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Abstract

Sleep-disordered breathing is an important health issue for children. The objective of this 

study was to develop a machine learning classifier model for the identification of sleep apnea 

events taken exclusively from nasal air pressure (NAP) measurements acquired during overnight 

polysomnography (PSG) for pediatric patients. A secondary objective of this study was to 

differentiate site of obstruction exclusively from hypopnea event data using the model.

Computer vision classifiers were developed via transfer learning to either normal breathing while 

asleep, obstructive hypopnea, obstructive apnea, or central apnea. A separate model was trained 

to identify site of obstruction as either adeno-tonsillar or tongue base. In addition, a survey of 

board-certified and board-eligible sleep physicians was completed to compare clinician versus 

model classification performance of sleep events, and indicated very good performance of our 

model relative to human raters. The NAP sample database available for modeling comprised 417 

normal, 266 obstructive hypopnea, 122 obstructive apnea, and 131 central apnea events derived 
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from 28 pediatric patients. The four-way classifier achieved a mean prediction accuracy of 70.0% 

(95% confidence interval (CI): 67.1–72.9). Clinician raters correctly identified sleep events from 

NAP tracings 53.8% of the time, whereas the local model was 77.5% accurate. The site of 

obstruction classifier achieved a mean prediction accuracy of 75.0% (CI 95: 68.7–81.3). Machine 

learning applied to NAP tracings is feasible and may exceed the diagnostic performance of expert 

clinicians. NAP tracings of obstructive hypopneas may “encode” information regarding the site of 

obstruction which may only be discernable by machine learning.
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INTRODUCTION

Sleep-disordered breathing is an important health issue for children and adolescents, with 

current estimates of the prevalence of obstructive sleep apnea (OSA) between 6% and 9% in 

the pediatric population (Marcus et al., 2012; Tsukada et al., 2018). A steadily building body 

of evidence suggests that untreated OSA in children and adolescents has important potential 

impacts on health and well-being, contributing not only to cardiovascular, metabolic, and 

pulmonary disease, but also to behavioral, learning, neuropsychiatric, and developmental 

problems (Bhatt et al., 2021; Hunter et al., 2016; Teo & Mitchell, 2013; Tzeng et al., 2019). 

Children with specific genetic syndromes (e.g., trisomy 21) are at higher risk for OSA, 

and may be particularly susceptible to the neurodevelopmental impacts of untreated OSA 

(Grieco et al., 2021; Lee et al., 2018).

In-laboratory polysomnography (PSG) remains the gold standard in the diagnosis of 

pediatric sleep disordered breathing and provides important information to enable risk 

stratification for pediatric patients pre-operatively (Kirk et al., 2017; Owens et al., 2012). 

However, access to this gold standard test is limited by insufficient testing capacity in 

the United States of America despite an increasing recognition of the importance of 

early detection and treatment of pediatric OSA (Owens et al., 2012). Due in part to the 

access problem, investigators have developed other diagnostic approaches to OSA. Prior 

studies have used machine learning models to classify OSA based on patient-reported 

questionnaires(Ahmed et al., 2018), pulse oximetry(Hornero et al., 2017; Vaquerizo-Villar 

et al., 2021), and heart-rate variability(Uçar et al., 2018) among others. Machine learning 

approaches have been shown to enhance the diagnostic accuracy of OSA (Gutiérrez-Tobal 

et al., 2021; Gutiérrez-Tobal et al., 2022). Though in-lab PSG is a sensitive and specific test 

for sleep-disordered breathing, , it does not provide clinicians with actionable information 

regarding site of obstruction, for which invasive procedures such as drug-induced sleep 

endoscopy (DISE) may still be required (Baldassari et al., 2021).

In this work, we describe the development of a machine learning classifier model for 

the identification of sleep apnea events taken exclusively from nasal air pressure (NAP) 

measurements acquired during clinical in-lab PSG. While others have described using 

single-channel NAP and expert-based rules as a means for diagnosing OSA via AHI 
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enumeration (Erman et al., 2007), our contribution uses machine learning to classify specific 

sleep apnea events. Using the same data type, we also describe the development of a 

classifier that can differentiate site of obstruction exclusively from hypopnea event data. 

Accurately differentiating the site of obstruction exclusively from hypopnea event data may 

be informative in the formulation of specific therapeutic interventions for a given case of 

OSA. Ultimately, these models serve as proof-of-concept for the future development of 

novel lightweight diagnostic technology for pediatric sleep apnea detection using fewer data 

channels, as well as to provide non-invasive means for characterizing the anatomic site of 

obstruction.

METHODS

This research was conducted under Mass General Brigham (MGB) Institutional Review 

Board (IRB) approval and oversight (MGB IRB protocol numbers 2021P001529 and 

2021P003186). The development and reporting of this predictive model was completed in 

accordance with published guidelines from a multidisciplinary panel (Luo et al., 2016).

Clinical Setting.

The patient population was comprised of 28 children and adolescents, ages 1–16 

years old, who underwent a standard overnight in-laboratory clinical polysomnography 

(PSG) test battery as ordered by a clinician (e.g., family physician, pediatrician, 

pulmonologist or otolaryngologist) to evaluate sleep disordered breathing. The standard 

PSG test battery includes nasal and oral airflow sensors, snoring microphone, respiratory 

impedance plethysmography, pulse oximetry, electrocardiography, carbon dioxide monitors, 

electroencephalography, and body position monitoring sensors. All PSGs were obtained as 

part of the usual medical management of the patient, and were scored and interpreted using 

American Academy of Sleep Medicine Pediatric criteria (Berry, 2020). All studies were 

obtained in the same lab, which adheres to AASM-specified inter-rater scoring standards, 

including >85% correlation between scorers and regular testing of scorer performance 

against Gold Standard studies. For our analysis, training and testing datasets were generated 

from the NAP exclusively. NAP was recorded, as part of the broader polysomnogram, using 

a Nihon Kohden PSG 1100 system (headbox model JB-110A) via Salter-brand cannulas 

(SL-5052–7-7–25 and SL-5044–7-7–25). The sampling rate for the NAP transducer signal 

was 25Hz, which is within AASM-outlined parameters (American Academy of Sleep 

Medicine, 2020).

Diagnostic Prediction Task.

We structured our analysis as a multi-classification prediction task using computer vision 

deep learning. The primary diagnostic prediction task of this study was to classify 

NAP signals as representing either i) normal breathing while asleep (during rapid eye 

movement (REM) or non-rapid eye movement (NREM) sleep), ii) obstructive hypopnea, iii) 

obstructive apnea, or iv) central apnea. Central hypopneas were not scored on the included 

polysomnograms, and so were not included in this study. Model success was primarily 

determined by the classification accuracy in assigning the correct label (%-correct). 

Precision, recall, and F-1 scores were also computed.
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We performed a secondary diagnostic prediction experiment to determine the predictive 

value of NAP signals for site of obstruction associated with the sleep apnea phenotype. 

Hypopnea events were isolated in a subset of our patients who underwent a successful 

adenotonsillectomy (AT) versus hypoglossal nerve (HGN) stimulation after their PSG study. 

Model success was primarily determined by the binary classification accuracy in assigning 

the correct surgery label (%-correct) as a proxy label for anatomic site of obstruction. 

Sensitivity, specificity, and precision were also computed.

Data Preparation.

Data were collected retrospectively from a database of pediatric patients who had 

successfully completed a full overnight PSG. Patient-level samples were included if the 

patient completed a full overnight PSG with data quality sufficient for routine clinical 

interpretation. Patient samples were excluded if there was disruption in the PSG testing 

protocols or poor data quality (e.g., limited continuous data available due to signal 

disruption).

For the neural network model development, training and testing datasets were comprised of 

30-second samples of NAP signal, which were extracted from sleep study epochs containing 

either an obstructive apnea, obstructive hypopnea, central apnea, or a period of normal 

breathing as previously scored by our sleep lab technologists. To extract features from 

the NAP time series data, we performed continuous wavelet transformations to each NAP 

sample to produce a scalogram image representation of each NAP sample (Figure 1). Our 

scalogram image database was split with 80% of images used for training, and the remaining 

20% used for validation to compute of out-of-training-set performance.

Model Development.

We performed transfer learning using convolutional neural network architectures optimized 

for computer vision. We trained neural networks using the NAP scalogram images as 

the input data. The prediction output of the model was one label out of either i) normal 

breathing while asleep (during rapid eye movement (REM) or non-rapid eye movement 

(NREM) sleep), ii) obstructive hypopnea, iii) obstructive apnea, or iv) central apnea. 

We surveyed several different architectures with different layer depths including ResNet 
(ResNet-18, -34, -50, -101, and -152), DenseNet (DenseNet-121 and -201), and Visual 
Geometry Group (vgg-16, vgg-19) models previously trained on the ImageNet database 

comprised of millions of high-resolution images within 22,000 categories.(Deng et al.) Prior 

to training, images were resized to 512 by 512 pixels and normalized for ImageNet.

To produce an accurate estimate of the model performance, we used Monte Carlo 

resampling with five separate experiments using random training-validation data splits 

to generate a 95% confidence interval (CI-95) of the model classification accuracy 

performance. Each random repetition was trained with 25 epochs and a progressive-

regressive learning rate strategy.(Smith, 2018) Confusion matrices were also generated 

to evaluate model performance within the classification labels strata. The modeling was 

completed with Python v3.9, PyTorch v1.9, and fast.ai v2.5 (available at: https://github.com/

fastai/fastai).
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‘Human vs. Machine’ Validation.

We performed an IRB-approved survey of board-certified and board-eligible sleep medicine 

physicians to assess the performance of an expert rater at identifying respiratory events 

(i.e., normal breathing, obstructive apneas, obstructive hypopneas, and central apneas) using 

only NAP tracings. Using an anonymized online survey platform (REDCap), physician 

respondents who affirmed their status as sleep medicine board-certified or board-eligible 

were shown a set of 30-second tracings of isolated NAP, taken from clinical in-lab PSGs. 

Each physician was shown a total of 40 unlabeled NAP tracings, which either represented 

normal breathing, an obstructive apnea, and obstructive hypopnea, or a central apnea. The 

ground truth labels were determined by a board-certified sleep medicine clinician who had 

access to the entire multi-channel PSG. Physician respondents were asked to give their best 

impression of each 30-second tracing, using pediatric rules for event duration (i.e. at least 

the duration of 2 breaths during baseline breathing) and for hypopnea scoring (i.e. peak 

signal excursions drop by ≥30% of pre-event baseline)(Berry, 2020). The respondents were 

instructed to choose among i) normal breathing while asleep (during rapid eye movement 

(REM) or non-rapid eye movement (NREM) sleep), ii) obstructive hypopnea, iii) obstructive 

apnea, or iv) central apnea. The survey invitation was distributed to a convenience sample 

of board-certified and board-eligible pediatric sleep clinicians through a pediatric sleep 

clinician mailing list (PedSleep2.0 via Google Groups) and through the American Academy 

of Sleep Medicine (AASM) Engage online forum. The classification performance of the 

clinicians was compared directly against the performance of our local model.

RESULTS

Patient Cohort.

The final patient cohort comprised 28 pediatric patients with sleep disordered breathing 

evaluated in our pediatric sleep lab between 2016 and 2022. This small cohort was selected 

based on polysomnographic or strong clinical evidence of significant improvement in OSA 

following a single-site operative intervention. The average age of the patient at time of PSG 

was 8.75 years (range 1.59 – 16.4 years, standard deviation (SD) 4.81 years). The study 

population was 32% female. The population was ethnically and racially diverse, with 53.6% 

self-reporting as non-hispanic white, 21.4% self-reporting as Hispanic, 10.7% self-reporting 

as non-hispanic Asian, and 3.6% self-reporting as non-hispanic African American. The 

average BMI was 19.74 kg/m2 (range 13.33 – 31.33 kg/m2, SD 4.04 kg/m2), and the BMI 

percentile was 69.5% (SD 28.3%). The average apnea hypopnea index (AHI) of the 29 

polysomnograms (1 patient contributed 2 separate PSGs at clinically discrete timepoints) 

included in our training and testing datasets was 15 events per hour (range 1.4 – 33.8/hour, 

SD 7.7/ hour), with an average obstructive apnea and hypopnea (OAHI) of 13.7/ hour (range 

1.4 – 30.4/ hour, SD 7.3/ hour).

Of the 28 patients in this cohort, 27 underwent a surgical intervention and had either 

post-operative PSG studies or hypoglossal nerve stimulator (HGNS) titration studies 

available. The prevalence of trisomy 21 (T21) in this cohort was 36%, with most of this 

subset of patients undergoing hypoglossal nerve stimulator placement. Of those patients 

who underwent a surgical intervention for their OSA, 46% of the patients underwent 
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tonsillectomy-adenoidectomy, 36% underwent hypoglossal nerve stimulator placement, and 

7% underwent adenoidectomy only. One patient underwent nasal turbinate ablation, one 

underwent lingual tonsillectomy, and one underwent supraglottoplasty. Following either 

surgical intervention or hypoglossal nerve stimulator activation and titration, the average 

residual AHI was 3.1/ hour (range 0–10.9/ hour, SD 2.5/ hour), with a residual OAHI of 2.3/ 

hour (range 0–8.7/ hour, SD 2.3/ hour).

Classifier Model Performance.

Our aggregate NAP sample database available for modeling comprised 417 normal, 266 

obstructive hypopnea, 122 obstructive apnea, and 131 central apnea events derived from 29 

patients (28 polysomnograms, with 1 patient contributing 2 separate studies to the dataset). 

Using Monte Carlo resampling with five separate random repetitions, our four-way classifier 

using the ResNet-50 architecture achieved a mean prediction accuracy of 70.0% (95% 

confidence interval (CI): 67.1–72.9) on held-out validation data. The classifier performed 

best in identifying ‘Normal’ images and had notable difficulty in differentiating actual 

‘hypopnea’ events from ‘normal’ (Table 1; Figure 2).

For our site of obstruction analysis, our NAP database available for modeling comprised 

118 and 121 hypopnea events from patients who subsequently underwent adenoidectomy-

tonsillectomy and hypoglossal nerve stimulation, respectively. Using Monte Carlo 

resampling with five separate random repetitions, our site of obstruction classifier achieved 

a mean prediction accuracy of 75.0% (CI 95: 68.7–81.3) on held-out validation data with a 

sensitivity of 78.1% (CI 95: 69.6–86.6%), specificity of 72.1% (CI 95: 66.4–77.7%), and a 

precision of 70.6% (CI 95: 61.3–80.0%)

‘Human vs. Machine’ Survey.

25 sleep medicine board-certified or board-eligible physicians participated in the survey. 

Overall, physician raters correctly identified NAP tracings 53.8% of the time on average 

(Table 2). Physician raters were most consistently able to discriminate normal breathing 

correctly, with an average identification rate of 84.4%. Physicians had relatively poor 

performance in identifying obstructive apneas (an average of 48.8% correctly identified), 

obstructive hypopneas (an average of 47.9% correctly identified), and central apneas (an 

average of 34.2% correctly identified). On the same dataset, our validated model achieved an 

average classification accuracy of 77.5% across all event types.

DISCUSSION

To the best of our knowledge, our study is the first to combine the concepts of computer 

vision transfer learning and single channel nasal air pressure measurements to classify 

sleep disordered breathing events during in-laboratory PSG in children. Our best-performing 

proof-of-concept classifier model, which was developed using a relatively small dataset of 

sleep disordered breathing events, demonstrated robust performance in identifying specific 

breathing events. When compared to clinician experts, our proof-of-concept model exceeded 

human classification performance in aggregate. Our secondary objective was to explore 

the predictive ability of NAP measurements for classifying anatomic subsite of obstruction 
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based on post-PSG surgery as the ground truth label. We found that NAP measurements 

alone had a surprisingly accurate ability to correctly classify site of obstruction. Our 

results illustrate the potential for computer vision machine learning approaches based on 

limited data streams for the development of simpler, less-invasive PSG testing modalities 

for pediatric patients, as well as obtaining additional clinically useful information such as 

anatomic obstruction subsite through the application of principles associated with machine 

learning.

In-laboratory PSG remains the gold standard in the diagnosis of sleep-related breathing 

disorders in children and adolescents, however the scoring of these studies remains largely 

a manual and labor-intensive process. While quality assurance is performed continuously in 

accredited sleep laboratories, inter-rater reliability variance between scorers and interpreting 

physicians remains a concern. An automated system for accurately identifying respiratory 

events would be a cost and time-saving tool for busy sleep laboratories and could ensure 

consistency across scorers and laboratories and better access to PSG for pediatric patients. 

To that end, considerable interest in applying machine learning models to various aspects of 

PSG has emerged. Investigators have developed machine learning models based on machine 

learning to predict the presence and severity of sleep-disordered breathing using oximetry, 

actigraphy, and clinical variables (Bertoni et al., 2020; Calderón et al., 2020; Combs & 

Parthasarathy, 2017; Gutiérrez-Tobal et al., 2021; Jiménez-García et al., 2020; Vaquerizo-

Villar et al., 2021; Vaquerizo-Villar et al., 2020). These efforts have demonstrated that 

machine learning models to predict the presence and severity of sleep-disordered breathing 

in any population may be a viable approach with acceptable accuracy. Our result adds to 

this growing body of literature in highlighting the predictive utility of using a non-invasive 

single-channel data source – such as nasal air pressure – in classifying sleep events observed 

during in-laboratory clinical PSG. Our approach and result also supports recent evidence 

that has demonstrated that wavelet transformation of single-channel data, such as oronasal 

air flow, data can produce accurate diagnostic accuracy for pediatric OSA (Barroso-García, 

Gutiérrez-Tobal, Gozal, et al., 2021; Barroso-García, Gutiérrez-Tobal, Kheirandish-Gozal, et 

al., 2021).

Previously published data indicates that expert inter-rater performance in identifying 

respiratory events with the benefit of a full standard polysomnographic montage exceeds 

93% agreement overall, with very good performance on identifying epochs with normal 

breathing (97.4% agreement), and relatively weaker agreement between expert raters when 

scoring obstructive apneas (77.1%), obstructive hypopneas (65.4%), and central apneas 

(52.4%)(Rosenberg & van Hout, 2014). In our survey study, our clinicians’ performance in 

classifying NAP measurements exclusively tracked the general trends in clinician rating of 

PSG data in that hypopneas and central apneas are difficult to reliably classify. However, our 

clinicians were provided with an artificial environment of only having NAP measurements 

to consider. In clinical practice, clinicians rely upon multi-channel data in making their 

interpretations. However, in our case, we found the machine learning model trained on just a 

single channel of PSG data outperformed human clinicians on the same task.

Our study is not without limitations. Some potential pitfalls are inherent in interpreting the 

model. Our site of obstruction analysis uses surgery as a proxy measure for an anatomic 
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subsite (i.e., adenotonsillar versus tongue base). We assumed that the correct surgery 

was selected and thus the proxy measure serves as a reasonably accurate assumption for 

obstruction at either the adenotonsillar or tongue base subsites. There exists potential bias of 

the data used in our modeling. Our sleep laboratory is located at a tertiary level academic 

medical center and may yield a different distribution of type and/or severity of pediatric 

sleep disordered breathing. As a result, the generalizability of our model may be impacted if 

applied to data from other patient populations. Our small sample size was selected based on 

the presence of a clinically well-delineated site of obstruction which responded to surgical 

intervention. In this way, we were able to train the model on site of obstruction with some 

degree of clinical confidence. Patients with T21 comprise a significant proportion of our 

dataset and were included as a source of tongue base obstruction data in the context of 

successful pediatric HGNS procedures performed at the study site. The NAP signature of 

tongue base obstruction from a patient with T21 may not be generalizable to patient without 

T21, and we will explore this further in subsequent work.

While in-laboratory PSG remains the gold standard in the diagnosis of sleep-related 

breathing disorders in children, the manual scoring and interpretation of PSG data is 

labor-intensive and subject to variance in inter-rater reliability. Our study suggests that 

machine learning applied to NAP tracings may exceed the diagnostic performance of expert 

clinician raters. Further, our site of obstruction experiment suggests that the NAP tracings 

of obstructive hypopneas may “encode” information regarding the site of obstruction which 

may only be discernable by a machine learning model. Significant further work, including 

confirmatory work by other labs, will be needed before clinical use of such a model 

would be appropriate in surgical planning. Ultimately, we provide support to the growing 

body of work that applying machine learning to clinical PSG data may help push for the 

development of scalable tools for simpler, more consistent, and time-saving analyses for 

clinical pediatric PSG. Future work is needed to explore incorporating other non-invasive 

data channels, externally validate these models and increase dataset sizes to enhance model 

classification accuracy.
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ABBREVIATIONS

AASM American Academy of Sleep Medicine

AT Adenotonsillectomy

AHI Apnea hypopnea index

CI Confidence interval
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HGN Hypoglossal nerve

REM Rapid eye movement

NREM Non-rapid eye movement

NAP Nasal air pressure

OSA Obstructive sleep apnea

OAHI Obstructive apnea and hypopnea

PSG Polysomnography

SD Standard deviation
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Figure 1. 
Nasal air pressure (NAP) feature engineering and processing prior to computer vision 

transfer learning modeling. A. NAP tracings were extracted from the patient-level clinical 

polysomnography dataset. B. Continuous wavelet transformations were performed on NAP 

samples to produce scalogram image representations.
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Figure 2. 
Confusion matrix for first replicate of the four-way classifier.
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Table 1.

Performance statistics of the four-way multiclass model on held-out data

Mean (CI-95)

Target Class Precision Recall F1-Score

Apnea 0.60 (0.53–0.67) 0.59 (0.50–0.67) 0.59 (0.52–0.66)

Central 0.61 (0.58–0.64) 0.63 (0.61–0.66) 0.62 (0.59–0.64)

Hypopnea 0.69 (0.66–0.71) 0.55 (0.48–0.62) 0.61 (0.56–0.65)

Normal 0.80 (0.80–0.80) 0.84 (0.83–0.86) 0.82 (0.81–0.83)

CI-95: 95% confidence interval
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Table 2.

Human vs. machine performance on forty nasal air pressure classification images. Percentages represent 

classification accuracy.

Classification Performance

NAP Event Type Clinicians Local Model

Normal Breathing 84.4% (SD 19.8) 90%

Obstructive Apnea 48.8% (SD 28.4) 70%

Obstructive Hypopnea 47.9% (SD 17.4) 80%

Central Apnea 34.2% (SD 29.8) 70%

Average Performance 53.8% (SD 30.5) 77.5%

NAP: nasal air pressure
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