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Abstract

Primary tumors secrete a variety of factors to turn distant microenvironments into favorable and 

fertile ‘soil’ for subsequent metastases. Among these ‘seeding’ factors that initiate pre-metastatic 

niche (PMN) formation, tumor-derived extracellular vesicles (EVs) are of particular interest as 

tumor EVs can direct organotropism depending on their surface integrin profiles. In addition, EVs 

also contain versatile, bioactive cargo, which include proteins, metabolites, lipids, RNA, and DNA 

fragments. The cargo incorporated into EVs is collectively shed from cancer cells and cancer-

associated stromal cells. Increased understanding of how tumor EVs promote PMN establishment 

and detection of EVs in bodily fluids highlight how tumor EVs could serve as potential diagnostic 

and prognostic biomarkers, as well as provide a therapeutic target for metastasis prevention. 

This review focuses on tumor-derived EVs and how they direct organotropism and subsequently 

modulate stromal and immune microenvironments at distal sites to facilitate PMN formation. We 

also outline the progress made thus far towards clinical applications of tumor EVs.
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Introduction

More than a century ago, Stephen Paget proposed the “seed and soil” hypothesis to 

explain the nonrandom pattern of cancer metastasis [1]. Paget’ s theory was strengthened 

when Isaiah Fidler provided the first experimental evidence for organotropic metastasis 

in the 1970’s. Fidler demonstrated that metastatic dissemination was not determined 

by nonspecific arrest of circulating tumor cells in the capillary bed of the first organ 

encountered, but rather it was dictated by both the properties of tumor cells (“the seed”) and 

distant organ environments (“the soil”) [2, 3]. Since then, much emphasis has centered on 

tumor cell biology while the impact of distant host tissues in metastasis remained elusive. 

However, in 2005, Lyden and colleagues discovered that tumors induced the formation of 

a pre-metastatic niche (PMN) prior to the arrival of metastatic cells. They showed that 

primary tumor-secreted factors promote vascular leakiness and upregulate the synthesis of 

extracellular matrix (ECM) components, including fibronection, in specific distal organ sites 

which in turn recruited VEGFR1 and VLA-4 (a fibronectin receptor) positive bone marrow-

derived haematopoietic progenitor cells[4] to these sites. The changes in local stromal cells 

and the recruited bone marrow cells lead to the upregulation of pro-inflammatory mediators, 

including S100 proteins, creating an immune suppressive microenvironment and immune 

priveledged niche for incoming tumor cells.

In contrast to Paget’s theory where distant organs were thought to be inherently receptive 

to metastatic cells, Lyden’s further studies demonstrated that in addition to tumor-secreted 

soluble factors, including growth factors and chemokines[4, 5], tumor-derived extracellular 

vesicles (EVs)[6-8] also actively remodel these distal organs to support metastatic seeding.

Tumor-derived nano-sized EV subpopulations termed exosomes, contain a variety of 

proteins, lipids, RNA, and DNA, that are derived from the tumor cells and tumor-associated 

stromal cells. The heterogenous small EV subpopulations and their specific “cargoes” are 

not only responsible for creating the PMN but also for directing organotropic seeding of 

disseminated metastatic cells. Recent technical advances have allowed for high resolution 

separation of exosomes into large exosome vesicles (90-120 nm), small exosome vesicles 

(60-80 nm), and non-membranous exomeres (~35 nm) and has facilitated our understanding 

of molecular composition, biodistribution, and functions of the EV subtypes [9, 10]. 

The increased mechanistic understanding of tumor EV-mediated PMN formation and EV 

biogenesis have revealed potential opportunities to predict and prevent metastasis. For 

example, EVs may serve as surrogate biomarkers for the early detection of metastasis, 

and blocking EV biogenesis, secretion, and uptake may inhibit PMN formation to prevent 

metastasis.

This review will focus on how tumor-derived EVs facilitate PMN formation and direct 

organotropism and provide a brief summary of selective EV cargo molecules that support 

this process. In addition, therapeutic and diagnostic applications of tumor-derived EVs for 

the prevention and treatment of metastasis are also discussed.
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EV cargos

EVs cargo consists of bioactive molecules, including proteins, glycans, lipids, and nucleic 

acids. While EV cargos generally reflect the biosynthetic status of the cell of origin, there 

are cases when EVs show an enrichment for specific bioactive molecules. For instance, 

~35% of the entire spectrum of proteins produced in pancreatic ductal adenocarcinoma 

(PDAC) cells are present in EVs, which are associated with critical cancer pathways [11]. 

However, some proteins, lipids, and miRNA can be enriched in EVs as compared to the 

cell of origin. For example, EGFRvIII oncoprotein[12] and 11 miRNAs[13] are more 

highly concentrated in EVs than in the glioma cells of origin. While mechanisms detailing 

the trafficking of cellular molecules into EVs have been proposed[14], the underlying 

mechanism of cargo selection remains largely unknown.

Proteins are well-studied EV cargo and proteomic technologies have provided clues to 

EV biogenesis, targeting, and function. Notable EV protein classes include transmembrane 

proteins, such as tetraspanins, signaling receptors, and integrins, as well as intraluminal 

proteins, including heat shock proteins (HSPs), cytoskeletal proteins, endosomal 

sorting complex required for transport (ESCRT) proteins, RNA-binding proteins, and 

ribonucleoproteins [15]. Twenty-two consistently abundant proteins in EVs were recently 

identified from 14 cell lines irrespective of the isolation method, with most being 

transmembrane proteins and GTPases[16]. Secretory proteins such as growth factors and 

cytokines are normally exported through the classical endoplasmic reticulum (ER)/Golgi-

dependent pathway[17, 18]. Whether these these secretory proteins can be packaged into 

EVs as an unconventional secretion pathway [19] remains controversial since proteomic 

detection of cytokines, chemokines, or growth factors is rarely reported. Meanwhile HSPs 

(e.g., HSPA8, HSP90AB1), tetraspanins (e.g., CD9), ESCRT proteins (e.g., TSG101), 

cytoskeletal proteins (e.g., ACTB, moesin), and GTPases (e.g., RAP1B) are common among 

EVs and, therefore, can serve as pan-EV markers. Other proteins, such as versican, tenascin 

C, and thrombospondin 2, are specific tumor tissue EV markers. Among various EV protein 

families, integrins are of particular interest due to their crucial role in guiding cellular 

tropism of EVs and their use as biomarkers of metastatic organotropism[8]. In contrast 

to integrins, some proteins can block EV uptake. For example, CD47, an anti-phagocytic 

signal, is ubiquitously expressed on tumor cell-derived EVs and prevents EV uptake by 

immune cells to prolong systemic EV circulation[20]. The enrichment of cancer-specific 

proteins in tumor-derived EVs provides a wealth of novel biomarkers for diagnosis and 

prognosis of various cancers. A number of EV protein biomarkers have proven clinical 

utility, including elevated levels of melanoma-specific protein TYRP2, VLA-4, HSP70, and 

the oncoprotein MET found in circulating EVs from melanoma patients [6]. Exploration of 

EV biomarkers specific to different cancer types can be a future direction to pursue due 

to the potential application to increase the yield of tumor-specific material and decrease 

unwanted background in downstream analyses.

Most types of EVs, including exosomes, microvesicles, and apoptotic bodies, are surrounded 

by a lipid bilayer originating from the endosome or cell membrane. As another example 

of cargo selection, EVs have been demonstrated to exhibit 2–3-fold enrichment of 

cholesterol, sphingomyelin, glycosphingolipids, and phosphatidylserine, but package lower 
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concentrations of phosphatidylcholine and phosphatidylinositol compared to lipids in 

cellular membranes. The lipid composition of EVs also varies based on cell of origin[21]. 

EVs isolated from melanoma and osteosarcoma were enriched in multiple saturated 

and unsaturated fatty acid as compared to melanocytes and osteoblasts. The tumor EV 

fatty acid cargo, particularly palmitic acid, induces tumor necrosis factor alpha (TNFα) 

secretion by Kupffer cells, which generates a proinflammatory microenvironment and 

promotes fatty liver formation [22]. In another lipidomic comparison of EVs derived 

from high- and low-metastatic triple-negative breast cancer cells, increased accumulation 

of unsaturated diacylglycerols was found within EVs from high-metastatic cells, which 

is associated with enhanced angiogenesis[23]. In addition to membrane-bound vesicle 

structures, Lyden and colleagues discovered a minuscule (~35nm) non-membranous EV 

subpopulation termed “exomere”, which contains less lipid content than exosomes [10]. 

Exomeres, as compared to exosomes, selectively package metabolic-associated proteins 

and enzymes. Significant variations in the relative levels of ceramide, triglyceride, 

lysophosphatidylglycerol, glycosphingolipid, and mitochondrion-specific lipids between 

exomeres versus exosomes were detected across different cancer cell-types.

In EVs, lipid and protein cargo are heavily glycosylated and reflect the glycosylation 

patterns of host cells [24]. Glycosylation profiles differ markedly between normal and 

tumor or metastatic cells, and characterization of glycan structure and glycosylation sites 

in EV cargo, might also identify new biomarkers for cancer diagnosis and prognosis. 

For example, EVs derived from a metastatic colorectal cancer (CRC) cell line showed 

increased O-GlcNAcylation of cadherin and ATPase superfamilies of proteins compared 

to EVs derived from non-metastatic cells [25]. In contrast, increased amounts of bisecting 

GlcNAc branches on integrin β1 in breast cancer or cancer cell-derived EVs interferes with 

interactions with galectin-3 and FAK/AKT signaling activation to block carcinogenesis and 

metastasis[26].

Distinct glycolipids on tumor cell-derived EVs also interfere with biological processes in 

recipient cells. For example, the disialoganglioside GD3, a specific sialic acid-containing 

glycosphingolipid, is enriched in EVs secreted from melanoma and ovarian cancer cells 

and inhibits T cell activation and stimulates migration of normal cells [27, 28]. As 

glycosylated components are recognized by the ESCRT [29], manipulation of protein 

glycosylation via chemical or genetic engineering has been exploited to facilitate selective 

cargo sorting into EVs[30, 31]. A recent study overexpressing α (1,6) fucosyltranferase, 

an oncogenic-associated glycotransferase, in prostate cancer cells resulted in an increased 

abundance of proteins associated with metastasis in EVs derived from engineered cancer 

cells[32]. Glycosylation also impacts recognition and uptake of EVs by recipient cells 

and biodistribution. Surface glycosylation has been widely reported to suppress EV 

uptake[33-35]. Specifically, removal of N- and/or O-glycosylation in breast cancer cell-

derived EVs enhances their uptake by endothelial cells[35]. O-deglycosylation of breast 

cancer cell-derived EVs enhanced EV accumulation in lungs, whereas N-deglycosylation 

did not alter biodistribution. Since N-glycosylation represents the majority of the cellular 

glycome, researchers developed nanosomes coated with N-glycans derived from various 

cancer cells as a model to study functional roles of surface N-glycosylation of tumor 

derived EVs and the impact on systemic dissemination and organotropic biodistribution[36]. 
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High levels of mannose-type N-glycans on nanosomes leads to rapid clearance by C-type 

lectin-expressing tissue-resident dendritic cells (DCs) and macrophages. In contrast, reduced 

levels of mannose-type N-glycans and increased fraction of Neu5 Ac-terminated N-glycans 

prolong in vivo circulation and extrahepatic distribution.

Nucleic acid EV cargos can transfer genetic information to cells and alter the recipient cell’s 

gene expression and phenotype. The most widely studied nucleic acid in cargos of EVs is 

RNA. In EVs, RNA subtypes include mRNAs and various non-coding RNAs (ncRNAs), 

such as small non-coding RNAs, miRNAs, transfer RNA fragments, small nuclear RNA 

(snRNA), small nucleolar RNA, PIWI-interacting RNA, long non-coding RNA (lncRNA), 

ribosomal RNA, mitochondrial RNA, and circular RNA (circRNA) . The small ncRNAs 

have a peak size of 200bp but EV RNAs can extend to 5kb or more [37].

miRNAs are the most abundant small ncRNAs in EVs and inhibit translation of 

target mRNA in recipient cells. Various miRNAs within tumor-derived EVs have been 

identified which promote PMN formation. For example, breast cancer cell-derived EV 

miR-200b-3p[38] and miR-21[39] are taken up by alveolar epithelial type II cells and 

osteoclasts and facilitate PMN establishment in lung and bone, respectively. MiR-105 is 

another breast cancer-derived EV miRNA that disrupts endothelial tight junctions, thus 

promoting metastases in the lung and brain[40]. Interestingly, a liver-specific miRNA, 

miR-122-5p, is highly enriched in EVs derived from lung cancer cells, which promotes 

migration and epithelial-mesenchymal transition (EMT) in liver epithelial cells to create 

a liver PMN [41]. Other tumor-derived EV miRNAs involved in PMN generation include 

hepatocellular carcinoma (HCC)-derived EV miR-1247-3p for lung metastasis [42] and 

colorectal cancer-derived EV miR-934 for liver metastasis[43]. snRNA is another small 

ncRNA subtype enriched in lung tumor-derived EVs and induces chemokine release from 

lung alveolar epithelium via Toll-like receptor 3 (TLR3) to recruit neutrophils to support 

lung PMN formation [44].

LncRNAs are ncRNAs longer than 200bp that possess diverse regulatory functions, 

including negative regulation of miRNAs by serving as “miRNA sponges”, marking 

of mRNAs for degradation and transcriptional regulation of genes. Intriguingly, some 

lncRNAs, with relatively low cellular expression levels, such as HOX transcript antisense 

intergenic RNA (HOTAIR), are highly enriched in EVs[45], indicating an indispensable role 

of EV-transferred lncRNAs in biological processes. Elevated levels of HOTAIR in tumor 

EVs can facilitate metastases by blocking expression of the HoxD10 tumor suppressor 

gene which inhibits breast cancer cell migration and metastasis [46]. In addition, HOTAIR 

mediated loss of HoxD10 could lead to increased angiogenesis, although this has not been 

directly investigated [47]. A number of studies have demonstrated increased cancer cell 

proliferation, migration, and invasion upon transfer of EV lncRNA [48-52]. A large number 

of changes in lncRNA expression were observed in lung fibroblasts treated with breast 

cancer EVs, which resulted in increased proliferation and migration of fibroblasts[53]. 

While the impact of cancer-derived EV lncRNA on phenotypic changes in fibroblasts 

remains to be determined and awaits testing in vivo, this suggests cancer -derived EV 

lncRNAs could promote PMN formation.
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In addition, some protein-coding RNAs, such as mRNA and circRNA, have been detected 

in tumor-derived EVs and expressed in EV recipient cells. Ovarian cancer cells secrete 

EVs containing mRNA encoding matrix metalloproteinase (MMP)1 and EV uptake in 

mesothelial cells leads to expression of MMP1 resulting in destruction of the peritoneal 

mesothelial barrier to allow tumor spread [54]. Similarly, circRNA encoding ubiquitin-like 

with PHD and ring finger domain 1 (UHRF1), a critical protein for regulating DNA 

methylation, is overexpressed in various cancer types, including HCC and was detected in 

HCC-derived EVs[55]. Upon EV uptake by NK cells, circUHRF1 is expressed and induces 

NK cell exhaustion by suppressing interferon (IFN)γ and TNFα secretion.

RNA packaging into EVs involves multiple mechanisms, including specific RNA sequence 

motifs and secondary configurations, differential affinity for membrane lipids, association 

with RNA-binding proteins (RBP), and other sorting signals such as ubiquitylation, 

sumoylation, phosphorylation, and uridylation RNA and RBP modifications [37].

EV-associated DNA was recently discovered within the past decade[56] and has not been 

as extensively investigated. Single-stranded DNA[57], double-stranded DNA (dsDNA)[58, 

59], and mitochondrial DNA (mtDNA)[60, 61] have repeatedly been detected in EVs with 

the DNA located both within and on the surface of EVs. The predominant form of EV 

DNA is external dsDNA greater than 2.5kb in size, as indicated by >50% reduction in 

EV DNA post dsDNase digestion[58]. While the mechanism of DNA packaging into EVs 

remains largely unexplored, a recent study showed that dsDNA inclusion into tumor-derived 

microvesicles is regulated by activation of a small GTPase, ADP-ribosylation factor 6 

[62]. EV-associated DNAs are derived from both nucleus and mitochondria and can reflect 

the genome mutational status of parental cells[58, 59]. This also raises the potential for 

using EV DNAs as biomarkers for cancer diagnosis and prognosis. As most cell-free 

DNA (cfDNAs) have been reported to associate with EVs [63, 64] and EV DNAs are 

relatively intact compared with non-vesicular cfDNA (~130bp in size), it is not surprising 

that EV DNAs show superior sensitivity and specificity compared to non-vesicular cfDNA 

in identifying mutations in patients with early-stage non-small-cell lung cancer [65]. In 

limited studies with EV DNAs derived from cancer cells, immune modulation was triggered 

by pathways downstream of EV DNAs in the recipient cell [56].Using chemotherapy-treated 

or irradiated tumor cells secreted EVs enriched with dsDNA, the cytosolic DNA damage 

receptor cyclic GMP-AMP synthase (cGAS) in recipient DCs was activated followed by 

subsequent recruitment and activation of stimulator of interferon genes (STING) resulting 

in cytokine release and anti-tumor immune responses[66, 67]. In addition, horizontal gene 

transfer and transcription of exogenous EV DNAs into recipient cells has also sparked much 

interest[56]. Donor cell-derived EV-genomic DNA localized to the nucleus of recipient 

HEK293 cells. Leukemia K562 cells secrete EVs containing the unique K562 genes, 

BCR/ABL hybrid gene involved in the pathogenesis of chronic myeloid leukemia. Uptake 

of K562-derived EVs by HEK293 cells induced the expression of BCR/ABL gene at both 

the mRNA and protein level[68]. The horizontal gene transfer of EV-associated DNAs 

is not limited to genomic DNA. Cancer-associated fibroblasts package mtDNA into EVs, 

and the subsequent uptake by hormone therapy-resistant breast cancer cells contributed to 

upregulation of mitochondrial genes necessary for oxidative phosphorylation[61]. Whether 

or how tumor-derived EV DNAs also contribute to PMN formation remains to be explored.
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Metastatic organotropism

Metastatic organotropism refers to the ability of certain tumor types to disseminate to 

and colonize specific distant organs, such as lungs, liver, brain, and bone[69]. Although 

organotropism was first described by Stephen Paget well over a century ago, regulation of 

this crucial aspect of metastasis has largely remained a mystery. The poor understanding 

of the drivers of organotropism underlies the lack of effective predictive measures and 

therapies for metastasis. However, recent work has implicated tumor-derived EVs as 

critical determinants of metastatic organotropism. EV-dependent organotropism relies on 

the enrichment of specific molecules in organotropic cancer cell-derived EVs, as well as 

on reprogramming cell types unique to the various organ niches[7, 8, 44, 70]. Notably, 

EV-mediated organotropism depends on integrin adhesion molecules on the surface of tumor 

cell EVs, which bind specific extracellular matrices in metastatic organs. This adhesion 

enables uptake of EVs by cells at metastatic sites for PMN reprogramming.

Studies of lung and liver metastasis have been particularly insightful in revealing the 

important role of EV integrins in directing organotropic metastasis, illuminating how distinct 

EV integrin repertoires select for the specific extracellular matrices of these organs[8]. EVs 

derived from lung-tropic breast cancer cells have increased levels of integrins α6β1 and 

α6β4 compared to EVs from bone-tropic and brain-tropic breast cancer cells or liver-tropic 

pancreatic cancer cells. Importantly, these two integrins bind to the laminin-rich extracellular 

matrix of the lung microenvironment to promote targeting of breast cancer-derived EVs 

to the lung. Remarkably, education of mice with EVs derived from lung-tropic breast 

cancer cells was sufficient to confer lung metastatic outgrowth of bone-tropic breast cancer 

cells. By contrast, EVs from liver-tropic metastatic cancer cells carry αvβ5, which binds 

fibronectin in the liver, favoring hepatic uptake of EVs secreted by liver-tropic cancer cells.

Other EV integrins may also be essential for metastasis to additional organ sites. For 

instance, integrin α5 packaged into breast cancer derived EVs enabled breast cancer 

metastasis to bone by creating an osteogenic PMN following osteoblast uptake of integrin 

α5 EVs[71]. EVs secreted by brain-tropic metastatic breast cancer cells package integrins 

α2, α3, β1 and β3, suggesting a potential role in organtropic brain metastasis[8]. Many 

other integrins have been implicated in organotropic metastasis, indicating their loading into 

EVs may similarly promote EV-dependent PMN formation and organotropic metastasis[72]. 

Notably, EVs secreted by various cancers have been shown to participate in the preparation 

of a favorable lymphatic niche for tumor cell metastasis[73]. Tumor cell integrins that are 

critical for lymph node metastasis, namely integrin α4β1, may also support EV-mediated 

education of lymph nodes during cancer progression[72].

An additional key aspect of organotropism involves the uptake of EVs by particular cell 

types within each organ that contribute to generation of favorable niches for metastatic 

outgrowth. In lungs, EVs from lung-tropic cancer cells are uptaken by fibroblasts and 

epithelial cells[8, 44]. As a result, fibroblasts in the lung stromal niche become activated 

to express PMN factors, including fibronectin and S100 molecules. Fibroblast activation is 

mediated by integrin β4 which is enriched in lung-tropic EVs compared to other EVs[8]. 

Additionally, EV-educated type II alveolar epithelial cells in lungs increase secretion of 
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chemokines, namely CXCL1, CXCL2, CXCL5, and CXCL12, that attract pro-metastatic 

neutrophils to the PMN[44]. In the liver, pancreatic cancer cell EVs are taken up by liver-

resident macrophages, known as Kupffer cells, which then secrete TGFβ to initiate a cascade 

of intercellular crosstalk resulting in activation of hepatic stellate cells, increased fibronectin 

deposition, and recruitment of pro-metastatic bone marrow-derived cells[7]. Organotropic 

brain metastasis is also regulated by the uptake of EVs by cells unique to the brain 

microenvironment, including microglia and brain endothelial cells to influence the brain 

vascular niche[70]. Cell migration-inducing and hyaluronan-binding protein (CEMIP), is 

distinctly enriched in EVs from brain-tropic cells and mediates the EV-dependent formation 

of a metastasis supporting vascular niche in the brain.

Reprogramming PMNs

Reprogramming PMN-associated stromal cells

A key step in PMN formation is reprogramming endothelial cells to increase adhesion, 

vascular permeability, angiogenesis, and lymphangiogenesis, which all facilitate adhesion, 

extravasation, and colonization of tumor cells at secondary organs. Vascular endothelial 

growth factor (VEGF) was the first reported molecule promoting PMN formation 

via induction of angiogenesis as well as mobilization and recruitment of VEGFR1+ 

hematopoietic progenitors to the distant site[4]. In addition to being secreted as soluble 

factors, VEGF isoforms such as VEGF-A, VEGF-C and VEGF90k have been detected in 

EVs isolated from glioblastoma (GBM), pancreatic ductal adenocarcinoma (PDAC) and 

breast cancer cells, and increase vascular and/or lymphatic endothelial cell proliferation 

and permeability in vitro[74-76]. As EVs in circulating blood of GBM patients posess 

elevated levels of VEGF-A compared to healthy donors[74], the VEGF+EVs could enhance 

vascular permeability and angiogenesis both locally and at a distance. Compared to normal 

melanocytes or poorly metastatic melanoma cell-derived EVs, nerve growth factor receptor 

(NGFR) is markedly upregulated in small EVs secreted by highly metastatic melanoma cells 

[77]. The EV-associated NGFR induces lymphangiogenic gene expression and VEGFR-3 

phosphorylation, ERK and nuclear factor-κB (NFκB) activation, as well as intracellular 

adhesion molecule (ICAM)-1 expression in lymphatic endothelial cells (LECs), promoting 

endothelial cell proliferation and tumor cell adhesion. Annexin II, a Ca2+-dependent 

phospholipid-binding protein associated with the plasma membrane and endosomal system, 

is one of the most highly expressed proteins in EVs that promotes breast cancer metastasis 

to the lung and brain via tissue plasminogen activator-dependent angiogenesis and activation 

of macrophages and proinflammatory signaling at the secondary organ[78]. Amphoterin-

induced gene and open reading frame 2 (AMIGO2) is a novel cell adhesion molecule that 

can be transferred from tumor cells to the surface of endothelial cells via EVs. Hepatic 

sinusoidal endothelial uptake of AMGIO2-containing EVs derived from cancer cells, 

resulted in greater adhesion by gastric cancer cells which may facilitate liver metastasis [79]. 

Unsaturated diacylglycerols in EVs from highly metastatic breast cancer cells also promote 

angiogenesis and metastasis by activation of protein kinase D signaling in endothelial 

cells[23]. Several tumor cell-derived EV miRNAs and lncRNAs, such as miR-221-3p[80] 

and ELNAT1[81] correlate with lymphangiogenesis and lymphatic metastasis. EV-mediated 

ELNAT1, in particular, correlated with lymph node metastasis and poor prognosis in bladder 
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cancer patients[81]. Other EV-associated ncRNAs (e.g., miR-23a[82], CCAT2[83]) suppress 

the tight junction protein ZO-1, upregulate VEGF-A expression, and inhibit apoptosis of 

endothelial cells, thereby enhancing vascular permeability and angiogenesis in the tumor 

microenvironment. Whether these EV-associated ncRNAs similarly promote PMN formation 

at distant sites remains to be determined.

As mentioned above, activated fibroblasts are another subset of heterogenous stromal 

cells that are largely reprogrammed from resident tissue fibroblasts to facilitate PMN 

formation. Activated fibroblasts secrete ECM molecules (e.g., fibronectin (FN)) and MMPs, 

as well as transforming growth factor β (TGFβ), S100 calcium binding protein A4 

(S100A4), interleukin (IL)-6, C-C motif chemokine ligand (CCL)2, and stromal cell-derived 

factor 1 (SDF1), which attract bone marrow-derived haematopoietic progenitor cells and 

forge a proangiogenic and antiapoptotic microenvironment permissive to incoming tumor 

cells[76]. Various tumor-derived EV factors have been linked to fibroblast activation and 

heterogeneity in distal tissues [84]. For instance, the primary CRC-derived integrin beta-like 

1 (ITGBL1)-enriched EVs can activate lung fibroblasts and hepatic stellate cells (HSCs ), 

the predominant resident fibroblasts in the liver, via TNFα-induced protein 3 (TNFAIP3)-

mediated NFκB signaling[85]. The activated fibroblasts, in turn, produce high levels of 

pro-inflammatory cytokines, such as IL-6 and IL-8, and promote stemness, migration, and 

EMT of CRC cells. A similar integrin beta 1 (ITGB1)-NFκB signaling-mediated activation 

of lung fibroblasts was observed with miR-1247-3p-enriched EVs isolated from highly-

metastatic HCC cells[42]. By directly targeting fibroblast β-1,4-galactosyltransferases III 

(B4GALT3), a glycosylation protein that inhibits ITGB1 activation and stability, exosomal 

miR-1247-3p promotes the formation of both intrahepatic metastasis niches and lung PMNs 

by primary HCC[42]. The correlation between nidogen 1 (NID1) in tumor cell-derived 

EVs or circulating EVs from HCC with metastatic potential, was recently identified. EV-

NID1 not only destabilizes the vascular architecture and promotes angiogenesis in the 

lung, but also activates pulmonary fibroblasts to secrete soluble TNFR1, which facilitates 

HCC cell growth, mobility, and colonization into the lung[86]. A robust increase of 

tissue transglutaminase-2 (TG2), an ECM-crosslinking enzyme upregulated in metastatic 

cells, was detected in EVs derived from metastatic breast cancer cells. TG2 promotes 

FN dimerization to a fibrillar form on the EV surface, which in turn educates pulmonary 

fibroblasts to form a niche suitable for metastatic colonization[87]. In addition to tumor 

cells, cancer-associated fibroblasts (CAFs) at the primary tumor site also secrete EVs that 

may be more potent in inducing ECM remodeling of the PMN than tumor cell-derived EVs. 

For example, as compared to salivary adenoid cystic carcinoma (SACC) cell-derived EVs, 

EVs produced by SACC CAFs promote faster and more pronounced upregulation of known 

ECM-related PMN markers in the lung, including FN, MMP9, and lysyl oxidase (LOX), via 

activation of TGFβ signaling in lung fibroblasts[88].

Tumor-derived EVs can also directly orchestrate ECM architectural changes to facilitate 

PMN formation. Tumor EVs contain ECM molecules (ie., FN, tenascin-C [TnC]) and ECM-

remodeling regulators (e.g., MMPs, LOXs, transglutaminases). EV secretion is required 

for appropriate extracellular deposition of TnC, an ECM glycoprotein that regulates cell 

adhesion to other ECM components, by several tumor cells and associated fibroblasts in 

breast cancer and PDAC[89]. EV TnC not only fosters distant ECM fiber nucleation, but it 
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also promotes invasiveness of incoming tumor cells by activating WNT/β-catenin and NFκB 

signaling[90, 91]. Several studies also demonstrated enzymatically functional EV-associated 

MMPs including MMP2, MMP9, and MMP14, as well as other proteinases in EVs shed 

from ovarian cancer, fibrosarcoma, and melanoma. These proteases degrade and remodel 

existing ECM at distant sites to create favorable paths for metastatic cells to enter the 

PMN[92, 93].

Reprogramming PMN-associated immune profiles

Initiation of proinflammatory and immunosuppressive signaling at distant sites by tumor-

derived EVs has been widely reported across multiple cancer types[6, 94-98]. The majority 

of EVs show a similar size and structure to liposomes, which are known to undergo 

rapid accumulation and clearance by the reticuloendothelial system. The innate immune 

system, particularly macrophages, engulf a large fraction of circulating EVs secreted from 

the primary tumor and undergo immunological reprogramming. Alterations in macrophage 

polarization by tumor-derived EVs are well documented[99-104]. For example, EVs 

secreted by metastatic osteosarcoma cells direct alveolar macrophages to adopt a pro-

tumor phenotype by inducing the release of immunosuppressive factors IL-10, TGFβ2, 

and CCL2, which in turn decrease phagocytosis and efferocytosis of tumor cells[101]. 

Uptake of PDAC-derived EVs enriched for macrophage migration inhibitory factor (MIF) 

by liver-resident Kupffer cells induced TGFβ secretion, which subsequently stimulated 

hepatic stellate cell (HSC) activation, FN deposition, and recruitment of immunosuppressive 

myeloid cells to generate the liver PMN [7]. Moreover, tumor cell-derived EVs can induce 

metabolic reprogramming of macrophages. Lung cancer cell-derived EVs altered glycolytic 

metabolism in tissue resident interstitial macrophages and upregulated their expression of 

the immune checkpoint programmed death ligand-1 (PD-L1), which curtails effector T 

cell-mediated anti-tumor immune responses in the pre-metastatic lung and draining lymph 

node[105].

In addition to tissue resident macrophages, tumor EVs can directly educate and mobilize 

various bone marrow-derived cells to promote metastatic progression. Metastatic melanoma, 

for example, horizontally transfers MET, an oncogenic receptor tyrosine kinase, to bone 

marrow progenitor cells via EVs, which reprograms recipient bone marrow cells to a 

pro-vasculogenic phenotype and increases lung and bone metastases[6]. EVs derived from 

several cancer types, including acute myeloid leukemia (AML)[106, 107], esophageal 

squamous cell carcinoma[108], breast carcinoma[109], and glioma[110] promote conversion 

of immature bone marrow progenitor cells or bone marrow-derived monocytes to myeloid-

derived suppressor cells (MDSCs), leading to T and natural killer cell (NK) dysfunction. 

Moreover, the immunosuppressive potential of MDSCs can be further augmented by tumor-

derived EVs that are enriched with heat-shock proteins, including HSP86[96], HSP70[111] 

and HSP72[112], and miRNAs, including miR-21[96, 113], miR-10a[114], miR-29a, 

miR-92a[115], miR-107[116], miR-155[117], miR-1246[110]. Not only do tumor EVs guide 

the differentiation of bone marrow cells towards immuno-evasive phenotypes, but also lung 

and breast cancer cell EVs block the differentiation of bone marrow progenitor cells into 

DCs[118, 119] and can inhibit maturation and migration of DCs[119], thereby obstructing 

tumor antigen presentation.
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Neutrophils, the most abundant innate immune cells, are also stimulated by tumor-derived 

EVs and are instrumental in driving PMN formation. Neutrophil extracellular traps (NETs) 

are web-like structures composed of chromatin DNA filaments coated with granule 

proteins and released by activated neutrophils. NETs promote vascular permeability, 

ECM remodeling, EMT, proliferation, migration, invasion, dormant cell awakening and 

can prevent NK cell- and effector T cell-mediated tumor cell killing, and serve as an 

emerging PMN hallmark [120-126]. EVs released by breast cancer cells induce NETs in 

neutrophils pretreated with granulocyte colony-stimulating factor[127]. In vitro treatment of 

neutrophils with metastatic melanoma cell-derived EVs also induces NET formation and 

prolongs neutrophil life span to promote a pro-tumorigenic phenotype marked by diminished 

phagocytic and cytotoxic activity and increased chemotaxis [128]. Gastric and colorectal 

cancer-derived EVs also enhanced neutrophil survival and polarization towards an N2 

pro-tumorigenic phenotype [129, 130]. In addition to these in vitro studies, breast cancer 

cell-derived EVs have shown systemic effects on NET induction[127] and further support 

the contribution of tumor EVs in NET formation at the PMN.

NK and T cell-mediated cytotoxic immunity are pivotal sentinels of anti-tumor immune 

surveillance. Compared to T cells, NK cells respond early to malignant cells to counteract 

tumor progression and metastasis independent of additional activation. Nevertheless, cancer 

cells exploit various strategies, including tumor-derived EVs, to impair NK cell recruitment, 

proliferation, and survival, as well as cytotoxic function[131]. For instance, exposure 

of NK cells to AML EVs resulted in ligand-mediated downregulation of C-X-C motif 

chemokine receptor 3 (CXCR3), a main chemokine receptor responsible for NK cell 

recruitment[132] and decreased NK cell migration[133]. Similarly, EVs derived from 

mesothelioma, breast cancer, and melanoma block IL-2-induced NK cell proliferation by 

downregulating IL-2 receptor (IL-2R) or blocking IL-2R downstream pathways[134, 135]. 

Chronic exposure of NK cells to ligands of NKG2D, the predominant activating receptor 

on NK cells, induces NK cell tolerance by downregulating NKG2D expression[136, 137]. 

Interestingly, NKG2D ligands (NKG2DLs), such as MHC class I-related chain (MIC) A 

and MICB molecules are shed into EVs from NKG2DL+ tumor cells[138]. NK cells 

treated with these NKG2DL-enriched EVs display significantly reduced NKG2D and 

marked reduction in cytotoxic activity[138-140]. In addition to NKG2DLs, the high level 

of membrane-associated TGFβ carried by EVs isolated from tumor cells, including AML, 

renal cell carcinoma, mesothelioma, oral cancer, and PDAC, induce NK cell dysfunction by 

diminishing NKG2D levels[98, 133, 139, 141] and upregulating the expression of NKG2A 

(the main inhibitory receptor on NK cells) [142], which results in cancer progression. NK 

cells in PMNs generally show reduced maturation and cytotoxic effector functions[143]. 

However, the range of dynamic interactions between NK cells with tumor-derived EVs and 

the subsequent phenotype changes of NK cells within PMNs remain to be explored.

In addition, tumor-derived EVs also impact adaptive immune responses to favor metastatic 

progression. CD8+T cells are the dominant adaptive immune cell that conduct tumor-

specific cytotoxicity. Interactions of tumor-derived EVs and CD8+ T cells have been 

extensively studied, and the EV-bearing immune checkpoint molecules, such as TNF and 

TNF receptor (TNFR) superfamily and PD-L1, contribute to escape from T cell-mediated 

immune surveillance. Tumor EVs enriched with Fas ligand (FasL, a member of the 
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TNFR superfamily) and TNF-related apoptosis-inducing ligand (TRAIL, a member the 

TNF family of death factors) suppressed proliferation and promoted apoptosis in CD8+ T 

cells in melanoma[144-146], PDAC[147], CRC[148], oral cancer[149, 150], head and neck 

cancer[151-153], and ovarian cancer[154]. Moreover, FasL-bearing EVs can polarize other 

Fas-expressing macrophages to maintain an immunosuppressive environment[155]. PD-L1, 

a B7 family ligand, is a coinhibitory signal regulating T cell responses via binding to PD-1. 

PD-L1 is frequently enriched in EVs secreted from various cancer types[156-163]. Apart 

from inducing local and systemic immunosuppression by suppressing T cell proliferation, 

mobility, cytotoxic function, and cytokine release, tumor-derived PD-L1+ EVs can also 

compromise anti-PD-1/PD-F1 monoclonal antibody therapies[156, 164]. Other checkpoint 

molecules that have been detected on tumor-derived EVs or circulating EVs from cancer 

patient plasma include cytotoxic T-lymphocyte associated protein 4 (CTLA4)[155], as 

well as transmembrane, immunoglobulin, and mucin (TIM)3 and galectin-9 (the ligand for 

TIM3)[165], Interestingly, high levels of plasma EV TIM3 from non-small cell lung cancer 

(NSCLC) patients are associated with lymph node metastasis[165].

Adenosine is an ATP derivative that potently diminishes anti-tumor activities of CD4+ 

and CD8+ T cells and NK cells. Adenosine is generated by stepwise dephosphorylation 

of extracellular ATP via ectonucleotidases, including CD39 (ectonucleoside triphosphate 

diphosphohydrolase-1) and CD73 (5′-nucleotidase)[166]. CD39 and CD73 are present in 

EVs from breast, prostate, and colorectal cancers and glioblastoma, and contribute to 

ATP hydrolysis to adenosine and subsequent T cell dysfunction and inhibition of clonal 

expansion [167, 168]. Horizontal transfer of tumor cell-derived EV CD39/CD73 to NK 

and T cells leads to in situ deposition of adenosine and autocrine adenosine signaling-

mediated loss of function[168, 169]. Other tumor-derived EV proteins that suppress T 

cell proliferation and activity include arginase I (ARGI) and TnC. Ovarian cancer-derived 

ARGI+ EVs enzymatically deplete L-arginine, which is essential for T cell function, and 

inhibit CD4+ and CD8+ T cells and accelerate tumor progression[170]. TnC+ EVs from 

glioblastoma inhibit T cell proliferation via interaction with α5β1 and αvβ6 integrins on T 

lymphocytes and suppress mammalian target of rapamycin (mTOR) signaling[171].

Tumor-derived EVs also expand immunosuppressive T regulatory cells (Tregs) to further 

restrict cytotoxic T cell function. Several studies have demonstrated that TGFβ-enriched 

tumor EVs skew expansion or induce phenotypic alteration of T cells towards Tregs[134, 

172, 173]. Interestingly, following exposure to tumor cell EVs, transcriptional analysis in 

different T cell subsets showed that Tregs were more sensitive to EV treatment than other T 

cells, such as CD8+ T cells[174]. Together, these findings imply a central role for Tregs in 

mediating tumor EV-induced immunosuppression.

Numerous EV-associated ncRNAs are also implicated in the suppression of effector T cells 

and NK cells and induction of Treg cells. For example, CRC-derived EVs contain miR-424 

that induced resistance to immune checkpoint blockade (ICB) therapy by disrupting the 

CD28-CD80/86 costimulatory pathway in T cells and DCs[175]. Metastatic CRC cells 

release EVs enriched for lncRNA-SNHG10 that activates TGFβ signaling by targeting 

inhibin subunit beta C (INHBC) and impairs proliferation and cytotoxicity in NK cells 

[176]. SNHG16 is another lncRNA transmitted via breast cancer EVs to γδT cells to 
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induce a CD73+ Treg phenotype via sponging miR-16-5p and activating the TGFβ/SMAD5 

pathway[177].

Antibody producing B cells are another major component of adaptive immunity but the role 

of B cells in cancer progression is controversial. There are several studies linking B cell 

infiltration to a favorable clinical outcome in patients with NSCLC, ovarian cancer, and 

breast cancer[178-180] and increased response to ICB therapy in those with melanoma[181], 

mediated by anti-tumoral antibody secretion, antigen presentation, and T cell activation. 

On the other hand, tumor-promoting humoral immunity facilitates tumor development and 

metastasis via engagement of Fc receptors on myeloid cells [182], antagonizing anti-tumor 

antibodies [183] and activating tumor antigens, such as HSPA4[184]. B cell subsets, such 

as B regulatory cells[185-187], can also inhibit T cell or NK cell-mediated anti-tumor 

response and induce resistance to cancer therapies. Interestingly, tumor EVs can interact 

with B cells within the lymph node cortex when the subcapsular sinus macrophage barrier 

is compromised during tumor progression or by therapeutic agents. This fosters plasma cell 

amplification and tumor-promoting autoantibody production and generates a PMN in the 

lymph node [188].

Clinical application

Diagnosis and prognosis

The most immediate clinical application of EVs in cancer are as diagnostic and prognostic 

biomarkers. Several ongoing clinical trials have focused on circulating EVs to identify 

new EV cancer biomarkers to predict early metastatic progression (Table 1). A number of 

pre-clinical studies have verified the essential role of tumor-derived EVs in establishing 

a distant PMN, and a recent comprehensive proteomic analysis of human tissue explant-

derived EVs has confirmed the existence of unique damage-associated molecular patterns, 

including S100A4, S100A13, basigin, and galectin-9, packaged in EVs from tumor tissues 

but not non-tumor tissues. These damage-associated proteins potentiate induction of pro-

inflammatory PMNs that support future metastasis[189]. Notably, the study demonstrated 

that proteomes of plasma-derived EVs from cancer patients reflect alterations in distant 

organs and the immune system and thus have the potential to serve as PMN biomarkers. For 

example, liver-derived selenoprotein P is frequently found in plasma-derived EVs from lung 

cancer patients, but not in plasma EVs in healthy donors nor is it present in EVs shed by 

lung cancer tissues. Thus, the presence of selenoprotein reflects specific alterations in liver 

function induced by the primary lung tumor and represents a liver PMN marker[189].

Clinical observations also support the critical role of EV integrins in directing 

organotropism. Increased integrin β4 on plasma EVs was detected in breast cancer patients 

with lung metastases compared to patients with only primary breast tumors or those with 

liver metastases. High integrin α5 expression in primary breast tumors correlates with the 

presence of disseminated tumor cells in bone marrow in breast cancer patients[190]. In 

contrast to patients with lung or bone metastases, plasma EVs from breast cancer patients 

with liver metastases contained upregulated integrin αv[8]. Similarly, plasma EV-integrin 

α6A is a diagnostic marker that predicts PDAC recurrence and metastasis much earlier 

(e.g., one month after surgery) compared to conventional cancer antigen markers CEA 
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and CA19-9[191]. Establishing which and how EV integrins direct metastatic targeting in 

specific organs in various cancer types could yield a panel of biomarkers for early prediction 

of metastasis occurrence at different sites.

ncRNAs, especially miRNAs, are the most widely studied EV cargo from cancer 

patient liquid biopsies and exhibit great potential for predicting metastasis. For example, 

circulating exosomal miR-25-3p is differentially expressed in healthy donors, CRC patients 

without metastases, and CRC patients with metastases[192]. Exosomal miR-25-3p targets 

VEGFR2 and tight junction proteins in endothelial cells to promote vascular permeability 

and angiogenesis at the distant pre-metastatic site. Therefore, quantitative evaluation of 

miR-25-3p levels in circulating EVs may serve as an early indicater of CRC patients at 

risk for metastasis and inform the subsequent treatment course. While most clinical studies 

focused on individual EV-associated miRNAs, using a panel of different EV miRNAS could 

increase prognostic accuracy in patients likely to develop metastasis. This approach has been 

supported by applying a panel of plasma EV miRNAs to distinguish lung cancer patients 

with or without metastasis[193].

Treatment

Therapeutic targeting of EVs and EV cargo could also provide an approach to impair 

metastasis, for which there are no specific treatments. Specifically, pathways of EV 

biogenesis and uptake may be prime targets for such intervention. Exosome biogenesis 

occurs via the multivesicular body (MVB) endosomal pathway, where inward budding of the 

endosome membrane leads to accumulation of intralumenal vesicles (ILVs) contained within 

the endosome[194, 195]. The MVB then traffics to the plasma membrane where it fuses and 

ILVs are released from the cell as exosomes. Alternatively, vesicles known as ectosomes and 

of similar size to exosomes can bud directly off the plasma membrane. The MVB pathway 

of biogenesis has been extensively studied and several essential regulatory factors have been 

identified including ESCRTs, Alix, syntenin, and lipids, such as ceramide, that participate in 

ILV formation, and proteins that control trafficking and plasma membrane fusion of MVBs, 

such as Rab27, Rab35, Ral GTPases, and SNAREs[196]. Ectosome biogenesis pathways 

are less studied, but involve key proteins, such as ARF6, ARRDC1, and ESCRTs[197]. 

Uptake of EVs may occur via direct fusion with recipient cell plasma membranes or through 

endocytosis[194, 196].

Functional studies on the impact of EV biogenesis and uptake on metastasis indicate 

that inhibiting these pathways can reduce metastatic burden. Depletion of Rab27[6] and 

Ral GTPases[198] diminished lung metastasis in mouse models of melanoma and breast 

cancer, respectively. Furthermore, treatment of melanoma-bearing mice with the drug 

reserpine blocked EV uptake and attenuated lung metastasis[199]. Interestingly, screening 

efforts to identify existing compounds that inhibit biogenesis have found several small 

molecule candidates that could be repurposed for therapeutic targeting of EV-dependent 

metastasis[200-202]. These drugs, which include manumycin A, tipifarnib, neticonazole, 

climbazole, ketoconazole, triadimenol, and simvastatin, could decrease the levels of 

biogenesis and reduce EV production, but their effect on in vivo cancer metastasis requires 

further study. Importantly, as EVs have developmental and physiological functions in non 
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tumor cells, targeting biogenesis will require identifying potential cancer-specific pathways 

of EV formation.

Inhibiting EV uptake by recipient cells may be an additional therapeutic approach. In 

support, the anti-hypertensive drug, reserpine, was shown to block uptake of melanoma 

EVs, consequently diminishing PMN formation and impairing metastasis to lungs[199]. 

Organ-specific blockade of uptake could prevent unwanted side effects associated with 

systemic inhibition of EV uptake and perhaps be achieved by targeting EV integrins driving 

organotropic metastasis, such as α6β4 in lung-tropic EVs[8].

Conclusions and Perspective

The work discussed here emphasizes the critical role of circulating tumor-derived EVs 

in mediating communication between the primary tumor and distant organs (Figure 1). 

EVs direct the organotropic delivery of bioactive materials shed from primary tumors to 

recipient stromal and immune cells within the distant pre-metastatic site. Upon arriving 

at the distant organ, tumor-derived EVs modulate the function and phenotype of recipient 

cells via a broad array of pathways and mediators. Tumor EVs can initiate proinflammatory 

and immunosuppressive signaling as well as remodel the ECM to increase adhesiveness 

of incoming tumor cells. EVs can also promote angiogenesis and vascular permeability, 

thus allowing tumor cells to enter a nutrient-rich PMNs. Collectively tumor-derived EVs 

can reprogram hostile or neutral microenvironments into favorable “soil” for metastatic 

tumor cells to colonize and grow. Our knowledge of these EV-mediated events suggests 

several possibilities to improve diagnosis or treatment of metastatic disease. Blocking 

tumor-derived EV release and/or uptake by recipient cells could prevent the creation 

of the PMN and ultimately metastasis. More specifically, further investigation into the 

mechanisms of cargo loading into EVs, intracellular pathways supporting EV biogenesis 

as well as signaling events upon uptake of EVs in recipient cells, could identify unique 

targets. In addition, profiling of bioactive EV cargos in biological fluids is a non-invasive 

manner to evaluate their prognostic significance in cancer patients. Several practical issues 

remain, including the shed and elimination rates and whether the concentration of tumor-

derived EVs in the circulation is sufficient to detect tumor EVs using current technologies. 

Recently, EVs from as little as 10 μL of patient plasma were successfully characterized and 

reflected EV phenotypic changes in patients with melanoma in response to treatment[203]. 

An asymmetric flow field-flow fractionation technique was developed to understand the 

heterogeneity of EVs with high resolution [10]. These technical advances will allow us to 

establish criteria for use of optimal EV subpopulations for therapeutics and prognostics and 

accelerate the clinical translation of the role of tumor EV-mediated PMN formation and 

metastatic progression.
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Figure 1. 
Tumor EVs prime pre-metastatic niches (PMNs) by modulating stromal and immune 

cells at distal sites. Tumor EVs contain distinct integrins and cell adhesion molecules 

that determine their organotropism. Specific EV cargos attributed to stromal and immune 

microenvironment modulation at PMNs are highlighted in red.
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Table 1

Summary of tumor EV-mediated reprogramming of stromal microenvironment in PMN

Stromal cell
being targeted

PMN site EV cargo Reprogramming mechanism Source tumor

Endothelial cells Not defined VEGF Angiogenesis and endothelial permeability GBM, breast cancer

Lymph nodes, 
liver

PDAC

Lymph node NGFR Angiogenesis and tumor cell adhesion Melanoma

Lung, brain Annexin II Tissue plasminogen activator-dependent 
angiogenesis

Breast cancer

Liver AMIGO2 Tumor cell adhesion Gastric cancer

Not defined Unsaturated 
diacylglycerols

Angiogenesis via protein kinase D signaling Breast cancer

lymph node miR-221-3p, 
ELNAT1

Lymphangiogenesis Bladder cancer

Lung fibroblasts Lung TG2 Fibroblast activation via FN dimerization Breast cancer

Endothelial cells, lung 
fibroblasts

NID1 Angiogenesis, fibroblast activation HCC

Lung fibroblasts miR-1247-3p Fibroblast activation via inhibition of ITGB1 
activation and stability

Lung fibroblasts, 
hepatic stellate cells

Lung, liver ITGBL1 fibroblast activation via TNFAIP3-mediated 
NFκB signaling

CRC

ECM Not defined TnC Foster ECM fiber nucleation, promote 
invasiveness of tumor cells via WNT/β-
catenin and NFκB signaling

PDAC, breast cancer

MMPs (MMP2, 
MMP9, MMP14)

Degrade and remodel existing ECM Ovarian cancer, 
fibrosarcoma, 
melanoma

Semin Cancer Biol. Author manuscript; available in PMC 2024 August 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hu et al. Page 30

Table 2

Summary of tumor EV-mediated reprogramming of immune microenvironment in PMN

Immune cell
being targeted

PMN site EV cargo Reprogramming mechanism Source tumor

Macrophages Lung, brain Annexin II Activate proinflammatory signaling Breast cancer

Lung Not defined Secrete immunosuppressive factor release, 
decrease phagocytosis and efferocytosis

osteosarcoma cells

Lymph node Alter glycolytic metabolism, upregulate 
PD-L1 expression

Lung cancer

Kupffer cells Liver MIF TGFβ secretion PDAC

Hematopoietic 
progenitors

Lung, liver VEGF Mobilization and recruitment of 
hematopoietic progenitors to distant sites

Lung cancer, melanoma

Bone marrow derived 
cells

Lung, bone MET Pro-vasculogenic phenotype differentiation Melanoma

Not defined MUC1, 
palmitoylated 
proteins

MDSC differentiation AML

Lymph node miR-21 Monocytic MDSC differentiation Esophageal squamous 
cell carcinoma, lung 
cancer, glioma

Not defined miR-10, miR-29a, 
miR-92a

MDSC differentiation Glioma

miR-107 Gastric cancer

miR-155 Chronic lymphocytic 
leukemia

Lung miR-9, miR-181a Breast cancer

Not defined miR-1246 GBM

HSP86 Melanoma

HSP70 Breast cancer, lung 
cancer, ovarian cancer

Lung HSP72 CRC, Lung cancer

Not defined Not defined Induce immuno-evasive phenotype 
differentiation, block DC differentiation, 
maturation and migration

Lung cancer, breast 
cancer

Neutrophils NET formation Breast cancer

NET formation, promote life span Melanoma

HMGB1 Promote life span and N2 polarization Gastric cancer

RNAs (long 
interspersed nuclear 
elements, short 
interspersed nuclear 
elements, and long 
terminal repeats)

Sustain survival and polarization towards a 
pro-tumorigenic phenotype

CRC

NK Not defined Reduce NK recruitment and migration by 
CXCR3 downregulation

AML

TGFβ1 Impair NK proliferation by downregulation 
of IL-2R

Mesothelioma, prostate 
cancer

NK dysfunction by downregulation of 
NKG2D

PDAC, AML, 
mesothelioma, prostate 
cancer, renal cell 
carcinoma
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Immune cell
being targeted

PMN site EV cargo Reprogramming mechanism Source tumor

NK dysfunction by downregulation of 
NKG2D and upregulation of NKG2A

Oral cancer

Treg Skew expansion or induce phenotypic 
alteration of T cells towards Tregs

CRC

NK Lung Not defined Block IL-2-mediated NK proliferation Breast cancer

Not defined NKG2DLs 
(MICA/B)

NK tolerance by downregulation of 
NKG2D

Liver cancer, CRC, 
melanoma, mesothelioma, 
prostate cancer

Liver lncRNA-SNHG10 Impaire NK proliferation and toxicity by 
activation of TGFβ signaling

CRC

CD8+ T Not defined FasL, APO2L/
TRAIL

Suppress CD8+ T cell proliferation and 
promote apoptosis

Melanoma, PDAC, 
Ovarian cancer

Liver FasL, TRAIL CRC

Lymph node FasL Oral cancer, head and 
neck cancer

Not defined PD-L1 Suppress T cell proliferation, mobility, 
cytotoxicity and cytokine release

Melanoma, lung cancer, 
gastric cancer, prostate 
cancer, CRC, GBM, head 
and neck cancer, breast 
cancer

CD4+ T, CD8+ T, NK FasL, TRAIL, 
CTLA4

Suppresse CD8+ T cell proliferation 
and cytokine release and CD4+ T /NK 
cell activation and promote macrophage 
differentiation into M2 phenotype

GBM

CD4+ T, CD8+ T Lymph node TIM3, galectin-9 Promote T cell exhaustion Lung cancer

Not defined ARGI T cell dysfunction by L-arginine depletion Ovarian cancer

T cell, NK CD39, CD73 T/NK cell dysfunction and inhibit clonoal 
expansion through adenosine production

Bladder cancer, CRC, 
prostate cancer, breast 
cancer, mesothelioma, 
GBM

T cell TnC Inhibit T cell proliferation GBM

γδT cell Lymph node SNHG16 Induce a CD73+ Treg phenotype Breast cancer

B cell Not defined Promote plasma cell amplification and 
tumor-promoting autoantibody production

Melanoma
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Table 3

Ongoing clinical trials involving EVs for the prediction of metastatic progression in cancer patients (data 

collected from http://clinicaltrials.gov, accessed in Dec 2022).

Clinical Trial Cancer Type Identifier

Contents of circulating extracellular vesicles: biomarkers in colorectal cancer patients

CRC

NCT04523389

Development of novel imaging and laboratory biomarkers to monitor the liver pre-
metastatic niche and guide treatment of colon cancer: a pilot study

NCT03432806

Diagnostic and prognostic values of EUS-FNA specimens and circulating exosomal small 
RNA in patients with pancreatic cancer

PDAC NCT04636788

Circulating exosomes as potential prognostic and predictive biomarkers in advanced gastric 
cancer patients: a prospective observational study (“EXO-PPP Study”)

Gastric cancer NCT01779583

Exosomes-derived ncRNAs as biomarkers in cholangiocarcinoma patients Cholangiocarcinoma NCT03102268

Non-coding RNA in the exosome of the epithelia ovarian cancer Epithelia ovarian cancer NCT03738319

A prospective study of predicting prognosis and recurrence of thyroid cancer via new 
biomarkers, urinary exosomal thyroglobulin and galectin-3

Thyroid cancer NCT03488134

Study of exosomes in monitoring patients with sarcoma (EXOSARC) Sarcoma NCT03800121

A pilot study of circulating exosome RNA as diagnostic and prognostic markers in lung 
metastases of primary high-grade osteosarcoma

Osteosarcoma NCT03108677

Feasibility of exosome analysis in cerebrospinal fluid during the diagnostic workup of 
metastatic meningitis from breast cancer

Breast cancer NCT05286684

Interest of circulating tumor DNA in digestive and gynecologic/breast Cancer Breast cancer/ Digestive 
cancer/ Gynecologic cancer

NCT04530890

Validating the miR Scientific Sentinel™ platform (Sentinel PCC4 assay) in men undergoing 
core needle biopsy due to suspicion of prostate cancer for distinguishing between no cancer, 
low-, intermediate- and high-risk prostate cancer

Prostate cancer

NCT04100811

Quantification and purification of circulating prostasomes as diagnostic tool for prostate 
cancer detection

NCT03694483

A prospective, randomized blinded, shared decision impact trial of the ExoDx Prostate 
(IntelliScore), EPI test, in men presenting for initial biopsy.

NCT03235687

To investigate the diagnostic accuracy of exosomal microRNA in predicting the 
aggressiveness of prostate cancer in Chinese patients

NCT03911999

Identification and characterization of predictive factors of onset of bone metastases in 
cancer patients

Not specified NCT03895216

Semin Cancer Biol. Author manuscript; available in PMC 2024 August 01.

http://clinicaltrials.gov/
https://clinicaltrials.gov/ct2/show/NCT04523389
https://clinicaltrials.gov/ct2/show/NCT03432806
https://clinicaltrials.gov/ct2/show/NCT04636788
https://clinicaltrials.gov/ct2/show/NCT01779583
https://clinicaltrials.gov/ct2/show/NCT03102268
https://clinicaltrials.gov/ct2/show/NCT03738319
https://clinicaltrials.gov/ct2/show/NCT03488134
https://clinicaltrials.gov/ct2/show/NCT03800121
https://clinicaltrials.gov/ct2/show/NCT03108677
https://clinicaltrials.gov/ct2/show/NCT05286684
https://clinicaltrials.gov/ct2/show/NCT04530890
https://clinicaltrials.gov/ct2/show/NCT04100811
https://clinicaltrials.gov/ct2/show/NCT03694483
https://clinicaltrials.gov/ct2/show/NCT03235687
https://clinicaltrials.gov/ct2/show/NCT03911999
https://clinicaltrials.gov/ct2/show/NCT03895216

	Abstract
	Introduction
	EV cargos
	Metastatic organotropism
	Reprogramming PMNs
	Reprogramming PMN-associated stromal cells
	Reprogramming PMN-associated immune profiles

	Clinical application
	Diagnosis and prognosis
	Treatment

	Conclusions and Perspective
	References
	Figure 1.
	Table 1
	Table 2
	Table 3

