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Abstract

Objective: Noise quantification is fundamental to CT image quality assessment and protocol 

optimization. This study proposes a deep learning-based framework, Single-scan Image Local 

Variance EstimatoR (SILVER), for estimating the local noise level within each region of a CT 

image. The local noise level will be referred to as a pixel-wise noise map.

Methods: The SILVER architecture resembled a U-Net convolutional neural network (CNN) 

with mean-squared-error loss. To generate training data, 100 replicate scans were acquired of 

three anthropomorphic phantoms (chest, head, and pelvis) using a sequential scan mode. 120,000 

phantom images were allocated into training, validation, and testing datasets. Pixel-wise noise 

maps were calculated for the phantom data by taking the per-pixel standard deviation from the 

100 replicate scans. For training, the CNN inputs consisted of phantom CT image patches and 

the training targets consisted of the corresponding calculated pixel-wise noise maps. Following 

training, SILVER noise maps were evaluated using phantom and patient images. For evaluation on 

patient images, SILVER noise maps were compared with manual noise measurements at the heart, 

aorta, liver, spleen, and fat.

Results: When tested on phantom images, the SILVER noise map prediction closely matched the 

calculated noise map target (root-mean-squared-error < 8 HU). Within ten patient exams, SILVER 

noise map had an average percent error of 5% relative to manual ROI measurements.

Conclusion: The SILVER framework enabled accurate pixel-wise noise level estimation directly 

from patient images. This method is widely accessible since it operates in the image domain and 

requires only phantom data for training.
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Introduction:

Computed Tomography (CT) is a medical imaging modality that uses x-ray radiation to 

obtain a three-dimensional representation of human anatomy. CT image quality assessment 

is performed routinely for equipment evaluation and scanning protocol optimization. One 

important indicator of image quality is image noise. Noise is typically measured using 

standardized image quality phantoms; however, phantom-based measurement is not ideal 

because it does not reflect how the system operates on patients in standard practice. Noise 

measurement techniques within patient exams are limited, most commonly noise in patient 

exams is manually measured as the standard deviation of CT numbers within a uniform 

region of interest (ROI SD). Ideally, there would be fully automatic tools for measuring 

pixel-wise noise level in patient CT images. The difficulty of reliable noise quantification in 

patient images is a barrier for protocol optimization and image quality standardization across 

patients and practices.

Some methods have been proposed for global and pixel-wise measurement of image 

noise in patient CT images. Global metrics aim to distill noise level within a patient 

exam into a single quantity1-7. Christianson et al. described a global noise index which 

automatically determines uniform regions of patient anatomy, applies standard deviation 

measurements in these regions, and reports the most frequent noise level measured1. Global 

noise assessment has also been achieved with deep learning-based methods; a CNN was 

trained to predict radiologist assigned labels of subjective image quality ratings for patient 

CT images8,9 and a generative adversarial network as trained to predict patient-specific 

noise power spectrum10. In contrast, pixel-wise noise quantification aims to quantify the 

spatial variations in noise level within individual patient images. For simple geometries, 

pixel-wise noise characteristics can be analytically determined by propagating a noise model 

through the reconstruction process11,12. To mimic a clinical scenario, CT simulation tools 

and projection noise insertion can be used to approximate pixel-wise CT patient noise13. 

However, previous techniques for pixel-wise noise quantification have not been adopted due 

to inaccessibility of clinical CT projection data, lack of manufacturer transparency about the 

data pre-processing and image reconstruction process, extensive computational processing 

times, or inaccuracy of the results.

In this study, we propose a deep-learning-based method to estimate the pixel-wise noise 

level of patient CT images; we refer to this technique as Single-scan Image Local Variance 

EstimatoR (SILVER). Based on prior work demonstrating CNN for noise reduction14,15, we 

hypothesized that a CNN would be capable of predicting pixel-wise noise level.

Materials and Methods:

A. Training Dataset:

SILVER was trained using CT images of three different anthropomorphic phantoms, which 

mimicked the body habitus of the head (Angiographic CT Head Phantom ACS, Kyoto 

Kagaku), chest (LUNGMAN, Kyoto Kagaku), and pelvis (RSD Sectional Phantom, 3M). 

100 replicate scans of each phantom were performed in a sequential scan mode using a 

dual-source 128-slice scanner (Somatom Definition Flash, Siemens Healthineers) at 120 kV 
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with routine dose (200 effective mAs) and quarter dose (50 effective mAs). Automatic 

tube current and potential systems were turned off for this study. Reconstruction was 

performed with a smooth kernel (Siemens B30, MTF 10% of 5.9, no edge enhancement) 

and a medium sharp kernel (Siemens D45, MTF 10% of 9.4, contains edge enhancement), 

an image thickness of 1 mm, and a field of view of 420 mm to match the reconstruction 

parameters of the AAPM and Mayo Clinic Grand Challenge patient dataset, which were 

used for evaluation (Section C. II.)16. A total of 120,000 CT images of the phantoms were 

acquired, which were allocated into datasets for model training, validation, and testing (80% 

for training, 10% for validation, and 10% for testing).

100,000 training patches (64x64 pixels) were extracted from phantom images to be used 

as input (phantom CT image with noise scaling) and target (corresponding pixel noise 

map). To improve diversity in the training dataset, a random linear scaling of image noise 

(ranging from 0 to 200%) was applied to each patch. Linear noise scaling was applied 

by subtracting an individual phantom CT image by the 100-repetition average, multiplying 

the noise-only difference image by a random scaling factor, and then adding the scaled 

noise-only difference image back into the 100-repetition average (Eqn. 1). The pixel noise 

map label was calculated as the pixel-wise standard deviation of each set of 100 repeated 

phantom images while accounting for the linear noise scaling term (Eqn. 2),

Training input w ∕ noise scaling: f(xi,j, α) = x‒i,j + α(xi,j − x‒i,j ) (1)

Training target: SD f(xi,j, α) = ∑ f(xi,j, α) − x‒i,j
2

n − 1 = α ∑ xi,j − x‒i,j
2

n − 1
(2)

Where xi,j is the CT number of the pixel at location of (i, j) of the image, x‒i,j is the pixel 

average from repeated phantom scans, α is a random noise scaling factor (0 to 200%), and n 

is the number of repeat phantom scans (100).

B. Training Procedure:

A CNN was trained via supervised learning to map phantom CT images (with noise scaling) 

to a corresponding calculated pixel noise map. The CNN resembled a U-Net architecture17. 

Encoding units consisted of 2D convolutional layers, batch normalization, ReLU activation, 

and max-pooling. Decoding units consisted of 2D convolutional layers, batch normalization, 

ReLU activation, and up-sampling (Fig. 1). Mean-squared-error loss function was used 

with respect to the calculated noise map. During training, rotational data augmentation was 

applied. SILVER was trained twice, once for smooth kernel (B30) and once for medium-

sharp kernel (D45). This is to ensure optimal performance for each kernel. When applying 

the model to a certain image we make sure that the correct weights are selected for that 

reconstruction kernel. In addition, training data from both dose levels were put together to 

train a single set of weights. The phantom data used for training was acquired at the same 

mAs setting as the patient exams used for testing; however, due to variations in patient 

size there was naturally more variations in noise level of the patient data relative to the 

phantom data. Therefore, we applied a noise scaling technique to the phantom data in order 
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to augment our training set to encompass a large range of noise levels. By using a large 

range of noise levels in the training, we expect it to perform well when applied to the various 

patient datasets used during testing. Training was conducted using a Nvidia GTX 1080 GPU 

equipped with TensorFlow and Keras.

C. Performance Evaluation:

I. Anthropomorphic phantom image data: SILVER was first evaluated using 

anthropomorphic phantom images that were excluded from the training process. The 

phantom test dataset was also acquired with 100 repetitions so that pixel noise map could 

be calculated, as described in Section A. SILVER was applied to full phantom CT images 

(512x512 pixels) and the predicted noise map was compared directly to the calculated noise 

map. Root-mean-square-error (RMSE), difference images, and percent error maps of the 

predicted noise map relative to the calculated noise map were used to assess performance. 

Absolute percent error was defined as the difference between the predicted and calculated 

noise map, divided by calculated noise map, and multiplied by 100% (Eqn. 3).

Percent error mapi,j =
SILVER[xi,j] − ∑ xi,j − x‒i,j

2
n − 1

∑ xi,j − x‒i,j
2

n − 1

× 100 % (3)

Where xi,j is the CT number of the pixel at location of (i, j) of the image, x‒i,j is the 

pixel average from repeated phantom scans, n is the number of repeated scans (100), and 

SILVER[xi,j] is the predicted noise level at (i, j) from a single scan.

II. Patient image data: SILVER was used to predict pixel-wise noise maps in 10 patient 

CT datasets from the AAPM and Mayo Clinic Low Dose Grand Challenge dataset18. This 

dataset contains patient exams at routine dose (RD) and quarter dose (QD). QD patient 

exams were synthesized using a validated projection-based noise insertion technique which 

considers the effect of automatic exposure control, bow tie filter, and electronic noise19-21. 

Manual ROI SD measurements were performed at the aorta, liver, spleen, fat, and heart and 

compared directly with noise levels predicted by SILVER at the same locations. The ROI 

radius was set to 10 pixels (8 mm). Twenty-five uniform regions were pre-selected within 

each of the ten datasets. ROIs were placed by a physics researcher with one year experience. 

The absolute percent error of each measurement was recorded between SILVER and the ROI 

SD measurement and average absolute percent error was calculated for each anatomy.

Results:

I. Anthropomorphic phantom image data:

When applied to the anthropomorphic phantom test dataset, the noise map predicted by 

SILVER closely matched the calculated noise map. The RMSE of SILVER noise map 

relative to calculated noise map for the test set of each phantom is included in Table 1. For 

smooth kernel (B30), the average RMSE of the noise map prediction was 1.1 HU at RD 

and 1.7 HU at QD. For medium sharp kernel (D45), the average RMSE of the noise map 
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prediction was 2.4 HU for RD and 4.7 HU for QD. In general, the SILVER noise map was 

most accurate within largely uniform regions and less accurate for detailed structures (i.e., 

phantom lung structure). We observed increased error in regions containing streak artifact 

(i.e., phantom heart and chest wall). SILVER performed well for both QD and RD exams in 

terms of RMSE, visual inspection, and percent error calculation (Fig. 2).

II. Patient image data:

SILVER was used to predict noise maps of ten patient exams for two dose levels (RD and 

QD) and two reconstruction kernels (B30 and D45). By visual inspection (Fig. 3), SILVER 

noise prediction matched trends expected regarding patient size (elevated noise observed in 

large patients), tissue-type (elevated noise in bone relative to soft tissue), and depth of region 

(elevated noise in center-most regions). The accuracy of SILVER noise map was confirmed 

by comparing to uniform ROI SD measurements (10-pixel radius) at aorta, liver, spleen, fat, 

and heart. The absolute percent error of SILVER relative ROI SD measurement is provided 

for each anatomy in Table 2.

Discussion:

In this paper, we introduce the Single-Image Local Variance EstimatoR (SILVER) for 

pixel-wise noise quantification in CT images. The technique was evaluated two ways: (I.) 
accuracy of SILVER noise map compared to calculated noise map of anthropomorphic 

phantom scans and (II.) accuracy of SILVER noise map compared to ROI SD in 10 patient 

image cases.

SILVER noise map prediction closely matched the calculated noise map in anthropomorphic 

phantoms (< 8 HU RMSE). SILVER had elevated error within fine phantom lung structures 

(roughly 50% overestimate). In regions of extensive streak artifact, SILVER tended to under-

estimate noise level (roughly 30% underestimate), this may be attributable to insufficient 

training examples of streak artifacts within our anthropomorphic phantom dataset. In the 

future we plan to include more phantom geometries within the training dataset to improve 

robustness of SILVER to patient cases containing streak artifact.

SILVER noise map prediction closely matched ROI SD measurements (10-pixel radius) in 

10 patient CT datasets. Large uniform structures, such as liver and spleen, achieved lowest 

percent error (5% for RD, 4% for QD). The aorta had slightly elevated percent error (7% for 

RD, 6% for QD). Elevated error at the aorta may be due to streak artifact from the vertebrae. 

In some patients the aorta was only slightly larger than the 10-pixel radius, it is possible that 

non-uniformity in ROI SD measurement impacted the accuracy of these measurements.

There are several notable contributions of this study. To the best of our knowledge, this 

is the first study using deep learning to quantify pixel-wise noise level directly from CT 

images. SILVER achieved high accuracy and superior measurement repeatability relative to 

ROI SD measurement. Additionally, we used a widely accessible phantom-based training 

methodology. Because this technique operates within the image domain, this framework 

can be implemented on any CT scanner. Because our algorithm is trained directly on 

CT phantom measurements, it can in theory learn the many complexities of CT noise 
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(Poisson and electronic noise sources, internal data processing, geometric variations, and the 

reconstruction process).

There are several limitations of this study. First, our primary evaluation within patient 

exams was based on ROI SD measurements at uniform anatomy. Unfortunately, there 

are no reliable methods for calculating noise level within non-uniform patient regions; 

hence, we could not assess the accuracy of SILVER at these regions. In future work, we 

plan to perform a cadaver study to assess the accuracy of SILVER noise predictions for 

non-uninform regions of human anatomy. Second, the ability of SILVER to generalize to 

human anatomic features is dependent on our ability to include similar features within the 

anthropomorphic phantom training data. For example, we observed reduced accuracy at 

regions with streak artifact, likely due to insufficient representation of this artifact within 

the phantoms used for training. In future work we will explore additional data augmentation 

techniques to improve upon model generalizability. Third, we only demonstrated SILVER 

noise maps for filtered back projection images and a limited number of reconstruction 

conditions. With retraining, the framework described should also be applicable to iterative 

reconstruction and other modifications to reconstruction conditions. Further validation is 

currently underway. Fourth, this study focused only on prediction of first-order noise level. 

In future work, we plan to quantify noise correlation directly from patient CT images using a 

related framework.

The current study was trained and tested on a reconstruction kernel-specific basis (kernel 

of the training and testing images were matched). Prior literature indicates that CNN 

models perform poorly when applied to images reconstructed differently than the training 

dataset due to differences in the spatial frequencies of noise22,23. We acknowledge that 

kernel-specific training could be a barrier for use in a clinical setting where multiple kernels 

are used. In future work, we plan to include multiple kernels within the SILVER training 

dataset to improve generalizability and quantify performance when applied to different 

reconstruction kernels.

Conclusions:

In conclusion, the investigated CNN-based technique was capable of accurately predicting 

noise level directly from CT phantom and patient images. The SILVER noise map provided 

noise level estimation of non-uniform regions, which is unattainable using existing methods 

of noise quantification. This paper provides an example of the potential benefit of using deep 

learning for patient-specific image quality assessment.
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Figure 1. 
Schematic of SILVER framework. (A) Chest, pelvis, and head anthropomorphic phantoms 

were scanned with 100 repeated acquisitions. (B) Calculated noise maps were generated as 

the pixel-wise standard deviation of phantom images. Phantom scans (input) and calculated 

noise maps (labels) were split into training patches. (C) A convolutional neural network 

(CNN) resembling U-Net was trained to predict a pixel noise map directly from a single 

CT image. SILVER: single-scan image local variance estimator, SD: standard deviation, 

2D: 2-dimensional, ReLU: rectified linear unit. Images can be viewed in color online at 

www.jcat.org.
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Figure 2. 
SILVER predicted noise map for pelvis and chest phantom for (A.) smooth (B30) and 

(B.) medium-sharp kernel (D45) images. The first column is the phantom test CT image 

(WL: 50, WW: 400), second column is SILVER noise map prediction, third column is the 

calculated noise map based on 100 repeated phantom scans, fourth column is the difference 

of SILVER prediction and calculated noise map, and fifth column is the percent error of 

SILVER prediction relative to calculated noise map. Image selection was made to show 

performance within lungs and pelvis. Images can be viewed in color online at www.jcat.org.
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Figure 3. 
Representative patient CT images and corresponding SILVER noise map prediction, at two 

dose levels (RD: routine dose, QD: quarter dose) and two kernels (B30: smooth, D45: 

medium sharp). Notice the large variety in noise levels and textures observed within the 

patient dataset. Image selection was made to show performance within lungs, abdomen, and 

pelvis. Images can be viewed in color online at www.jcat.org.
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Table 1.

Root-mean-squared-error (RMSE, HU) between the SILVER noise map prediction and the calculated noise 

map for the test dataset of three anthropomorphic phantoms (head, chest, and pelvis). RMSE was calculated 

for each phantom at routine dose and quarter dose.

Phantom
Smooth Kernel (B30) Medium Sharp Kernel (D45)

Routine Dose Quarter Dose Routine Dose Quarter Dose

Head 0.7 1.1 1.6 2.9

Chest 1.1 1.4 2.1 3.8

Pelvis 1.5 2.5 3.5 7.5

Average 1.1 1.7 2.4 4.7
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Table 2.

Average absolute percent error of SILVER versus ROI SD measurement for preselected regions in patient CT 

images (heart, aorta, liver, spleen, fat). Error bars reflect the standard deviation of percent error in ten patient 

exams.

Region
Quarter Dose: Percent Error (%) Routine Dose: Percent Error (%)

B30 D45 B30 D45

Heart 6 ± 4 4 ± 2 7 ± 7 4 ± 4

Aorta 7 ± 5 4 ± 3 9 ± 5 5 ± 3

Liver 4 ± 2 4 ± 3 5 ± 4 3 ± 2

Spleen 4 ± 4 3 ± 3 7 ± 5 4 ± 3

Fat 6 ± 4 4 ± 3 7 ± 8 4 ± 4
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