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Abstract

New image-derived biomarkers for patients affected by autosomal dominant polycystic kidney 

disease are needed to improve current clinical management. The measurement of total kidney 

volume (TKV) provides critical information for clinicians to drive care decisions. However, 

patients with similar TKV may present with very different phenotypes, often requiring subjective 

decisions based on other factors (e.g., appearance of healthy kidney parenchyma, a few cysts 
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contributing significantly to overall TKV, etc.). In this study, we describe a new technique to 

individually segment cysts and quantify biometric parameters including cyst volume, cyst number, 

parenchyma volume, and cyst parenchyma surface area. Using data from the Consortium for 

Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP) study the utility of these new 

parameters was explored, both quantitatively as well as visually. Total cyst number and cyst 

parenchyma surface area showed superior prediction of the slope of estimated glomerular filtration 

rate decline, kidney failure and chronic kidney disease stages 3A, 3B, and 4, compared to TKV. 

In addition, presentations such as a few large cysts contributing significantly to overall kidney 

volume were shown to be much better stratified in terms of outcome predictions. Thus, these new 

image biomarkers, which can be obtained automatically, will have great utility in future studies 

and clinical care for patients affected by autosomal dominant polycystic kidney disease.
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INTRODUCTION

Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic 

kidney disease characterized by the development and growth of cysts in the kidneys. The 

rate of ADPKD progression has been shown to vary widely among patients, thus, parameters 

indicative of disease progression are highly valuable for clinical decision making. Currently, 

total kidney volume (TKV) is the main imaging biomarker used for clinical management, 

outcome prediction, and assessment of the efficacy of novel therapeutics.1–7 Non-invasive 

visualizations of the kidneys can be made by various imaging modalities, such as US, 

CT, and MR. Once images of the kidneys are acquired, the most common approaches to 

measure TKV have been the ellipsoid formula,8 stereology,9 and planimetry. The first two 

methods have been shown to have the lowest accuracy but are faster to measure. Planimetry, 

on the other hand, has been shown to have the highest accuracy and precision, but is 
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more time consuming to perform manually.10 This constraint is no longer a limitation with 

the development of semi-automated and artificial intelligence powered (fully automated) 

segmentation algorithms.11, 12

TKV is the only FDA approved imaging biomarker to be used as a surrogate for renal 

function in studies evaluating the efficacy of treatment interventions for patients affected 

by ADPKD. However, the wide range of phenotypic variations of the disease limit the 

usefulness of TKV.13, 14 This has led to studies investigating new imaging biomarkers, 

including the evaluation of cyst volume through the application of image processing-based 

intensity threshold methods. Cyst volume was found to increase at a steady rate with close 

correlation to TKV.1 Estimates of cyst number from a few MR slices have been studied 

and suggest that patients with a lower number of cysts have a milder ADPKD presentation 

than patients with a higher number of cysts.15, 16 Other efforts relate to the development of 

new image acquisition protocols for the characterization of renal tissue using magnetization 

transfer imaging,17 and image processing techniques to extract textural features;18 however, 

these methods are challenging to apply to retrospective data. We recently developed a novel 

automated approach that facilitates the segmentation of individual cysts,19 an impractical 

and time consuming task for humans to perform. This has opened the opportunity to explore 

more precise and new image-derived biomarkers. These include measurements of total cyst 

volume (TCV) defined as the sum of all cyst volumes, renal parenchyma volume (RPV) 

defined as the difference between TKV and TCV, total cyst number (TCN) defined as the 

count of all cysts, and cyst parenchyma surface area (CPSA) defined as the sum of all cyst 

surface areas covered by renal parenchyma (i.e., the sum of all cyst surface areas minus the 

outer surface of exophytic cysts).

In this retrospective study, we evaluate the utility of the new biomarkers on the Consortium 

for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP) dataset20 in order to 

understand how these new image-derived measurements can improve the quantification of 

disease presentations and better stratify patients beyond simple measurement of TKV.

METHODS

Study population

This study was reviewed and approved by our institution’s IRB and was HIPAA compliant. 

A cohort of the CRISP study including 232 ADPKD patients without azotemia and with 

creatinine clearance>70 mL/min were included in this study.1 The patients, as part of the 

CRISP protocol, were evaluated periodically since 2001 and continuing (currently for over a 

20-year period). Deidentified baseline T2-weighted MR images (single-shot fast spin–echo 

and half-Fourier acquired single-shot turbo spin–echo) acquired between January 2001 and 

November 2002 were retrospectively collected (Clinical centers: University of Alabama, 

Emory University, the Kansas University Medical Center, and the Mayo Clinic Rochester). 

Patient clinical characteristic such as age, baseline eGFR, follow-up eGFR, sex, race, and 

height were available for all participants. Kidney volumes obtained by the ellipsoid (TKVe) 

and stereology (TKVs) methods were available for comparison with the deep learning-based 

planimetry approach (TKVp).
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Estimated GFR and Study Outcomes

The CKD-EPI 2021 equation (where race is omitted) was used to calculate eGFR. The 

imaging biomarkers were evaluated based on the following outcomes. The slope of eGFR, 

estimated using least squares linear regression for patients with at least four eGFR measures 

between baseline and the 8-year timepoint, was considered as the primary continuous 

outcome. The primary dichotomous outcome was KF status after 20 years from baseline. 

Patients who reached KF were identified based on transplant or dialysis history and patients 

without KF were selected based on the availability of eGFR measurement at the 20-year 

timepoint. Further analysis regarding whether a patient had or had not reached chronic 

kidney disease (CKD) stages 3A, 3B, and 4, and KF based on the eGFR measurements at the 

8-year timepoint is presented in the Supplementary Methods.

Automated Segmentations and Calculation of Imaging Biomarkers

Kidney segmentation was performed using a previously developed deep learning-based 

planimetry approach,11, 12 and the output was quality reviewed by a blinded expert medical 

imaging reader. The MR image and predicted kidney segmentation were then input into 

the cyst segmentation model.19 The output consisted of each cyst individually labeled. 

The predicted segmentations underwent a quality review by two expert medical imaging 

readers blinded to the patient’s clinical information, using an in-house-developed software 

tool.21 TKVp, TCV, RPV, TCN, and CPSA were calculated using Python 3.6.8 applying 

arithmetic operators and functions from the library PyRadiomics.22 Mathematical details of 

the specific calculations are provided in the Supplementary Methods. Height adjusted TKVp 

(ht-TKVp) and TCV (ht-TCV) were calculated by dividing the volumes with the patient’s 

height. Height adjusted RPV (ht-RPV) was calculated as the difference between ht-TKVp 

and ht-TCV. A threshold cyst size of 0.09 ml was applied to reduce false positives cysts 

due to inherent MR imaging noise artifacts (an example case is presented in Supplementary 

Figure S3).

Statistical analysis

The statistical analysis was performed using the statistical software JMP Pro 16.0.0 and the 

python library scikit-learn v0.22.1. Bland-Altman analysis was performed to evaluate the 

agreement between TKV calculation methods. Linear regression was conducted to evaluate 

each imaging biomarker’s ability to predict the slope of eGFR. P-values were estimated 

using the nonparametric Wilcoxon rank sum test. Sensitivity, specificity, and the area under 

the receiver operating characteristic (ROC) curve (Az) with 95% bootstrap confidence 

intervals (CI) were calculated. Area under the curve comparisons were performed using 

the DeLong test. The net reclassification improvement (NRI) index was used to measure the 

prediction increment of the new biomarkers and TKV calculation methods.

RESULTS

Study Population

Baseline MR images from the CRISP study participants were curated as shown in Figure 1.
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Twenty-four images were excluded during the segmentation review process due to imaging 

artifacts (N=14) or large slice thickness (N=10). One image presented low cyst contrast 

every other slice resulting in unreal gaps within the predicted cysts, thus overestimating 

TCN (Figure 2a). Thirteen images presented large slice misalignment due to patient 

movement during multiple breath-hold acquisitions (e.g. interleaved image acquisition), 

although the prediction of cysts was fairly accurate, CPSA measurements could be 

overestimated (Figure 2b). Ten cases presented a slice thickness greater than 3mm, a large 

slice thickness can affect the differentiation of adjacent cysts since the image resolution 

across slices reduces with higher slice thickness (Figure 2c). Follow-up eGFR data at the 

8-year timepoint was available for 165 patients. A total of 71 patients reached KF during 

the 20 years of the study. All eGFR measurements were greater than 50 ml/min/1.73m2 at 

baseline. Details of the patient characteristics are shown in Table 1.

Segmentation Results

In Figure 3, the Bland-Altman plots show the bias and limits of agreement between the 208 

TKV measurements estimated by planimetry (deep learning-based method) and the ellipsoid 

method, and between planimetry and the stereology method. The bias in both cases was 

less than 1%, however, narrower limits of agreement were observed between planimetry and 

stereology with a standard deviation of 6.7%.

Distribution analysis of the imaging biomarkers from the 208 cases resulted in a mean 

TKVp of 1086±658 ml (range: 250–3238 ml) at baseline. The mean baseline TCV was 

495±448 ml (range: 4–2397 ml). The mean baseline RPV was 591±245 ml (range: 234–

1508 ml). The mean baseline TCN was 290±199 cysts (range: 3–1025 cysts). The mean 

baseline CPSA was 1003±79 cm2 (range: 16–4196 cm2). The correlation matrix of all 

imaging biomarkers, baseline age and eGFR can be found in Supplementary Figure S4. An 

example MR image with corresponding kidney, cyst, parenchyma, and CPSA segmentation 

and 3D renderings is shown in Figure 4.

Biomarker Performance: Linear Regression analysis

A regression analysis comparing the imaging biomarkers with the eGFR slope after an 

8-year follow-up was performed. The imaging biomarkers ht-TKVp, ht-TCV, ht-RPV, TCN, 

and CPSA showed a fair correlation with the 8-year slope of eGFR with a Pearson’s 

correlation coefficient (r) of −0.44, −0.40, −0.45, −0.51, and −0.51, respectively; whereas 

TCN and CPSA showed the highest correlation with the slope. Figure 5 depicts some of 

the linear regression plots for the 8-year follow-up analysis (additional regression plots 

can be found in Supplementary Figure S5). In figure 5, six pairs of patients were selected 

to illustrate the imaging biomarkers. Each pair is color coded and was matched based on 

similar ht-TKVp but different eGFR slope. Patients with a steeper slope decline after 8 years 

are marked with color circles (bottom MR images) and patients with positive or smaller 

slope decline after 8 years are marked with rhombuses (top MR images). The genotype, 

imaging biomarkers, and age from the 12 example cases are shown in Table 2.
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Biomarker Performance: ROC and NRI analysis

The predictive power of the imaging biomarkers for progression to KF after a 20-year 

follow-up was superior to baseline age as shown by the ROC analysis (Table 3). Here, 

ht-TKVp, ht-RPV, TCN, and CPSA had a strong predictive power with an Az greater 

than 0.8. Additionally, CPSA had a significantly higher Az compared to ht-TKVp in the 

prediction of KF. Analyses of the progression to CKD stages 3A, 3B, and 4 and KF at the 

8-year timepoint can be found in the Supplementary Table S1 and Supplementary Figure S6.

In Figure 6, a plot comparing the ROC curves from baseline age, the traditional ht-TKV 

methods: ht-TKVe and ht-TKVs, and the automated ht-TKVp, ht-TCV, ht-RPV, TCN, and 

CPSA in predicting progression to KF after the 20-year follow-up is presented.

In order to understand how the individual biomarkers could improve patient stratification in 

terms of 20-year KF (where 71 patients did reach KF and 54 did not), we calculated the 

net reclassification improvement (NRI) index comparing ht-TKV measured by traditional 

methods to the biomarkers obtained automatically. All of the new imaging biomarkers 

improved NRI compared to the ellipsoid method (ht-TKVe cut-off point = 685 ml). The NRI 

(correctly reclassified/incorrectly reclassified) for ht-TKVp was 0.022 (16/11), for ht-TCV 

was 0.011 (10/7), for ht-RPV was 0.095 (16/8), for TCN was 0.084 (14/8), and for CPSA 

was 0.113 (16/7). Compared to stereology (ht-TKVs cut-off point = 515 ml) the NRI for 

ht-TKVp was −0.018 (4/4), for ht-TCV was −0.028 (1/3), for ht-RPV was 0.056 (11/8), for 

TCN was 0.045 (12/11), and for CPSA was 0.074 (8/4).

DISCUSSION

In this study, we analyzed the prognostic performance of novel imaging biomarkers on 

the CRISP cohort. Baseline age and imaging biomarkers measured from T2-weighted MR 

images were investigated to predict the slope of eGFR as well as KF after a follow-up period 

of 8- and 20-years, respectively. The segmentations were generated using two convolutional 

neural network models. The first model generated kidney segmentations and the second 

model predicted instance-level cyst segmentations.11, 12, 19 These models can generate 

segmentations in under a few minutes. On a standard computer, the calculation of image 

biomarkers from the images and segmentations can then be done in a few seconds. In 

this study, the segmentations underwent a quality control process by two medical imaging 

readers before the calculation of the imaging biomarkers, thus, the parameters are not purely 

extracted based on deep-learning model outputs. Finally, the performance of each imaging 

biomarker was evaluated and compared to the performance of TKV, the only imaging 

biomarker currently used clinically.

A study evaluating methods for the estimation of TKV has demonstrated that measurements 

by planimetry are more accurate, precise, and reproducible; however, due to the time 

required to perform planimetry manually, ellipsoid-based and/or stereology-based methods 

are often employed.10 Deep learning-based segmentation methods expedite the calculation 

of TKV by planimetry.12 In our study, among planimetry, stereology and the ellipsoid 

method, TKVp and TKVs showed the highest agreement (bias = −0.9±6.7%). The 

comparison of ROC curves in Figure 6 demonstrated that the three TKV estimation 
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methods have a similar area under the curve when predicting 20-year KF; however, the 

NRI analysis indicated a higher reclassification improvement when comparing the ellipsoid 

to the planimetry method.

The new imaging biomarkers ht-RPV, TCN and CPSA were found to predict renal function 

decline better than ht-TKVp in the 8-year analysis as shown in the linear regression plots 

in Supplementary Figure S5. Ht-TCV was not as informative but it highly correlated with 

ht-TKVp (R2 = 0.98) (correlation matrix in Supplementary Figure S4). The best performing 

imaging biomarkers in differentiating patients with and without KF were ht-RPV, TCN, 

and CPSA. TCN was the imaging biomarker with the lowest correlation with ht-TKVp 

(R2 = 0.81), evidence that it provides phenotypic information not captured by ht-TKV. 

TCN characterizes features related to cystogenesis, a longitudinal evaluation of TCN could 

provide information regarding the rate of cyst formation. Previous longitudinal studies using 

an estimate of the total cyst number suggested that PKD1 and PKD2 genotypes have 

differences in cyst number and volume but no significant differences in the rate of change 

of cyst number or volume.15, 16 Very small cysts or microcysts may be under the MR 

image resolution and may not be accounted for by the algorithm. For these cases, texture 

analysis might provide insights related to the integrity of the renal parenchyma.18 Although, 

texture features are much more sensitive to image acquisition parameters and have strict 

requirements for standardization of the measurements. CPSA has a physiologic meaning 

and relates to an individual cyst’s impact on renal function (e.g., exophytic cysts will 

have a smaller impact compared to cysts surrounded by kidney parenchyma). Further, the 

visual qualitative analysis of selected cases showed that patients with larger kidney function 

decline presented with numerous small cysts, whereas cases with preserved kidney function 

presented with fewer and larger cysts and in some cases with exophytic cysts.

Even though the new imaging biomarkers showed promising results, the correlations with 

the slope of eGFR are moderate. Many other clinical, laboratory, biochemical, and metabolic 

factors could be contributing to the residual variance in the rate of disease progression, but 

the study of these factors is out of the scope of this paper. We envision that this work will 

serve as a basis for future model development that may result in better prediction of disease 

progression. Data sharing in the medical field has many challenges, although, efforts such 

as federated learning could aid in the sharing of trained algorithms. The code and model 

weights are made available online at https://github.com/TLKline/InstanceCystSeg.

All imaging biomarkers performed as hypothesized except for ht-RPV. We expected that 

smaller parenchyma volumes would correlate with greater slope of decline in eGFR, since 

increases in total kidney and cyst volume and reductions in parenchyma volume and GFR 

were observed in a longitudinal study of nine patients with ADPKD using contrast enhanced 

CT.23 Our cross-sectional analysis of baseline values in the CRISP population, with 

preserved kidney function at entry into the study, showed a negative correlation between ht-

RPV and the slope of eGFR decline. A confounding factor could be related to the presence 

of tubular epithelial hyperplasia and/or hypertrophy and of microcysts undetected by the MR 

image resolution. Of note is that the CRISP study of the trajectories of eGFR in patients with 

ADPKD suggests a period of glomerular hyperfiltration, particularly in the patients with 

the most severe disease.24 Interestingly, hepatocyte hypertrophy contributes substantially 
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to the enlargement of the liver in polycystic liver disease.25 Another confounding factor 

could be the development of fibrotic tissue. The non-functional parenchyma has been 

previously referred to as “intermediate volume”.26 The study by Caroli et. al measured 

the intermediate volume by applying an intensity thresholding method in CT scans and 

showed that the ratio of intermediate volume over renal parenchyma volume better correlates 

with eGFR. They demonstrated that the CT segmented intermediate volume corresponded 

to regions of interstitial fibrosis from histological analyses.27 In MR imaging, quantitative 

methods17, 28 and/or radiomic-based texture analysis18 may help differentiate functional 

from non-functional parenchyma to determine if the enlargement of RPV is due to the 

presence of intermediate volume as the mechanism leading to faster eGFR decline.

Some of the limitations of this study include the need for sufficient quality T2-weighted 

MR images to calculate accurate imaging biomarkers (which may be more stringent than 

the requirements for calculation and/or approximation of TKV). Twenty-four patients were 

excluded due to inadequate MR image quality. The presence of imaging artifacts can affect 

the quantification of imaging biomarkers. Some examples included: the lack of cyst contrast 

on partial slices which affected the continuity of cysts, and patient motion during image 

acquisition likely affecting the accuracy of surface area measurements. Lastly, large slice 

thickness complicated the differentiation of cysts from slice to slice and could limit the 

visualization of small cysts. A second limitation was the overlap of 11 patients between the 

cyst instance-level model development and the CRISP cohort, although, the images used for 

model training were acquired at different dates compared to the baseline CRISP images. 

Furthermore, all the cyst instance-level predicted segmentations were checked for quality by 

medical imaging readers before the calculation of imaging biomarkers.

In conclusion, the new cyst segmentation-derived imaging biomarkers can provide additional 

information related to the individual’s structural presentation of ADPKD beyond the 

information provided by TKV. This new information has the potential to improve current 

models of disease progression and move to a more personalized model of care taking into 

account the phenotypic differences between patients affected by ADPKD. Studies with 

larger cohorts are necessary to build and validate new models in order to investigate the 

predictive value of combining the new imaging biomarkers with ht-TKV.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ht-TKVe height-adjusted total kidney volume (ellipsoid)

ht-TKVs height-adjusted total kidney volume (stereology)

ht-TCV height-adjusted total cyst volume
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CPSA Cyst parenchyma surface area

MRI magnetic resonance imaging

TKV total kidney volume

TCV total cyst volume
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Translational Statement

In this study, we evaluated new image-derived biomarkers as prognostic factors of 

autosomal dominant polycystic kidney disease (ADPKD). We used a deep learning 

model to generate instance-level cyst segmentations, a previously unattainable task, that 

facilitated the characterization of architectural disease presentations beyond total kidney 

volume (TKV). The new biomarkers include total cyst volume (TCV), renal parenchyma 

volume (RPV), total cyst number (TCN), and cyst-parenchyma surface area (CPSA). 

TCN and CPSA showed improved prediction of disease progression after an 8-year and 

a 20-year period compared to ht-TKV, an important finding that could enhance existing 

prognostic tools.
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Figure 1. 
Flowchart of the study participants – from baseline MR images (top) – to follow-up 

outcomes (bottom).
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Figure 2. 
Representative MR images of excluded cases. a) Case showing low cyst-contrast every other 

slice likely due to poorly prescribed fat saturation pulse. b) Slice interleaving is often used to 

increase the signal-to-noise ratio; however, patient motion can cause misalignments between 

slices. c) Image acquired with a 9mm slice thickness which limits the differentiation of 

adjacent cysts in the axial and sagittal planes as well as limits measurement of small cysts.
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Figure 3. 
Bland-Altman plots between (a) the deep learning-based (planimetry) and the ellipsoid 

methods, and (b) the deep learning-based (planimetry) and stereology methods. The y-axis 

shows the percentage difference between the methods.
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Figure 4. 
(a) Abdominal MR image of a 41yo female patient with a PKD1 truncating mutation 

and a baseline eGFR of 50.7 ml/min/1.73 m2. (b) The patient’s TKVp was 1912 ml. (c) 

The automated cyst segmentation shows each cyst labeled with a different color (TCV 

= 905 ml; TCN = 595 cysts). (d) The renal parenchyma segmentation resulted from the 

subtraction of kidney and cyst segmentations (RPV = 1007 ml). The cyst-parenchyma 

surface representation is shown in (e), where the surfaces between renal parenchyma and 

cysts are depicted with the red outline (CPSA = 3196 cm2).
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Figure 5. 
Linear regression analysis between the 8-year slope of eGFR and the individual image 

biomarkers. (a) ht-TKVp, (b) ht-TCV, (c) TCN, and (d) CPSA. To illustrate the results six 

pairs of patients with similar ht-TKV but different slope of eGFR were randomly selected. 

The colored diamonds and dots correspond to the 6 cases shown above and below the plots.
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Figure 6. 
ROC analysis to determine the individual biomarker predictive power of progression to KF 

after a 20-year follow-up period. The image biomarkers with highest predictive power were 

TCN and CPSA (lines pink and gray).
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