIA and conducts checks to 

ensure information is valid (i.e., query genes are successfully mapped as a primary 

interactor), readily available (i.e., query genes are successfully mapped in STRING 

and/or GeneMANIA) and nonredundant interactions. The merging step consolidates PPI 

information from STRING and GeneMANIA to create a single, unified PPI network 

(as shown in Figure 1B). The ClueGO enrichment analysis step identifies enriched gene 

ontology terms and pathway annotation for all valid (i.e., one-to-one query gene mapping 

within ClueGO) and readily available (i.e., query genes successfully mapped in ClueGO) 

genes. Finally, PINE enables selection and visualization of top representative enriched terms 

into subnetworks using Cytoscape’s RESTful API methods and the py2cytoscape utility. 

Cytoscape framework supports interactive network visualization through a Zoomable User 

Interface (ZUI) with customizable features such as zooming, panning, layout, and styling 

options to manage visual presentation.

Hereby, PINE provides a unique automation solution for robust and thorough data 

processing to avoid ambiguity, while simultaneously integrating information from various 

public databases for the creation of functionally enriched visualization networks.

PINE Interface for Visualization.

PINE provides a simple, easy-to-use, graphical user-interface having four main modules: 

(1) Initial Setup, (2) Parameter Settings, (3) Logging and Data Handling, and (4) Pathway 

Selection of enriched terms.

The first module is the Setup tab describing a one-time installation guideline required for 

running the tool. Subsequent uses of PINE automatically register the paths to the necessary 

packages. Next, the Settings tab (Figure 2A) enables users to customize their analysis 

with several mandatory and optional parameters. Mandatory parameters include input file 
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containing protein identifiers and related data columns in CSV format, type of run based 

on the proteomics experiment (for example, PTM-based run type can be selected in the 

presence of PTM sites), path to output directory and the species of interest. Additionally, 

in the case of PTM run types, users are required to provide the species database file 

in FASTA format, digestion enzyme used and modification sites of interest. Optional 

parameters include: fold change or p-value cutoffs, choice to add blue-colored outline to 

statistically significant protein or PTM nodes, choice to include or exclude all ambiguous 

data, choice of PPI databases to be used along with confidence score of interactions, option 

to include external (nonquery) interactors, functional enrichment analysis based on pathways 

(comprising of Reactome, KEGG, ClinVar,61 CORUM62 and WikiPathways) or individual 

GO terms (biological process, cellular component or molecular function), ClueGO grouping 

level (i.e., representative or specific annotation terms), ClueGO enrichment p-value cutoff, 

and option to upload a background reference file for the enrichment analysis.

Once the analysis is submitted using user-defined settings, the interface is redirected to the 

Log tab which shows the progress of the run as well as records data handling at every 

step. Once the run is complete, the interface is redirected to the Pathway Selection tab 

(Figure 2B) which lists enriched annotation terms for the query data set along with term 

significance, corrected term significance, percent of genes in the cluster associated with 

the term and total number of term related genes. Top representative terms can be selected 

based on one or many of the following criterion: (1) terms with adjusted p-value ≤0.01, 

(2) terms with reasonable coverage based on % genes or number of genes, (3) terms most 

likely connected to the biological system of interest, and (4) terms comprising of candidate 

proteins of interest. Filtering and sorting options are also supported on the UI for easy 

and rapid selection of terms of interest for reanalysis and subnetwork creation which is 

ultimately rendered using Cytoscape’s network visualization features.

Case Study 1: Identifying and Comparing Enriched Pathways and GO Terms.

Visualization of complex networks to uncover functionally enriched subnetworks can be 

challenging especially when large clusters of proteins and their PPIs need to be considered. 

To address this, we performed global quantitative proteomics using DIA across two mouse 

models to better understand the key commonalities and differences in the underlying 

functional pathways involved in causing liver fat accumulation in NASH (Figure 3). Using 

PINE, we first extracted and integrated PPI data from STRING and GeneMANIA for all 

statistically significant differentially expressed proteins (Bayesian False Discovery Rate 

≤0.05) with ≥1.5 log2 fold change by comparing Gnmt −/− mice and Mat1a −/− mice 

relative to WT littermates. With ClueGO enrichment and Cytoscape operations automated 

within PINE, we created a subnetwork of top representative enriched terms to reduce 

visual complexity. Finally, we colored protein nodes based on the observed fold changes 

(with orange corresponding to upregulation and blue corresponding to downregulation) 

and enriched functional nodes were colored based on the percentage of upregulated or 

downregulated protein nodes to indicate activation or inhibition trend for that functional 

node (Figure 4).
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The resulting subnetwork of enriched pathways contained six key functional processes for 

both NASH mouse models, respectively. The Gnmt −/− mice model showed activation 

of pathways such as fatty acid metabolism,63 TCA cycle,63,64 glutathione/one carbon 

metabolism,34,65 peroxisomal protein import,34,66 glycolysis/gluconeogenesis,67,68 and 

inhibition of pathway such as metabolism of xenobiotics by cytochrome P45034,70 (Figure 

4A). On the other hand, The Mat1a −/− mice model showed the reverse trends compared 

to Gnmt −/− mice model with inhibition of pathways such as fatty acid metabolism,63 

TCA cycle,63,64 peroxisomal protein import,34,66 pyruvate metabolism71 and activation of 

pathways such as glutathione metabolism34,65 and metabolism of xenobiotics by cytochrome 

P45034,69,70 (Figure 4B). These findings strongly correlate with known functional pathways 

altered in both NASH mouse models, although their proteomic expression profiles were 

regulated differently, elucidating key proteins could potentially be used as biomarkers to 

differentiate subtypes of NASH.34,42,72

With PINE, we also visualized a subnetwork of enriched GO cellular components to identify 

similarities and differences in the subcellular localization between the two NASH mouse 

models (Figure 5). In PINE, we can represent differential expression data from multiple 

comparison groups (for example, Gnmt −/− mice and Mat1a −/− mice relative to their 

WT littermates) as bar charts wherein the height of the bar represents degree of fold 

change. Since mitochondria are well-known to play a critical role in the development and 

pathogenesis of NAFLD,73,74 we focused our cellular subnetwork around the mitochondrial 

matrix to visualize proteomic signatures between the two mouse models. For example, 

carbamoyl-phosphate synthase (CPS1), a previously reported candidate biomarker for 

NASH,75 shown to be enriched in mitochondrial matrix76 was observed to be altered in 

both NASH mouse models but was significantly downregulated in Mat1a −/− mice relative 

to WT littermates (log2 fold change of –0.9) and nonsignificantly changed in Gnmt −/− mice 

relative to WT littermates (log2 fold change of –0.2), indicating that the two mice models 

might represent different pathophysiologies of NASH disease progression.

Case Study 2: Exploring Lysine and Arginine PTMs in the Context of Enriched Pathways 
and GO Terms.

In order to explore PTM crosstalk between methylation, succinylation and acetylation, we 

performed PTM analysis using DIA across the two NASH mouse models to visualize the 

relationships between quantified peptide/PTM/protein moieties in the context of NASH 

pathophysiology. Using PINE, we mapped all statistically significant differentially expressed 

PTM sites (Bayesian False Discovery Rate ≤0.05) with ≥1.5 log2 fold change between Gnmt 
−/− mice and Mat1a −/− mice relative to their WT littermates along with their functionally 

enriched pathways to provide a site specific PTM network view to shed light onto Lysine 

and Arginine controlled cascades that may be involved (Figure 6).

The resulting subnetwork of enriched pathways contained five key functional processes for 

both NASH mouse models including amino acid metabolism,34,77 lipid metabolism,34,77-79 

PPAR signaling,79 peroxisomal protein import,80,81 and glycolysis/gluconeogenesis,82 some 

of which were also enriched in the global proteome analysis (Figure 4A,B). PINE also 

provides the option to exclude ambiguous sites with oxidized methionines, miscleaved 
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versions, and ragged ends.59,60 In cases where PINE found ambiguity in PTM site identity, 

we indicated it using double asterisk (**) symbol next to the site. For example, BHMT has 

two dimethylated peptidoforms: one with oxidized methionine and one without. We also 

observed different PTMs localized to the same protein indicating possibility for modulating 

biochemical functions through positive and negative regulatory interactions.77 For example, 

Betaine—homocysteine S-methyltransferase 1 (BHMT) is a well-known target for PTMs 

such as acetylation and trimethylation, which may be responsible for BHMT localization.83 

This enzyme plays an important role in regulation of hepatic lipid metabolism to protect 

the liver from triacylglycerol accumulation.34,64,84 A closer look at this protein revealed 

previously unreported lysine monomethylation and dimethylation events at site 179 that 

are regulated differently across the two NASH models, but their biological significance is 

yet to be determined. Understanding the crosstalk between these PTMs and regulation of 

their enzymatic mediators may represent a promising avenue for therapeutics in fatty liver 

disease.85

Case Study 3: Exploring Protein Phosphorylation in the Context of Enriched Pathways and 
GO Terms.

Phosphoproteomics, or the large-scale determination of protein phosphorylation status, 

can be used to characterize and compare a variety of disease states but has been 

applied to NASH in only a handful of studies. For this use case, we performed global 

phosphoproteomics analysis using DDA from Gnmt −/− mice relative to WT littermates to 

look for differentially expressed phosphorylation sites to elucidate the role of kinase activity 

and regulation in NASH. Using PINE, we identified multiple enriched pathways including 

TGF-beta signaling,86,87 insulin signaling,88,89 glucagon signaling pathway,88,89 ChREBP 

mediated metabolic gene expression,88,89 bile acid and bile salt metabolism,89 signaling 

by Rho GTPases,90 EGFR1 signaling pathway,91 AMPK signaling,92,93 mTORC1-mediated 

signaling42,94,95 and translation factors.42,96 Since the complex interplay of AMPK and 

mTORC1 is rapidly gaining clinical relevance in metabolic disease,97-99 we created a 

subnetwork focused around the crosstalk between mTORC1 and AMPK (Figure 7). AMPK 

activation has been known to enhance mitochondrial biogenesis and mitophagy and inhibit 

mTORC1, thus preventing excess-nutrient-induced hepatic lipid accumulation.100

Our phosphoproteome-based subnetwork confirmed these findings with several upregulated 

phosphosites from proteins involved in AMPK signaling as well as several downregulated 

phosphosites from proteins involved in mTORC1-mediated signaling and translation 

factors.42,94-96 In order to take a complete look at all observed phosphosites associated with 

these pathways, we included both significant and nonsignificant differentially expressed 

sites indicated by blue node outline and no node outline, respectively. This network 

also revealed two significantly differentially expressed phosphosites (Threonine 214 and 

Threonine 507) of Eukaryotic translation initiation factor 4 gamma proteins (EIF4G1 and 

EIF4G2) that have been previously reported to be phosphorylated.101,102 We noted that 

both phosphosites were down-regulated (adjusted p-value ≤0.05 and log2 fold change of 

−1.0) and have been shown to be involved in mTORC1 regulated translation control, mitosis 

and protein synthesis. Thus, AMPK could potentially act as a metabolic checkpoint by 

activating catabolic processes and inhibiting anabolic processes, in part, by negatively 
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regulating mTORC1 signaling and enhancing autophagy flux.100,103,104 Although more 

clinical research is required to elucidate the role of AMPK and mTORC1 in NASH, novel 

therapies for metabolic disease could emerge from pharmacological manipulation of this 

interplay97-99,103

DISCUSSION

We have developed a fully automated, easy-to-use bioinformatics tool called PINE to aid 

researchers in extracting and visualizing differentially expressed proteins or PTMs and 

their interaction or functional networks from different types of mass-spectrometry data 

sets including DDA-, DIA-, and PTM-based experiments. PINE performs accurate protein 

identifier mapping to resolve ambiguity, retrieve PPIs from multiple publicly available 

interaction databases, and assimilate these complex networks into meaningful functionally 

enriched pathways visualized as snapshots of the proteome. Using two mouse models of 

NASH, we demonstrated that PINE can be used to gain biological insights that can be 

derived from linking observed protein modification changes to significantly altered protein 

pathways.

We acknowledge that there are certain areas for improvement within PINE, for example, we 

can increase support beyond the three commonly used organisms in proteomics profiling, 

i.e., Homo sapiens, Mus musculus, and Rattus norvegicus, as well, the number of public 

databases accessed for both interactions and annotations can be expanded along with 

improved filtering features based on confidence score or interaction sources. An interesting 

approach would be to compute edge weights based on how many database sources the 

interactions are present in or to apply the method carried out by Hierarchical HotNet105 

which simultaneously combines network interactions and vertex scores to construct a 

hierarchy of altered subnetworks. In the future extension of PINE, we also plan to 

improve network coverage by allowing synonym (or secondary) interactors and include 

upstream regulators to depict enzyme–substrate relationships. Identification of Single 

Amino Acid Polymorphisms (SAPs) could also be an important addition to this tool, 

playing a role in exploring how PTM sites containing SAPs affect underlying disease 

mechanisms. Additionally, due to the challenges involved in the unambiguous identification 

and localization of PTM, we recommend assessing the validity of these sites using tools 

such as Ascore,106 PTMProphet,107 LuciPHOr2,108 PIQUed,109 Peptide Collapse plugin for 

Perseus,110 Inference of Peptidoforms (IPF),111 and Thesaurus112 prior to visualizing these 

data sets in PINE.

In summary, PINE provides a versatile, user-friendly, automated solution for network and 

pathway visualization specialized to handle bottom-up proteomics data. Using different case 

studies, we have demonstrated that PINE can seamlessly combine data from various public 

databases, while providing a variety of customization options, enabling profound exploration 

and visualization of global proteome and PTM relationships. Ultimately, PINE can serve as 

an extremely powerful tool for novel hypothesis generation toward understanding disease 

mechanisms and potential therapeutics.
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Figure 1. 
Overview of PINE Framework. (A) PPIs derived from public databases (e.g., STRING, 

GeneMANIA) and functional enrichment-based network annotations from ClueGO are 

processed by the Cytoscape framework to create PPIs networks. By using PINE, protein 

or PTM associated differential expression (e.g., fold change) or statistical significance data 

(e.g., p-value) can also be overlaid onto the Cytoscape networks. (B) Example PPIs network 

depicting both statistically significant and nonsignificant PTM sites. The rectangular yellow 

nodes denote proteins (represented by their primary genes), connected to circular nodes 

representing PTM sites. The color refers to either down-regulated (blue) or up-regulated 

(orange) sites with statistically significant sites outlined blue. The legend describes the 

various node types and colors used in visualization of PPI networks
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Figure 2. 
PINE graphical user interface. (A) Screenshot illustrating the settings tab for easy query 

upload, providing users the choice to modify parameters for PPIs and annotation analysis. 

(B) Screenshot illustrating the Pathway Selection tab that lists annotation terms, additionally 

providing the option to filter, sort, and subsequently select annotation terms of interest in 

order to generate ontology network.
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Figure 3. 
Hepatic methionine metabolism in different NASH models. Two mouse models of 

nonalcoholic steatohepatitis (NASH): Gnmt −/− mice (left) have increased hepatic SAMe 

level and methylation capacity, being biologically hypermethylated, while Mat1a −/− mice 

(right) are SAMe deficient with reduced methylation capacity and therefore hypomethylated.
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Figure 4. 
Enriched functional networks generated by PINE across different NASH models. (A) The 

Gnmt −/− mice model indicates five activated pathways shown as orange central nodes and 

the one inhibited pathway shown as blue central nodes along with fold-changes from the 

different protein nodes. (B) The Mat1a −/− mice model indicates two activated pathways 

shown as orange central nodes and the four inhibited pathway shown as blue central nodes 

along with fold-changes from the different protein node.
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Figure 5. 
Enriched cellular subnetwork for mitochondrial matrix generated by PINE across different 

NASH models. Altered cellular components are denoted by central gray nodes. Differential 

expression data from multiple comparison groups are represented as bar charts and the bar 

height indicates degree of fold change. (Example: Zoomed view into node CPS1 indicates 

degree of fold change for Mat1a −/− mice vs WT littermates shown using orange bar and 

Gnmt −/− mice vs WT littermates shown using blue bar.)
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Figure 6. 
Multi-PTM network illustrating crosstalk between methylation, acetylation and 

succinylation. Functionally enriched pathways are shown by central gray nodes along with 

gene connections shown by yellow nodes. The PTM site level quantitative differences 

from each mouse model are shown as a bar chart (Gnmt −/− mice indicated by blue 

bar and Mat1a −/− mice by orange bar). Sites are indicated with unimod accession 

in curly brackets (Example, K{34}179 and K{36}179 on gene BHMT would indicate 

lysine monomethylation and lysine dimethylation events on site 179). Ambiguous sites are 

indicated using double asterisk (**) symbol next to the site. (Example, K{1}110** on gene 

GLUD1.)
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Figure 7. 
Phospho-proteome network illustrating significant differentially expressed PTM sites using 

PINE. Inhibited pathways such as mTORC1-mediated signaling and translation factors are 

represented as central blue nodes whereas activated pathway such as AMPK signaling 

pathway are represented as central orange nodes along with gene connections represented 

as yellow nodes. The PTM site level quantitative differences between Gnmt −/− mice 

relative to WT littermates are represented as blue for downregulated nodes or orange for 

upregulated nodes connected to their respective gene nodes. We included both significant 

and nonsignificant differentially expressed sites indicated by blue node outline and no node 

outline, respectively.
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