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1. Introduction

Individuals with sickle cell disease (SCD) experience debilitating pain that severely 

diminishes quality of life. In SCD, a single point mutation in the β-hemoglobin 

gene triggers hemoglobin polymerization, giving rise to the characteristic sickle shape 

of red blood cells. This contributes to blockade of blood vessels and triggers vaso-

occlusive crises (VOCs)[46,78]. In addition to these acute pain episodes, nearly 30% 

of patients with SCD will develop daily chronic pain[98], the underlying causes of 

which are still poorly understood. Two transgenic mouse models, the Berkeley and 

Townes models, are useful for examining the neurobiological basis of chronic SCD 

pain[76,85]. These mouse models consistently demonstrate behavioral hypersensitivity to 

mechanical and thermal stimuli[18–20,41,53,54,87,89,91,112], and demonstrate peripheral 

nerve fiber dysfunction[11,33,39,41,43,49–51,66,77,87,88,91,113,114,118]. The transient 

receptor potential (TRP) family of ion channels are expressed in mouse and human 

peripheral tissues[90,97,108] where they regulate several processes required for normal 

somatosensation, including osmosensation[64,102] and mechanosensation[103]. Several 

TRP channels have previously been shown to contribute to hypersensitivity in SCD[41,89], 

however, the pathophysiology of the disease suggests that more family members may be 

involved in this process.

TRPV4 is implicated in pathological pain conditions that have hallmarks similar to SCD, 

including tissue inflammation[4,5,9,22–24,99,121,122] and neuropathy[6,7,67,68,120], as 

well as in hypo- and hypertonicity-mediated nociception[8,9]. TRPV4 is highly expressed 

in rodent dorsal root ganglia (DRG) neurons[9,65,92], and in human DRG neurons TRPV4 

is primarily expressed in Aβ and silent nociceptors[108]. TRPV4 is also highly expressed 

in keratinocytes[23,25,36,83,94,100,104], the primary cell type of the epidermis which were 

recently shown to be critical modulators of primary sensory afferent activity[14,70,75]. 

Notably, keratinocyte-expressed TRPV4 activity is required for UV-burn related mechanical 
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allodynia[72], further suggesting that peripheral non-neuronal expression of this channel 

is also important for inflammatory pain conditions. Despite all this, TRPV4 remains an 

unexplored candidate mechanism in the hyperalgesia characteristic of SCD. In the present 

study we examined whether TRPV4 mediates behavioral and cellular sensitization in SCD 

mice using a combination of evoked behavior assays, patch clamp recordings, and calcium 

imaging. These experiments are the first to investigate a functional role for TRPV4 in SCD 

hypersensitivity.

2. Methods

2.1. Animals

Two transgenic SCD mouse lines, Berkeley and Townes, were used in the current 

experiments. Berkeley sickle cell (Berk SS) mice have murine α and β hemoglobin genes 

knocked out and human α globin and sickle β globin genes are expressed using a transgene 

[Tg(Hu-miniLCRα1GγAγδβS)][76]. Because the Berkeley genetic background comes from 

C57BL/6 and 129 mice, B6/129 hybrid mice were used as a wildtype (WT) control for 

Berk SS mice. Townes murine Hba and Hbb genes are knocked out and human HBA and 

sickle HBB genes are knocked in at the same locus (Townes SS); WT control Townes 

mice contain human HBA and normal HBB genes (Townes AA) [85]. Both Berk SS and 

Townes SS mouse models are homozygous for sickle β globin, leading to pathology like that 

seen in SCD patients. These mouse models also display many of the same characteristics 

of human patients with SCD, including persistent hypersensitivity to mechanical and cold 

stimuli[15,47]. Equivalent numbers of male and female mice were used for all experiments. 

Ages ranged from 12-56 weeks. All mice were bred and maintained in a climate-controlled 

room on a 14:10 light/dark cycle and given free access to food and water. Mice were group 

housed by genotype. All protocols were in accordance with National Institutes of Health 

guidelines and were approved by the Institutional Animal Care and Use Committee at the 

Medical College of Wisconsin (Milwaukee, WI; protocol 383).

2.2. Behavior

For all behavioral testing, Townes AA (WT) and Townes SS (SCD) mice were habituated 

to test chamber and experimenter for >1 h[101], and all mice were randomly assigned 

to treatment groups. Given that the selective TRPV4 inhibitor GSK2193874 reduces 

osteoarthritic pain behavior and spontaneous DRG action potential firing at 1μM[99], 

mice received intraplantar injections of 20 μL of PBS (vehicle) or GSK2193874 (TRPV4 

antagonist; Tocris Bioscience) at 30, 100, or 300 nM concentrations. Behavioral testing 

began 45 min after injection.

2.2.1. Mechanical sensitivity—The von Frey up-down assay was used to examine 

sensitivity to punctate mechanical stimuli. Calibrated filaments (0.2-13.73 mN) were used to 

calculate a 50% withdrawal threshold for each paw, as previously described[21,29]. If toe 

flaring occurred without paw withdrawal, it was not considered a response.

Noxious needle testing was performed to assess hind paw sensitivity to noxious punctate 

mechanical stimuli as previously described[42]. Each paw was stimulated 10 times by 
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pressing a 25-gauge spinal needle into the center of each hind paw to indent the skin but 

not puncture it. Response frequency was recorded and characterized as either null (no paw 

withdrawal), normal (simple withdrawal) or nocifensive (withdrawal accompanied by biting, 

licking, flicking, or additional hind paw attending).

Paintbrush stimulation was used to determine the extent of hind paw sensitivity to 

dynamic light touch as previously described[26]. Each paw was stimulated 10 times by 

sweeping a fine horsehair paintbrush across the plantar skin from heel to toe pads and 

maintaining approximately consistent speed and force between applications. Like needle 

testing, response frequency and characterization (null, normal, nocifensive) were recorded.

2.2.2. Cold sensitivity—To test sensitivity to noxious cold as previously described[16], 

powdered dry ice was packed into a 3 mL plastic syringe with the tip removed. The dry ice 

was applied to the underside of a 1/4 inch thick Plexiglas floor, underneath each plantar hind 

paw, for no more than 20 s per stimulation. Each paw was stimulated 4 times. Withdrawal 

latencies recorded for each paw were averaged together for each animal.

2.3. Cell culture

2.3.1. Dorsal root ganglia (DRG) neurons—Under deep isoflurane anesthesia, mice 

were euthanized through decapitation. Bilateral lumbar 1-6 DRG were dissected and 

collected in HBSS+Ca2+, then incubated in Ham’s DMEM/F12 medium with 10mg/mL 

collagenase type IV for 40 min, then 0.05% trypsin for 45 min at 37°C in 5% CO2. 

Mechanical trituration was used to physically dissociate cells, which were then plated onto 

laminin-coated glass coverslips. Coverslips were incubated for 1-2 h before flooding the 

wells with media (Ham’s F12 supplemented with 10% heat-inactivated horse serum, 1% 

glucose, 100 units/mL penicillin, and 100 μg/mL streptomycin, 2 mM L-glutamine), and 

were then incubated overnight. For calcium imaging experiments, cells were additionally 

centrifuged at 2800rpm for 1 min, supernatant removed and 1mL DMEM/F12 media added 

before incubation in trypsin. A similar centrifugation step was added immediately before 

cells were plated onto coverslips.

2.3.2. Keratinocytes—Under deep isoflurane anesthesia, mice were euthanized through 

cervical dislocation. Glabrous skin of the mouse hind paw was dissected and incubated 

in 20 mg/mL dispase for 45 min at room temperature (RT). Epidermal and dermal layers 

were then separated, and the epidermis was incubated in 50% EDTA and 0.05% trypsin 

in HBSS without calcium chloride, magnesium chloride, and magnesium sulfate for 27 

min at RT. Following exposure to 15% heat inactivated fetal bovine serum, epidermal 

sheets were rubbed against the base of a petri dish to dissociate the tissue. The resulting 

solution (consisting primarily of single keratinocytes) was centrifuged, supernatant was 

removed, and the pellet was resuspended in Epilife media with 1% human keratinocyte 

growth supplement, Amphotericin B (250μg/mL Amphotericin B and 205 μg/mL sodium 

deoxycholate), and 0.25% penicillin-streptomycin. Cells were plated on laminin-coated 

coverslips and incubated at 37°C and 5% CO2. Forty-eight hours after initial plating, cell 

media was exchanged. Keratinocytes were used for calcium imaging experiments 3-4 days 

after plating.
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2.4. Calcium imaging

Calcium imaging experiments were performed on DRG neurons isolated from B6;129 (WT) 

and Berkeley SS (SCD) mice following overnight culture. Coverslips were incubated in 

2.5 μg/mL Fura-2-AM (a dual-wavelength ratiometric calcium indicator dye) in 2% bovine 

serum albumin for 45 min, followed by a 30 min wash in extracellular normal HEPES 

buffer (ENH) before imaging. Coverslips were mounted on a Nikon Eclipse TE200 inverted 

microscope and were superfused with RT ENH (pH 7.4 ± 0.03; 320 ± 3 mOsm; in mM: 

150 NaCl • 10 HEPES • 8 glucose • 5.6 KCl • 2 CaCl2 • 1 MgCl2). Fluorescence images 

were obtained at 340 and 380 nm using Nikon Elements software (Nikon Instruments, 

Melville, NY). Based on previous research showing mouse DRG neuron calcium responses 

to the TRPV4 agonist GSK1016790A increase in a concentration-dependent manner up to 

1000nM[10], GSK1016790A was superfused at 30, 100, 300 or 1000 nM concentrations 

(made from serial dilutions) in the present study. Following a 1 min baseline incubation in 

ENH, DRG neurons were incubated in GSK1016790A for 2 min, ENH for 3 min, and 50 

mM KCl for 1 min. All buffers were superfused at a rate of 6 mL/min. DRG neurons were 

included for response magnitude analysis if they displayed a ≥20% increase in the 340/380 

nm ratio relative to baseline in response to GSK1016790A or KCl. Analyses of small soma 

diameter (<27μm) and large diameter (≥27μm) neurons were conducted separately.

Keratinocytes from Townes AA (WT) and Townes SS (SCD) mice underwent calcium 

imaging on days 3-4 in culture. Like DRG neurons, keratinocyte coverslips were incubated 

in 2.5 μg/mL Fura-2-AM for 45 min, then coverslips were washed with ENH for 30 min 

before imaging. A 1 min ENH baseline was followed by 3 min application of GSK1016790a 

(1, 3, 6 or 10nM), with a 6 min ENH wash. Buffers were superfused at 6 mL/min. For 

all calcium imaging experiments using keratinocytes, cells were included for response 

magnitude analysis if they displayed a ≥30% increase in the 340/380 nm ratio relative to 

baseline in response to GSK1016790a.

2.5. Patch clamp electrophysiology

Whole-cell patch clamp recordings of DRG neurons were obtained from Townes AA (WT) 

or Townes SS (SCD) mice following overnight culture. Coverslips were mounted on an 

inverted Nikon Eclipse TE200 microscope, and continuously superfused with RT ENH (pH 

7.4 ± 0.03; 310 ± 3 mOsm; in mM: 140 NaCl • 2.8 KCl • 2 CaCl2 • 1 MgCl2 • 10 

HEPES • 10 glucose • 8.8 sucrose) or ENH containing 300nM of the TRPV4 inhibitor 

GSK2193874. Patch clamp recordings of DRG neurons (held at −70 mV) were obtained 

using borosilicate glass pipettes filled with intracellular normal HEPES buffer (pH: 7.2 ± 

0.02; 290 ± 3 mOsm; in mM: 135 KCl • 4.1 MgCl2 • 2 EGTA • 0.2 mM NaGTP • 2.5 mM 

ATPNa2 • 10 mM HEPES), pulled using a Sutter Instruments P87 pipette puller. A second 

borosilicate glass pipette driven by a piezo stack actuator was used for cell membrane 

mechanical displacement. Series resistance was compensated at 60% and kept ≤10 MΩ. 

Recordings were obtained using a HEKA EPC10 amplifier and HEKA Patchmaster Next 

software. Signals were filtered at 2.9 kHz and digitized at 10 kHz. Neuronal capacitance was 

continuously monitored to ensure stable recording conditions, and neurons were excluded 

from data collection if resting membrane potential (RMP) > −40mV.
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Current-voltage relations were obtained from a series of 500ms alternating current pulses 

(ranging from −50 to 45 pA, 5pA increments) in current clamp mode and plotting the 

plateau voltage deflection against current amplitude. Rheobase and action potential (AP) 

properties were recorded using an ascending series of 10 ms depolarizing current pulses also 

in current clamp mode. Rheobase was defined as the lowest current to elicit a single AP. AP 

threshold was defined as the voltage when dV/dt first exceeded 28 mV/ms. AP amplitude 

was calculated relative to AP threshold, and AP half-width was measured at half of the AP 

amplitude.

Following current clamp recordings, voltage clamp was used to measure current responses 

to mechanical stimulation. DRG neuron membranes were mechanically displaced at 1.7 

μm/V over 200 ms, 30 s intertrial interval, by a piezo stack actuator-driven borosilicate glass 

pipette (pipette velocity: 106.25 μm/ms). The first stimulation to elicit > 20pA of inward 

current was used to define mechanical threshold. Current density (pA/pF) was analyzed as 

a function of membrane indentation. Cells were only included in analysis if the leak current 

remained < 200 pA for all mechanical stimulations and if the patch was maintained for at 

least three membrane indentations. Current types were defined based on their inactivation 

time constants (τ) as 1) rapidly adapting (RA; τ < 10 ms), 2) intermediately adapting (IA; 10 

ms ≤ τ ≤ 30 ms), or 3) slowly adapting (τ > 30 ms). If no significant differences in current 

type were observed, cells were broadly classified as mechanically sensitive (MS). Cells that 

never exhibited an inward current > 20pA in response to any mechanical stimulation were 

categorized as mechanically insensitive (MI).

2.6 Quantitative real time PCR

Townes AA (WT) and Townes SS (SCD) mice were anesthetized using isoflurane and 

decapitated, and lumbar 1-6 DRG and glabrous skin of the mouse hind paw were dissected. 

For hind paw tissue, the epidermis was separated from the underlying dermal layer, and 

only the epidermal layer was used for qRT-PCR. Tissue was manually homogenized 

in lysis buffer containing 1% 2-mercaptoethanol. RNA was isolated using a PureLink 

RNA Mini Kit (Invitrogen). RNA levels were standardized (5.12 ng/μL for DRG RNA, 

7.2 ng/μL for keratinocyte RNA), and cDNA was synthesized using the SuperScript 

III First-Strand Synthesis System (Invitrogen). GAPDH was used as a loading control. 

qRT-PCR was run using a Bio-Rad CFX96 Touch Real-Time PCR Detection System, 

and fold gene expression was analyzed using the ΔΔCt method. Primers were obtained 

from Integrated DNA Technologies (Trpv4-F: TGCTTGTGTACCTGCTCTTC; Trpv4-R: 

CTCGTCACAGACCTTCATGTT; GAPDH-F: ACCACAGTCCATGCCATCAC; GAPDH-

R: TCCACCACCCTGTTGCTGTA).

2.7. Statistical analysis

Data were analyzed using GraphPad Prism 9 or IBM SPSS Statistics 28.0. Since no sex 

differences were observed, data from both sexes were combined for analyses. For behavior 

experiments: von Frey up-down data and dry ice withdrawal latencies were analyzed 

using a two-way ANOVA; noxious needle and paintbrush response classifications were 

analyzed using Chi-square. For patch clamp experiments: membrane and AP properties 

were analyzed using a two-way ANOVA; mechanical current densities were analyzed using 
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a three-way mixed ANOVA; mechanical current thresholds were analyzed using a Kruskal-

Wallis test; mechanical current types were analyzed using Chi-square. For calcium imaging 

experiments: proportion of cells responding data were analyzed using Chi-square, while 

response magnitude data were analyzed using two-way ANOVA. For qRT-PCR experiments, 

data were analyzed using unpaired Student’s t-test. Results were considered statistically 

significant when P < .05; Bonferroni corrections were used for significant ANOVAs; 

Fisher’s exact tests were used for significant Chi-square tests.

3. Results

3.1. Acute blockade of TRPV4 alleviates evoked hypersensitivity to punctate, but not 
dynamic, mechanical stimuli in SCD mice

We first examined the role of TRPV4 in SCD chronic mechanical allodynia. In comparison 

to WT mice, vehicle-injected SCD mice displayed pronounced mechanical hypersensitivity 

in the von Frey up-down assay (Fig. 1A). Among SCD mice, intraplantar injection of 300nM 

GSK2193874 significantly elevated von Frey withdrawal thresholds as compared to vehicle 

injection, effectively alleviating mechanical hypersensitivity (Fig. 1A).

Next, we investigated whether blocking TRPV4 with 300nM GSK2193874 in SCD mice 

would alleviate sensitivity to a noxious punctate mechanical stimulus by probing the hind 

paw with a spinal needle (Fig. 1B). WT controls demonstrated no change in the proportion 

of response type classification following TRPV4 inhibition with GSK2193874. However, 

compared to vehicle-treated SCD mice, SCD mice treated with 300nM GSK2193874 

displayed significantly fewer nocifensive responses (Fig. 1B). This data suggests TRPV4 

underlies sensitivity to noxious punctate mechanical stimulation in SCD.

Since SCD is characterized by sensitivity to light touch, including, for example, allodynia 

to increased wind speed[48], we further explored the role of TRPV4 in this form of 

mechanical allodynia in SCD using the dynamic light paintbrush assay (Fig 1C). Although 

vehicle-treated SCD mice demonstrated a non-significant reduction in the proportion of null 

responses relative to vehicle-treated WT controls, there was no change in response types 

for SCD mice when TRPV4 was blocked using 300nM GSK2193874 (Fig. 1C). Thus, 

sensitivity to light touch in SCD is not likely to be mediated by TRPV4.

Finally, since SCD patients commonly report heightened sensitivity to cold temperatures 

[15] and SCD mice display cold hypersensitivity[91,118], we examined the role of TRPV4 

in cold hypersensitivity in SCD mice using dry ice stimulation of the hind paw (Fig. 1D). 

Vehicle-treated SCD mice displayed significant cold hypersensitivity relative to vehicle-

treated WT controls, and TRPV4 block using 300nM GSK2193874 did not attenuate 

this effect. This is consistent with the evidence supporting a role for TRPV4 in heat 

sensation[36,99,115] rather than cold sensation. Overall, these behavioral data suggest that 

hypersensitivity to punctate, but not dynamic, mechanical stimulation in SCD is mediated by 

TRPV4, and that TRPV4 does not contribute to SCD cold hypersensitivity.
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3.2. TRPV4 block reduces the proportion of mechanically sensitive small diameter DRG 
neurons from SCD mice

Our observation that TRPV4 blockade alleviates punctate mechanical hypersensitivity in 

SCD mice led us to ask whether this effect was mediated by dorsal root ganglia (DRG) 

neurons, which are essential for detecting and transducing somatosensory information to 

the central nervous system. Some evidence suggests that DRG neuron function depends on 

soma size[e.g., 66]. Larger diameter DRG neurons tend to give rise to myelinated Aβ and 

Aδ fibers, many, but not all, of which underlie innocuous mechanical sensation, while small 

DRG neurons are more likely to be unmyelinated C-fibers, and therefore are more likely to 

function as nociceptors[59]. Additionally, previous work from our lab indicates that small 

diameter DRG neurons from SCD mice display mechanical hypersensitivity using whole-

cell patch clamp recordings of mechanically evoked inward currents[41]. We therefore used 

whole-cell patch clamp recordings of DRG neurons cultured from SCD mice or WT controls 

to determine whether blocking TRPV4 receptors with 300nM GSK2193874 would attenuate 

mechanical hypersensitivity in large (≥27μm) or small (<27μm) DRG neurons.

Whole-cell recordings were performed on cultured DRG neurons isolated from WT or 

SCD mice using either ENH recording solution or ENH containing 300nM of the TRPV4 

inhibitor GSK2193874. Analysis of AP properties indicated that small diameter DRG 

neurons from SCD mice displayed significantly more hyperpolarized AP thresholds and 

larger AP amplitudes, regardless of treatment with GSK2193874 (Table 1). These changes in 

AP properties suggest that small DRG neurons from SCD mice display altered intrinsic 

excitability relative to WT, which is consistent with previous studies[66]. Analysis of 

mechanically evoked currents revealed a non-significant increase of inward current densities 

for small DRG neurons from SCD mice, an effect attenuated by TRPV4 blockade (Fig. 

2A, B). Mechanical current thresholds were unaffected by genotype or treatment with the 

TRPV4 inhibitor (Fig. 2C). Current subtypes were not significantly affected by genotype 

or TRPV4 blockade, so currents were classified as either mechanically sensitive (MS; 

encompassing RA, IA, and SA currents) or mechanically insensitive (MI). TRPV4 block 

significantly increased the number of MI small DRG neurons from SCD mice but had no 

effect on the proportion of MI small DRG neurons from WT controls (Fig. 2D). These data 

suggest that TRPV4 blockade effectively reduces the mechanical sensitivity of small DRG 

neurons from SCD mice.

Whole-cell patch clamp recordings of large diameter DRG neurons revealed that blocking 

TRPV4 with 300nM GSK2193874 significantly depolarized RMP and reduced rheobase 

values overall, and among DRG neurons from SCD mice, GSK2193874 significantly 

reduced rheobase relative to neurons recorded in ENH alone (Table 2). This suggests that 

blocking TRPV4 receptors of large DRG neurons may alter intrinsic excitability. Mechanical 

stimulation of large DRG neurons revealed a modest and non-significant reduction of inward 

current density for both WT and SCD groups following TRPV4 block (Supplemental Fig. 

1A, B), and unchanged mechanical thresholds (Supplemental Fig. 1C). Combination of RA, 

IA, and SA currents broadly as mechanically sensitive (MS) revealed that most recorded 

neurons displayed some form of mechanical sensitivity, and there were no genotype or 

TRPV4-mediated effects on this simplified classification (Supplemental Fig. 1D). Together, 
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these data suggest that TRPV4 antagonist-mediated reductions in somatic mechanical 

sensitivity in SCD occur selectively in small DRG neurons.

3.3. TRPV4-mediated calcium flux is sensitized in small diameter DRG neurons from SCD 
mice

To further examine the cellular mechanisms of TRPV4-mediated hypersensitivity in SCD, 

we performed calcium imaging of DRG neurons isolated from WT or SCD mice in the 

presence of 30nM, 100nM, 300nM, or 1000nM of GSK1016790A, a TRPV4-selective 

agonist (Fig. 3A, B). Like our patch clamp experiments, data from small and large diameter 

DRG neurons were analyzed separately. For small DRG neurons, although we observed no 

effect of genotype on the percentage of neurons that responded to the TRPV4 agonist (Fig. 

3C), application of 100nM GSK1016790A evoked significantly larger calcium responses in 

neurons from SCD mice relative to WT (Fig. 3D), suggesting that small DRG neurons from 

SCD mice display selective sensitization when TRPV4 is pharmacologically activated using 

specific concentrations of the agonist. Analysis of baseline calcium responses for small 

DRG neurons indicated no significant differences between WT and SCD neurons (t(493) = 

1.157, p = .248).

We also performed calcium imaging of large DRG neurons isolated from SCD mice or WT 

controls, using 30nM, 100nM, 300nM, or 1000nM of the TRPV4 agonist GSK1016790A 

(Supplemental Fig. 2A, B). Although significantly more large diameter DRG neurons 

from SCD mice responded to 300nM GSK1016790A (Supplemental Fig. 2C), response 

magnitudes of DRG neurons from SCD mice were significantly reduced relative to WT 

controls (Supplemental Fig. 2D). This suggests that TRPV4 receptors are likely not 

sensitized in large diameter DRG neurons from SCD mice. Additionally, analysis of baseline 

calcium responses for large DRG neurons indicated no significant differences between WT 

and SCD neurons (t(137) = 1.535, p = .127). Together, these data indicate that TRPV4 

induced calcium responses are sensitized in small, not large, DRG neurons from SCD mice 

relative to WT.

3.4. Keratinocytes isolated from SCD mice display sensitized calcium responses when 
TRPV4 is activated

Keratinocytes constitute the majority of cells within the epidermis[30,32], are located near 

sensory nerve terminals[1,56,63,74], and are involved in TRPV4-mediated hypersensitivity 

following injury[72]. Thus, TRPV4 activity in these cells may also contribute to SCD 

hypersensitivity. To determine whether TRPV4 is sensitized in keratinocytes from SCD 

mice, we measured calcium responses in primary keratinocyte cultures from WT (Fig. 

4A) and SCD mice (Fig. 4B) during application of the TRPV4 agonist GSK1016790A. 

Keratinocytes were isolated from SCD mice and WT controls, and exposed to 1nM, 3nM, 

6nM, or 10nM GSK1016790A. Significantly more keratinocytes from SCD mice responded 

to application of 3, 6, and 10nM GSK1016790A relative to keratinocytes from WT mice 

(Fig. 4C), and the magnitude of TRPV4-induced (6nM GSK1016790A) calcium flux in 

keratinocytes from SCD mice was significantly increased relative to that observed in WT 

cells (Fig. 4D). Although analysis of baseline calcium responses indicated a significant 

increase for SCD keratinocytes relative to WT (t(1132) = 3.98, p < .0001), there was 
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not a significant relationship between baseline and 6nM GSK1016790A-induced calcium 

responses for SCD keratinocytes (Pearson’s r = −0.103, p = .117), suggesting baseline SCD 

keratinocyte calcium responses do not predict TRPV4 agonist-induced responses. These data 

suggest that TRPV4 is sensitized in keratinocytes from SCD mice, and thus these cells likely 

contribute to the behavioral hypersensitivity observed in SCD mice (Fig. 1).

3.5. No change in TRPV4 mRNA expression in SCD DRG neurons or keratinocytes

To determine whether the behavioral and functional TRPV4-mediated sensitization observed 

in SCD is due to altered TRPV4 expression, qRT-PCR was performed on DRG and 

keratinocyte tissue isolated from WT and SCD mice. Analysis of TRPV4 mRNA indicated 

no expression differences between WT and SCD mice, either at the level of the DRG or 

keratinocyte (Supplemental Fig. 3). Although there is a trend for reduced TRPV4 mRNA 

expression in DRG neurons, this would not explain the TRPV4-mediated sensitization 

we observed in small DRG neurons. Thus, these data suggest that the TRPV4 antagonist-

induced reversal of mechanical hyperalgesia observed in SCD mice is likely due to 

sensitized function as opposed to altered expression, of TRPV4.

4. Discussion

The current study is the first to demonstrate a role for TRPV4 in the chronic mechanical 

hypersensitivity prevalent in SCD. SCD mice display punctate mechanical hypersensitivity 

that is attenuated by TRPV4 blockade. Small diameter DRG neurons from SCD mice 

demonstrate sensitized TRPV4-mediated calcium responses and increased mechanical 

sensitivity that is mitigated by TRPV4 receptor blockade. Finally, we demonstrate for the 

first time that epidermal keratinocytes from SCD mice are sensitized relative to controls; 

SCD keratinocytes exhibit robust increases of TRPV4-mediated calcium responses relative 

to keratinocytes from WT mice. Together these data indicate that TRPV4 activity in 

numerous peripheral cell types contributes to the mechanical allodynia prevalent in SCD.

4.1. TRPV4 block attenuates mechanical hypersensitivity to punctate, not dynamic, 
mechanical stimuli

Our finding that SCD mice display hypersensitivity to mechanical and cold 

stimuli is consistent with previous findings from our lab[33,41,87,91,118,119] and 

others[18,20,39,40,51,53,54,60,61,66,84,114]. Given other evidence implicating TRPV4 in 

various pain models, including those of an inflammatory [4,5,9,22–24,99,121,122] and 

neuropathic nature [6,7,67,68,120], we expected TRPV4 to also be involved in SCD pain 

given that SCD pain has both inflammatory and neuropathic attributes[3]. Indeed, acutely 

blocking TRPV4 receptors alleviated von Frey and noxious needle mechanical allodynia, 

indicating this channel contributes to mechanical hypersensitivity in this model. We did not 

observe a similar effect of TRPV4 bock on hypersensitivity to dynamic light touch. This 

could reflect a differential role for TRPV4 in mediating responses to mechanical stimuli that 

are of distinct valences and detected by separate fiber types. A-fibers (e.g., low-threshold 

mechanoreceptor (LTMR) Aβ) and C LTMRs likely mediate dynamic light touch with a 

brush for example [44,52,57,73,79], whereas punctate or pressure stimuli are associated 

several types of sensory fibers and transduction mechanisms, including A-fibers, C-fibers, 

Ehlers et al. Page 9

Pain. Author manuscript; available in PMC 2024 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



under inflammatory conditions [55,58]. Indeed, the majority of DRG neurons that express 

TRPV4 are small diameter nociceptors[103,104], which tend to give rise to unmyelinated 

C-fibers or lightly myelinated Aδ-fibers[28,93]. It is also possible that in SCD mice TRPV4 

is selectively expressed in subpopulations of DRG neurons known to support allodynia 

to punctate but not light touch stimuli, including CGRPα-positive neurons [26]. Thus, 

future studies will need to determine whether this selective attenuation of hypersensitivity 

to punctate, but not dynamic, mechanical stimuli is due to differential function or TRPV4 

expression in these fiber types.

Although other TRP channels, including TRPM8, TRPA1, and TRPC5, are known to 

mediate cold sensation[17,62], there is a lack of evidence for TRPV4 in cold sensation. 

Consistent with this, we found that SCD mice demonstrated significant cold hypersensitivity, 

an effect that was not reversed by acute TRPV4 block. Thus, the potential therapeutic value 

of a TRPV4 inhibitor in SCD is likely limited to that of mechanical hypersensitivity, and 

alleviation of cold-triggered pain in patients with SCD[12,45,82] will likely need to be 

supported by another mechanism.

Consistent with previous work from our lab[87], paintbrush stimulation evoked some 

nocifensive-like behaviors in WT mice (Fig. 1C), suggesting a possible role for C-fiber 

nociceptors in this response. Interestingly, previous research suggests C-fibers are capable of 

multimodal responses where aversive behaviors are elicited by fast ionotropic stimulation 

of C-fiber afferents, while itch responses are observed following metabotropic C-fiber 

stimulation[96]. Therefore, the observed aversive responses in WT mice in the present 

study may stem from brush-induced ionotropic activation of nociceptors, although additional 

experiments are needed to address this possibility.

4.2 Small diameter DRG neurons preferentially drive TRPV4-mediated sensitization in 
SCD

Building on previous studies showing mechanical allodynia in SCD is associated with 

sensitized DRG neuron activity[41,43,66,91], we examined how TRPV4 might be involved 

in SCD pain by performing whole-cell patch clamp recordings and calcium imaging of DRG 

neurons. Our findings suggest TRPV4-mediated sensitization occurs at the level of small, 

but not large, DRG neurons. This is consistent with previous research in rodents indicating 

small DRG neurons give rise to putative unmyelinated C-fiber nociceptors[28,31,59], and 

with other findings demonstrating that TRPV4 is more highly expressed in small diameter 

mouse DRG neurons than large [103,104].

Our patch clamp recordings indicate TRPV4 blockade increases the number of small DRG 

neurons from SCD mice that are insensitive to mechanical stimulation, which is consistent 

with previous findings that blocking other TRP channels (i.e., TRPV1, TRPC5) reduced 

the proportion of small DRG neurons from SCD mice that responded to mechanical 

stimuli[41,89]. Indeed, others have found a selective role for smaller dissociated DRG 

neurons in SCD hypersensitivity using targeted approaches. For instance, small and medium 

diameter DRG neurons from SCD mice displayed increased intrinsic excitability, while large 

diameter DRG neurons from SCD mice demonstrated no change from large DRG control 

neurons, which was accompanied by increased Nav1.8 current density in small neurons[66]. 
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Taken together with our current findings, TRPV4 is likely driving SCD hypersensitivity at 

the level of the small diameter DRG neuron.

4.3 Keratinocytes as a novel cell type in SCD hypersensitivity

Keratinocytes are the first point of contact we have with our external environment. 

They are proximal to sensory nerve terminals[1,56,63,74], make synapse-like connections 

with these terminals[107], are involved in peripheral somatosensation[70,71], and mediate 

peripheral neuron activity[14,70]. As such, they are well-suited to be involved in 

hypersensitivity in SCD, and in fact, our calcium imaging data suggest they may play a 

role in TRPV4-mediated SCD hypersensitivity. Indeed, skin keratinocytes highly express 

TRPV4 protein[23,25,36,100,104], and epidermal TRPV4 is involved in UV light-induced 

nocifensive behaviors[72]. Thus, our data are consistent with a role for TRPV4 in peripheral 

SCD hypersensitivity at the level of the keratinocyte, and for the first time suggest that 

epidermal keratinocytes may play a role in persistent SCD pain.

4.4 Possible mechanisms underlying TRPV4-mediated sensitization in SCD

Several endogenous factors that are aberrant in SCD may be sensitizing TRPV4 receptors 

in peripheral neurons and keratinocytes, including endothelin-1 (ET-1) [66], arachidonic 

acid[2,116], or tryptase-induced activation of protease-activated receptor 2 (PAR2), 

stemming from mast cell degranulation[111,114]. Primarily acting on endothelin type A 

(ETA) receptors[81], ET-1 is a peptide that is elevated at baseline and further increased 

during a VOC in plasma from patients with SCD[35,86]. Additionally, DRG neurons 

from SCD mice display elevated ET-1 and ETA expression[66]. In SCD mice, when 

ETA receptors are knocked down, hypersensitivity to mechanical and thermal stimuli is 

reduced, and elevated Nav1.8 currents are reduced when ETA receptors are blocked[66]. 

In keratinocytes, endothelin signaling may depend on TRPV4 function in a UV light 

model of sunburn pain, as ET-1-mediated sensitization of UV light-induced calcium flux in 

keratinocytes is suppressed when TRPV4 receptors are blocked[72]. Interestingly, ET-1 and 

ETA receptor expression in hind paw skin is similar between SCD mice and controls[66], 

and further work is needed to determine whether this differential expression affects SCD 

keratinocyte function. TRPV4-mediated sensitization in SCD keratinocytes may also be 

due to additional mechanisms, for example, altered arachidonic acid levels [2] or PAR2 

signaling[111,122], or perhaps by interactions with bona fide mechanotransducers (e.g., 

PIEZO1)[69,95,105,106,117]. Therefore, future work will be needed to determine whether 

keratinocyte hypersensitivity in SCD is mediated by these, or other pathways.

There are several lines of evidence that suggest TRPV4 mediates mechanical hyperalgesia 

in neuropathic injury models, including diabetes and chemotherapy-induced peripheral 

neuropathy[6], and inflammatory pain models[5,99], but not normal (non-injury) mechanical 

sensation. In fact, naïve TRPV4 knockout mice display normal behavioral responses 

to mechanical stimulation[103]. Additional evidence suggests TRPV4 currents are not 

increased by mechanical displacement of the membrane[64,102,103]. Thus, TRPV4 is likely 

to mediate the mechanical hypersensitivity associated with neuropathy or inflammation, 

but not normal mechanotransduction. The current study suggests TRPV4 function in small 

diameter DRG neurons is altered in the SCD model of pain, while TRPV4 function in large 
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diameter DRG neurons from SCD mice remains unchanged. One possible explanation is that 

TRPV4 expression levels may differ between small and large diameter DRG neurons from 

SCD mice, or that distinct mechanisms contribute to TRPV4 sensitization in these different 

DRG neuron populations. Future work will be necessary to explore these possibilities.

These results provide new insight into the role of TRPV4 ion channels in SCD 

pathophysiology, paving the way for potential novel therapeutics in the treatment of SCD 

chronic pain. While the current study used only one TRPV4 agonist (GSK1016790A) 

and one TRPV4 antagonist (GSK2193874), these were chosen for their high degree of 

specificity and potency[27,109,110]. Although we investigated the effect of several different 

concentrations of these drugs in our experiments, one limitation of the currently study is that 

other pharmacological manipulations of TRPV4 activity were not employed. Additionally, 

we acknowledge that the GSKS1016790A-induced sensitization of calcium flux in SCD 

keratinocytes may reflect sensitization of TRPV4 channels, or it may be due to broader 

cellular impairment of intracellular calcium buffering, however, additional experiments are 

needed to address this. Furthermore, although there is a small but significant elevation 

of baseline calcium responses in keratinocytes from SCD mice relative to WT, there is 

no significant relationship between baseline calcium responses and those evoked by 6nM 

of the TRPV4 agonist in SCD keratinocytes. Ultimately this suggests the TRPV4 agonist-

induced increase of calcium responses in SCD keratinocytes are not caused by underlying 

impairment of calcium buffering, but instead are due to TRPV4 channel sensitization in 

SCD.

Chronic SCD pain is linked to an enormous healthcare burden[13], and current pain 

treatments, which include NSAIDS[37,80] and opioids[3], are primarily used to treat 

acute pain episodes and are inadequate for managing chronic pain. Further, additional 

barriers to treatment prevent patients with SCD from receiving much needed opioid 

therapeutics during pain crises due to discrimination by select healthcare professionals in 

emergency departments[34,38]. Thus, there is a pressing need to facilitate more effective 

pain management strategies to ease the pain burden for those patients living with persistent 

SCD pain.
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Figure 1. Blockade of TRPV4 alleviates punctate, not dynamic, mechanical hypersensitivity in 
SCD mice.
(A) Transgenic Townes SS (SCD) mice that received injections of vehicle into the plantar 

hind paw demonstrated marked sensitization on the von Frey test relative to Townes AA 

controls (WT). Blockade of TRPV4 with 300nM of GSK2193874 significantly increased 

withdrawal thresholds of SCD mice, suggesting TRPV4 plays a role in mechanical 

hypersensitivity associated with SCD (two-way ANOVA, significant main effect of genotype 

F1,45 = 18.41, P < 0.0001, significant main effect of GSK2193874 F3,45 = 4.0, P < .05, 

significant interaction F3,45 = 3.854, P < .01; Bonferroni multiple comparison test SCD 

vehicle vs SCD 300nM GSK2193874 ***P = 0.0003). (B) Chi-square analysis indicated 

statistically different types of behavioral responses to needle stimulation in SCD mice 

following TRPV4 inhibition (300nM GSK2193874; χ2
(6) = 15.09, *P = .0196; Fisher’s 

exact SCD vehicle vs. SCD GSK2193874 of nocifensive responses *P = .0126). (C) Chi-
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square analysis revealed statistically different types of behavioral responses to paintbrush 

hind paw stimulation (χ2
(6) = 26.88, ***P = .0002), but no significant effect of TRPV4 

blockade (300nM GSK2193874) on response classification for WT or SCD mice. (D) 

Relative to controls, SCD mice display cold allodynia that persists following blockade of 

TRPV4 (300nM of GSK2193874; two-way ANOVA, significant main effect of genotype 

F1,33 = 40.37, P < 0.0001, non-significant effect of GSK2193874 F1,33 = 2.452, P = 0.1269, 

nonsignificant interaction F1,33 = 0.0109, P = 0.9175). Data are percent of total (B, C) or 

mean ± SEM (A, D).
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Figure 2. TRPV4 blockade reduces the mechanical sensitivity of small diameter DRG neurons 
from SCD mice.
(A) Representative mechanically evoked current traces from small diameter DRG neurons 

shown separately for each treatment group. (B) Mechanical current densities in response 

to stepwise increases of mechanical stimulation in the presence of extracellular normal 

HEPES (ENH) recording bath or recording bath containing the TRPV4 antagonist (300nM 

GSK2193874). Current densities remained unaffected by genotype or treatment (3-way 

mixed ANOVA significant within-subjects effect of stimulation F(1.3,85.1) = 29.56, ****P 
< .0001, non-significant main effect of genotype F(1,67) = .926, P = .34, non-significant 

main effect of treatment F(1,67) = 2.1, P = .15, non-significant interaction between genotype 

and treatment F(1,67) = 1.36, P = .25, non-significant interaction between stimulation and 

treatment F(1.3,85.1) = 1.06, P = .323, non-significant interaction between stimulation and 
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genotype F(1.3,85.1) = 1.12, P = .31). (C) Mechanical current thresholds were unaffected 

by genotype or treatment (Kruskal-Wallis(3) = 1.603, P = .659). (D) 300nM GSK2193874 

treatment significantly increased the proportion of mechanically insensitive (MI) neurons 

from SCD mice (χ2
(1) = 4.192, *P = .041), suggesting TRPV4 blockade reduces mechanical 

sensitivity in these neurons. Data are mean ± SEM (B, C), or percent of total responses (D).
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Figure 3. Effect of TRPV4 activation on calcium responses of small diameter DRG neurons from 
SCD mice.
(A, B) Representative calcium responses of small diameter DRG neurons isolated from 

WT (A) and SCD mice (B) in response to a 2 min application of 30nM, 100nM, 300nM, 

or 1000nM of the TRPV4 agonist GSK1016790A followed by 1 min application of 50 

mM KCl. (C) While more DRG neurons responded to higher concentrations of the TRPV4 

agonist (χ2
(3) = 16.41, ***P < .001), statistically equivalent proportions of neurons from 

each genotype responded to each concentration of GSK1016790A used (Fisher’s Exact test 

WT 30nM vs SCD 30nM P = .1561, WT 100nM vs SCD 100nM P = .889, WT 300nM 

vs SCD 300nM P = .801, WT 1000nM vs SCD 1000nM P = .1645). (D) In response to 

100nM GSK1016790A, small DRG neurons from SCD mice display significantly elevated 

calcium response magnitudes relative to small DRG neurons from WT mice (2-way ANOVA 

significant main effect of GSK1016790A concentration F(3,487) = 4.628, **P < .01, non-

significant main effect of genotype F(1,487) = .252, P = .616, significant interaction effect 

F(3,487) = 3.279, *P = .021, Bonferroni multiple comparison test WT 100nM vs SCD 100nM 

**P < .01). Data are percent of total responders (C) or mean ± SEM (D).
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Figure 4. Keratinocytes from SCD mice display sensitized calcium responses to a TRPV4 agonist.
(A, B) Representative calcium responses of keratinocyte isolated from WT or SCD mice 

(B) in response to a 3 min application of 1nM, 3nM, 6nM, or 10nM of the TRPV4 

agonist GSK1016790A. (C) Significantly more keratinocytes from SCD mice responded to 

GSK1016790A at 3nM, 6nM, and 10nM concentrations relative to keratinocytes from WT 

mice; statistically equivalent proportions of keratinocytes from each genotype responded to 

1nM GSK1016790A (χ2
(3) = 37.17, P < .0001; Fisher’s Exact test WT 3nM vs SCD 3nM 

****P < .0001, WT 6nM vs SCD 6 nM ****P < .0001, WT 10nM vs SCD 10nM ****P 
< .0001). (D) In response to 6nM GSK1016790A keratinocytes from SCD mice displayed 

significantly elevated calcium response magnitudes relative to keratinocytes from WT mice 

(2-way ANOVA significant main effect of GSK1016790A concentration F(3,1126) = 14.396, 

P < .0001, non-significant main effect of genotype F(1,1126) = 1.248, P = .264, significant 

interaction effect F(3,1126) = 3.006, P = .029; Bonferroni multiple comparison test WT 6nM 

vs SCD 6nM ****P < .0001). Data are percent of total responders (C) or mean ± SEM (D).
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Table 1.

Basic membrane and action potential properties of small diameter DRG neurons isolated from SCD mice or 

WT controls recorded in ENH alone or ENH containing 300nM GSK2193874.

Group (# of cells) RMP (mV) † Cm (pF) rheobase (pA) APthresh (mV)* APamp (mV)** APwidth (ms)

WT (25) −60.1 ± 3.6 25.2 ± 1.8 268.8 ± 34.4 −19.2 ± 1.6 58.4 ± 2.8 2.13 ± 0.12

WT +GSK2193874 (25) −50.8 ± 1.6 24.6 ± 1.4 294.6 ± 66.3 −20.5 ± 1.2 62.9 ± 1.9 2.01 ± 0.12

SCD (25) −54.5 ± 2.3 28.4 ± 2.2 380.4 ± 87.7 −23.5 ± 1.4 65.0 ± 1.9 2.06 ± 0.15

SCD +GSK2193874 (26) −53.3 ± 1.9 28.1 ± 2.4 323.5 ± 69.8 −22.7 ± 0.9 67.0 ± 1.2 2.25 ± 0.15

Values are mean ± SEM.

†
P < .05 main effect of GSK2193874;

*
P < .05 main effect of genotype;

**
P < .01 main effect of genotype; n = 11-16 mice.

RMP, resting membrane potential; Cm, cell membrane capacitance; rheobase, threshold current required to elicit an action potential; APthresh, 

action potential threshold; APamp, action potential amplitude; APwidth, action potential half-width.
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Table 2.

Basic membrane and action potential properties of large diameter DRG neurons isolated from SCD mice or 

WT controls treated with ENH alone or ENH containing 300nM GSK2193874.

Group (# of cells) RMP (mV)††† Cm (pF) rheobase (pA)† APthresh (mV) APamp (mV) APwidth (ms)

WT (28) −69.6 ± 1.0 59.5 ± 5.7 1428.9 ± 160.2 −26.5 ± 1.6 70.5 ± 2.3 1.1 ± .07

WT +GSK2193874 (28) −64.2 ± 0.8 45.4 ± 2.8 1392.9 ± 167.6 −27.7 ± 1.2 67.9 ± 2.4 1.2 ± .07

SCD (31) −67.7 ± 0.6 48.2 ± 3.8 1605.9 ± 129.2 −27.2 ± 1.2 69.2 ± 1.9 1.1 ± .08

SCD +GSK2193874 (30) −63.6 ± 0.6 48.5 ± 2.7 1010.3 ± 96.8§§ −28.7 ± 1.2 70.3 ± 1.8 1.2 ± .07

Values are mean ± SEM.

†
P < .05 or

†††
P < .001 main effect of GSK219;

§§
P < .01 versus SCD ENH; n = 7-12 mice.

RMP, resting membrane potential; Cm, cell membrane capacitance; rheobase, threshold current required to elicit an action potential; APthresh, 

action potential threshold; APamp, action potential amplitude; APwidth, action potential half-width.
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