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Abstract
Summary: In the era where transcriptome profiling moves toward single-cell and spatial resolutions, the traditional co-expression analysis lacks
the power to fully utilize such rich information to unravel spatial gene associations. Here, we present a Python package called Spatial Enrichment
Analysis of Gene Associations using L-index (SEAGAL) to detect and visualize spatial gene correlations at both single-gene and gene-set levels.
Our package takes spatial transcriptomics datasets with gene expression and the aligned spatial coordinates as input. It allows for analyzing and
visualizing genes’ spatial correlations and cell types’ colocalization within the precise spatial context. The output could be visualized as volcano
plots and heatmaps with a few lines of code, thus providing an easy-yet-comprehensive tool for mining spatial gene associations.

Availability and implementation: The Python package SEAGAL can be installed using pip: https://pypi.org/project/seagal/. The source code
and step-by-step tutorials are available at: https://github.com/linhuawang/SEAGAL.

1 Introduction

Spatial Transcriptomics (ST) is a molecular profiling tech-
nique that maps gene expression across a tissue sample, offer-
ing a comprehensive overview of gene expression patterns
and unique biological insights (Marx 2021). The technique
has applications in various fields, such as developmental biol-
ogy (Choe et al. 2023), neuroscience (Close et al. 2021), and
cancer research (Anderson et al. 2022).

To aid in data preprocessing and analysis, a variety of compu-
tational tools have been developed. Among these are SpatialDE
(Svensson et al. 2018) and SquidPy (Palla et al. 2022), which iden-
tify Spatial Variable Genes (SVGs) through variance decomposi-
tion or spatial autocorrelation. These tools bring the concept of
Highly Variable Genes (HVGs) from single-cell analysis to spatial
transcriptomics. However, these SVG tools do not account for
spatial associations such as colocalization and exclusion of paired
features (genes or gene groups). Such spatial associations would
add another dimension to traditional correlation-based co-expres-
sion analysis methods like the Weighted Correlation Network
Analysis (Langfelder and Horvath 2008).

To fill the gap, we developed SEAGAL for Spatial
Enrichment Analysis of Gene Associations using L-index, a

bivariate spatial association measure proposed by (Lee 2001).
Based on the L-index, SEAGAL allows ST data preprocessing,
SVG detection, Spatially Associated Genes (SAG) identifica-
tion, cell-type colocalization pattern recognition in local tissue
niches, SAG-based gene module discovery, and so on.

SEAGAL is written in Python and compatible with well-
established single-cell and spatial-omics analytical packages
such as Scanpy (Wolf et al. 2018) and SquidPy (Palla et al.
2022). Moreover, integrated with well-supported Python vi-
sualization packages, including matplotlib and seaborn,
SEAGAL allows visualizing each data analysis result in spatial
heat maps, violin plots, and cluster maps. Its major function-
alities could be carried out in a few lines of code by following
the user manual and tutorials available at GitHub: https://
github.com/linhuawang/SEAGAL.

2 Package description

SEAGAL takes inputs from either of the two types: (i) Raw
10X Visium data output from SpaceRanger, and (ii) a user-
processed folder containing CSV-format files, including a raw
count matrix, and metadata with x and y coordinates as
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columns. After importing the module seagal, users can load ei-
ther type of input using the command load_raw().

• Preprocess
As a quality control step, SEAGAL removes genes ob-
served in <10 spots and spots with <150 UMI counts. To
adjust for library size and normalize the variance, it trans-
forms the raw counts into log-scaled count-per-million
data types. Both steps are completed by calling the func-
tion process_st().

• Cell-type colocalization
group_adata_by_genes() followed by spatia-
l_association() allow users to group gene markers to
identify cell types’ spatial associations, such as colocaliza-
tion of two cell types. Users could either use default im-
mune markers provided by SEAGAL (Supplementary
Methods, Supplementary Fig. S1, Supplementary Table
S1) or provide their cell-type marker dictionary as an op-
tional parameter.

• Gene–gene spatial association
To detect gene-gene spatial associations, users must first call
spatial_pattern_genes() to detect SVGs. We recom-
mend using <1000 top SVGs or SVGs with Moran’s I > 0.3
by specifying parameters topK or I. Then, spatial_
association(grouped_only¼False) will yield the spa-
tial gene association in local and global L-values for the se-
lected top SVG pairs (Supplementary Methods). Local L
measures spatial association for each gene pair and each spot.
It quantifies a spot’s spatial gene-gene association within its lo-
cal neighborhood. A local L close to zero is considered as no
spatial association, a positive value indicates positive correla-
tion, and a negative value indicates negative correlation values.
Global L is the mean value of all local L-index for a specific
gene pair across all spots. It represents the general spatial asso-
ciation pattern between the two genes within the tissue. After
calling this function, SEAGAL will output the global L-index
for each gene-gene pair, the significance level through permu-
tation test, and the corrected P-value using FDR correction by
Benjamini–Hochberg (Benjamini and Hochberg 1995).

• Gene module detection
Function genemodules() allows automatic gene module
identification by finding the number of clusters that maxi-
mizes the silhouette score in iterative hierarchical cluster-
ing runs (Supplementary Methods).

• Visualization
• General spatial associations could be visualized in a

volcano plot and facilitate users to select their SAGs
using volcano().

• Spatial heat map of gene-gene association or cell-type
colocalization for paired variables could be visualized
by hotspot().

• Summarized cell-type colocalization patterns could be vi-
sualized in a clustered heat map via clustermap().

• Gene modules’ expression patterns could be visualized
through module_pattern(). And module_hotspot()
plots module-module associations in spatial heat maps.

3 Example

In this section, we will use a 10X Visium dataset as an exam-
ple to explore SEAGAL’s various functionalities. Other

tutorials, including how to use CSV-format input or how to
use user-defined marker gene lists for exploring cell–cell
colocalization and exclusion are available at: https://github.
com/linhuawang/SEAGAL.

The Human Breast Cancer block 1 sample (HBC1) originated
from 10X Genomics and could also be downloaded from our
example datasets: https://github.com/linhuawang/SEAGAL.

The core functionality of SEAGAL is to detect spatially as-
sociated gene pairs, as illustrated in Fig. 1A. This volcano plot
displays the spatial associations identified by SEAGAL using
highly spatially variable genes with Moran’s I � 0.4. The gene
pairs that show significant association are consistent with
other methods used to quantify spatial gene co-expression val-
ues for spatial transcriptomics (Supplementary Fig. S1).
Notably, the gene pair with the highest positive global
L-value (IGKC & IGHG) exhibits similar spatial expression
patterns, whereas the gene pair with the largest negative
L-value (COX6C & RPL13) demonstrates exclusive spatial
expression patterns (Supplementary Fig. S2). Subsequently,
SEAGAL was employed to calculate local L-values, represent-
ing the correlation of gene pairs within the spatial neighbor-
hood of each spot. The heatmap (Fig. 1B, Supplementary Figs
S2–S4) highlights the spatially correlated niches, providing
crucial insights into the intricate spatial organization and
gene associations within the tissue, which are instrumental in
deciphering complex biological processes and understanding
the underlying mechanisms at play.

Inspired by the Weighted Gene Co-expression Network
Analysis (WGCNA) analysis, SEAGAL enables the identifi-
cation of spatially co-expressed gene modules that exhibit
co-expression patterns specific to certain spatial locations.
These gene modules indicate the dynamics of gene groups
or pathways within precise spatial contexts. In the example
presented, SEAGAL identified three Spatially Associated
Gene (SAG) modules (Fig. 1C), each displaying distinct ex-
pression spatial patterns (Fig. 1D). The module assignments
agree with results from Giotto (Dries et al. 2021), yielding
an adjusted Rand index of 0.74 (Supplementary Fig. S5).

Furthermore, gene set enrichment analysis revealed that
the three identified modules are over-represented by differ-
ent functions in terms of gene ontology or cancer cell lines
(Supplementary Fig. S6). Specifically, module m0 is
enriched with the Breast Cancer cell line BT483, as defined
by the Cancer Cell Line Encyclopedia (Ghandi et al. 2019).
Module m1 is associated with signaling pathways related to
B and T cells, while module m2 is predominantly linked to
gene ontologies related to cell migration and adhesion. This
divergence in the molecular functional associations of the
modules reflects the dynamic pathways and cell communi-
cations within the underlying tissue.

To investigate how immune cells communicate within the
breast cancer tissue, we utilized SEAGAL to assess the
colocalization patterns of immune cells. We grouped the ex-
pression of marker genes together and represented the
paired cell–cell colocalization using global L-values
(Fig. 1E). To validate our findings, we compared them to
the results obtained from cell-type deconvolution using
RCTD, demonstrating a strong agreement (Pearson’s
correlation¼ 0.69, P¼ 0.0005) (Supplementary Fig. S7).

Our analysis revealed intriguing associations in the spa-
tial distribution of immune cells. B cells exhibited a spatial
colocalization with macrophages (global L¼ 0.37) while
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showing a negative association with neutrophils (global
L¼ –0.28). Local L-values displayed spatial patterns indi-
cating positive correlations between B cells and macro-
phages and negative correlations between B cells and
neutrophils across most of the tissue area. However, there
were areas within the tissue where only one specific associa-
tion existed, or none of the associations were present
(Fig. 1F and G).

These findings highlight the diversity and dynamics of im-
mune cell–cell interactions throughout the tumor tissue,
underscoring the intra-tumor heterogeneity of immune
responses. Importantly, the spatial distribution of immune
cells in the tumor microenvironment significantly influences
their functional interactions and their ability to target cancer
cells effectively (Bindea et al. 2013). SEAGAL’s cell-type
colocalization feature facilitates the exploration of colocaliza-
tion or exclusion of different immune cells within precise

spatial contexts. This capability can potentially enhance the
development of more effective therapeutic strategies.
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Figure 1. Applying SEAGAL on a breast cancer tumor. (A) Volcano plot of Spatially Associated Gene (SAG) pairs; each dot is a pair of spatially variable

genes; x axis shows the global spatial association in L-index and y axis shows the –log10 of P-value corrected by FDR using Benjamini–Hochberg’s

approach in permutation test. (B) Spatial heat map showing niches where a pair of SAGs are colocalized based on the local L-index. (C) Clustered heatmap

with gene modules annotated in each row. (D) Detected modules’ expression patterns in spatial heat maps. (E) Clustered heatmap for immune cell types’

spatial associations. Spatial heat map showing the spatial niches where B cells and Macrophages are spatially colocalized (F) and B cells and Neutrophils

are spatially excluded (G) based on the local L-index
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