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Abstract Exosomes carry and transmit signaling molecules used for intercellular communica-
tion. The generation and secretion of exosomes is a multistep interlocking process that allows
simultaneous control of multiple regulatory sites. Protein molecules, mainly RAB GTPases,
cytoskeletal proteins and soluble N-ethylmaleimide-sensitive fusion attachment protein recep-
tor (SNARE), are specifically regulated in response to pathological conditions such as altered
cellular microenvironment, stimulation by pathogenic factors, or gene mutation. This inter-
feres with the smooth functioning of endocytosis, translocation, degradation, docking and
fusion processes, leading to changes in the secretion of exosomes. Large numbers of secreted
exosomes are disseminated by the flow of body fluids and absorbed by the recipient cells. By
transmitting characteristic functional proteins and genetic information produced under dis-
ease conditions, exosomes can change the physiological state of the recipient cells and their
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microenvironment. The microenvironment, in turn, affects the occurrence and development
of disease. Therefore, this review will discuss the mechanism by which exosome secretion is
regulated in cells following the formation of mature secretory multivesicular bodies (MVBs).
The overall aim is to find ways to eliminate disease-derived exosomes at their source, thereby
providing an important new basis for the clinical treatment of disease.
ª 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co.,
Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).
Introduction

Exosomes are extracellular vesicles (EVs) enclosed by a
lipid bilayer and characterized as cup-shaped structures
with a diameter of 40e160 nm. The lipid membrane of
exosomes is derived from the cytoplasmic membrane of
parental cells. Similar to the carriage of a truck, it protects
the enriched contents loaded within them from degrada-
tion by enzymes in the body fluids. These contents include
specific proteins,1 lipids2 and nucleic acids.3 Exosome
secretion was initially thought to be a means of removing
cellular waste resulting from cell damage or disruption of
cell homeostasis, but with no significant effect on sur-
rounding cells.4 However, later work showed that exosomes
functioned as both garbage trucks and delivery trucks.

Although almost all types of cells can secrete exosomes,
the contents of the exosomes vary depending upon the cell
type and physiological state through a rigorous sorting
mechanism that reflects the composition of the parental
cells. Exosomes are widespread in various body fluids and
carry important biological information. They can act as
signaling complexes to directly stimulate target cells.
Moreover, exosomes can also function as bridges to transfer
receptors and functional proteins, or to transmit genetic
information that alters the phenotype of the receiving cell,
thereby representing a new pattern of information trans-
mission systems between cells.5 Exosomes significantly
alter cellular behavior and are closely linked to the
occurrence and development of a variety of diseases.

Exosomes derived from different cell types are poten-
tially involved in the immune response, antigen presenta-
tion, cell migration, cell differentiation, construction of
the tumor microenvironment, tumor invasion and a number
of other processes.6 These functions of exosomes indicate
that they could have great potential value for clinical ap-
plications. Using tumors as an example, exosomes derived
from cancer cells can be used as biomarkers to assist with
diagnosis,7e9 as therapeutic targets for intervention,10e12

and potentially as a cancer vaccine to induce active im-
munity in the body.13,14 Exosomes derived from immune
cells can be used directly as drugs for cancer treat-
ment.15,16 In addition, following specific modification,
engineered exosomes can also be used as drug delivery
carriers for individualized targeted therapy.17,18 Although
many research findings have been published in the field of
exosomes over the years, the molecular mechanisms that
regulate exosome secretion are still poorly understood. A
better understanding of the mechanism of exosome
biogenesis and secretion and of their role in tumor pro-
gression will therefore help to open a new era in cancer
diagnosis and treatment.

Accumulating evidence shows that exosomes are
generated from invaginating buds on the surface of cell
membranes. Extracellular proteins, lipids, metabolites and
cell membrane proteins are then endocytosed into the cell
(internalized) to form primary endocytic vesicles. They fuse
with each other to form early endosomes (EEs),19 which
subsequently mature and transform into late endosomes
(LEs). At this stage, LEs have multiple membrane in-
vaginations that encapsulate specific sorted proteins and
nucleic acids to form intraluminal vesicles (ILVs) before
these in turn develop into multivesicular bodies (MVBs).
The fate of MVBs varies according to the proteins that are
expressed on their surface. Some function as “delivery
trucks” and are transported to the plasma membrane under
the traction of intracellular molecular motors where they
fuse with the plasma membrane and release ILVs to the cell
exterior. The released ILVs are termed exosomes.20 Other
MVBs function as “garbage trucks” by guiding their contents
to the lysosomes for degradation and removal (Fig. 1).6,21

The secretion of MVBs outside the cell to form exo-
somes has three key steps: targeted transport of MVBs,
docking of MVBs to the plasma membrane, and fusion of
the MVB restriction membrane with the plasma mem-
brane. The correct operation of this process depends on
the MVB surface proteins. These proteins are specifically
recognized and bound by the receptor on the target
membrane, with the whole process functioning as a
conveyor belt to deliver the MVB to its correct destination.
Many studies have revealed that the RAB GTPase protein
family, tethering factors, soluble N-ethylmaleimide-sen-
sitive fusion attachment protein receptor (SNARE) protein
family and cytoskeletal proteins are all involved in these
regulatory processes. Cytoskeletal proteins provide dy-
namic support during transport, while SNARE proteins
mediate the docking and fusion of MNBs with the plasma
membrane. Different members of the RAB family of pro-
teins have different subcellular localizations in the cell.
They not only mediate transport to the plasma membrane
but also coordinate all of the steps listed above to ensure
the accuracy of MVB membrane transport and membrane
fusion.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Figure 1 The process of exosome generation and release by cells. As the cell membrane invaginates, some extracellular lipids
and proteins are internalized into the cell to form early endosomes. The early endosomes further mature and transform into late
endosomes. At this step, multiple membrane invaginations occur in late endosomes to package specifically sorted proteins, nucleic
acids and other cargo, resulting in the formation of intraluminal vesicles (ILVs) which later become multivesicular bodies (MVBs).
Most MVBs fuse with the plasma membrane and release ILVs to the cell exterior, where they are termed exosomes. A small pro-
portion of MVBs are transported to the lysosome and fuse with it for degradation. RAB family proteins, SNARE tethering proteins and
cytoskeletal proteins are all involved in the transport, docking and fusion of MVBs during this process. Conditions in the cellular
microenvironment such as the Ca2þ concentration, pH and oxygen concentration are also intimately involved in MVB production and
secretion.
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RAB GTPase coordinates the transport of MVBs
and their docking and fusion with the plasma
membrane

According to previous studies, members of the RAB GTPase
family each have their own unique subcellular localiza-
tions.22 Following activation, RAB proteins are associated
with the membranes of specific organelles. This allows
them to have roles at different steps of the membrane
transport process, including vesicle formation, vesicle
movement and membrane fusion,23 as well as to ensure the
correct direction of vesicle transportation. The main RAB
GTPases that have been shown to be involved in the pro-
duction and secretion of exosomes are RAB7, RAB11,
RAB27, and RAB35. In addition, although RAB2B, RAB5, and
RAB9A also play important roles in the generation of exo-
somes, but will not be discussed here as they are involved in
the early formation of MVBs.

The RAB family of proteins is comprised of small GTPases
that belong to the RAS superfamily. They play a key role in
various membrane transport events as molecular switches.
The RAB protein is in an inactive state when it binds GDP in
the cytoplasm, and in an activated state when it binds GTP
on the cell membrane and vesicle membrane.24 The RAB
protein effectively cycles between these two conforma-
tions through a process involving the coordination and
cooperation of several functional proteins.

RAB escort proteins (REPs) capture and transport newly
synthesized RAB to RAB geranylgeranyl transferase
(RGGTase) in this cycle to add hydrophobic geranylgeranyl
groups that enable reversible binding with the target
membrane.25 Guanine nucleotide exchange factors (GEFs)
exchange GDP bound to RAB with GTP,26 activate RAB
attached to the target membrane, and enable RAB to
further selectively recruit specific effector proteins to
complete their functions. GTPase-activating proteins
(GAPs) catalyze the activation of GTPase, hydrolyze the
GTP bound to RAB, and convert it into an inactive form
bound to GDP.27 At this time, GDP dissociation inhibitor
(GDI) transports inactivated RAB from the target mem-
brane28 and stores it in the cytoplasm in an inactive form.
The next time it is needed, GDI presents it to the target
membrane again. Because GDI has a relatively higher af-
finity for RAB, the latter must be dissociated from GDI
with the help of GDI displacement factors (GDFs) so that it
can bind to the target membrane (Fig. 2).23,29



Figure 2 The RAB switch and its dynamic cycling model. The newly synthesized RAB in the cytoplasm is captured by RAB escort
protein (REP) in a GDP-bound inactive form and transported to RAB geranylgeranyl transferase (RGGTase). Here, hydrophobic
geranylgeranyl groups are added, allowing RAB to reversibly bind to the target membrane. GDP dissociation inhibitor (GDI) rec-
ognizes and binds to the inactivated form of RAB protein to stably store RAB in the cytoplasm. Upon activation, GDI displacement
factors (GDFs) help RAB dissociate from GDI so that it can bind to the target membrane. Meanwhile, GDP is replaced with GTP by
guanine nucleotide exchange factors (GEFs), which then activate RAB protein attached to the target membrane. After this step is
completed, RAB recruits GTPase-activating proteins (GAPs) to hydrolyze GTP and convert the protein to an inactive form.
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RAB27, mainly RAB27A, mediates the docking,
tethering and fusion of MVBs with the plasma
membrane

The central role of RAB27 in exosomal secretion has been
widely confirmed30e32 and hence this RAB protein is
currently the subject of intense investigation. RAB27 in-
cludes RAB27A and RAB27B encoded by two different
genes. Their amino acid sequences share 71% homology,33

and they use the same effector proteins.34 The RAB27A and
RAB27B subtypes sometimes have repetitive and redundant
functions in their regulation of the secretion pathway.
Surprisingly, however, RAB27A and RAB27B play different
roles in exosome secretion even in the same cell type,
which may be due to their interactions with different
effector proteins.

The effectors of RAB27 discovered so far are divided into
three categories35,36: synaptotagmin-like protein (Slp),37

Slp homolog lacking C2 domains (Slac2)37e39 and
Munc13e4.40 A previous study found that silencing of
RAB27A and RAB27B in the cervical cancer cell line HeLa
significantly inhibited exosome secretion.41 The difference
is that RAB27A is mainly located in CD63-positive MVBs
where it mediates docking, tethering, and fusion between
MVBs and the plasma membrane by interacting with the
effector protein Slp4 instead of mediating docking and
fusion between small vesicles to form an enlarged MVB. At
the same time, RAB27B is mainly distributed around the
nucleus in the trans-Golgi network (TGN) region, with a
small amount of it is located in the CD63-positive com-
partments. Binding of RAB27B to the Slac2b effector pro-
tein likely mediates the directed transfer of MVBs along
microtubules to the actin-rich cortex and its docking at the
periphery of the cell. However, the same experiment
revealed that the inhibition of RAB7 or RAB11A had no ef-
fect on the secretion of exosomes from HeLa cells.41

In a mouse model, the role of RAB27A in the secretion of
exosomes from breast cancer cells was similar to that
observed in HeLa cells. In contrast to HeLa cells, the
secretion of exosomes by breast cancer cells does not al-
ways require RAB27B.42 In addition, the function of RAB27A
in promoting the release of exosomes has also been suc-
cessively verified in melanoma cells,30 bladder cancer
cells,43 lung adenocarcinoma cells44 and cortical neuronal
cells.45 RAB27B is downregulated by FOXO1 when diabetes
occurs, thereby reducing the exosomal secretion from
mouse proximal tubule (BUMPT) cells.46 LINC00511, which is
highly expressed in hepatocellular carcinoma (HCC) and
upregulates the expression of RAB27B, also induces the
colocalization of RAB27B and CD63þ MVBs, thereby signifi-
cantly increasing the secretion of exosomes by HCC cells.47

It has been speculated that different types of cells have
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different physiological processes, thus leading to different
mechanisms of exosome secretion.

RAB11 transports recycling endosomes or MVBs
to the peripheral plasma membrane

RAB11 is mainly located on recycling endosomes and pro-
motes their formation and subsequent fusion with the
plasma membrane.48,49 Rip11 binds to RAB11 and recruits
Myo V to assemble a ternary complex that is transported
along polarized actin filaments of the subcortical terminal
net to target the peripheral plasma membrane of the cell.50

Munc13e4 (calcium ion-dependent RAB binding protein,
encoded by UNC13D) is a calcium ion-dependent RAB
effector protein that interacts with RAB27,51,52 RAB11 53

and other RAB proteins. The tethering or docking of vesicles
in the extracellular active region is regulated by bridging
RAB11 on the vesicle membranes with SNAREs on the
plasma membrane, thus reducing their transport speed and
mediating their participation in plasma membrane fusion.53

In MDA-MB-231 breast cancer cells, RAB11A participates in
the intracellular transport of MVBs by interacting with
Munc13e4. It also plays a role in the release of exosomes
after stimulation by calcium ions. Similar results have been
observed in human lung cancer A549 cells and human
pancreatic cancer PANC-1 cells.54

RAB35 regulates the docking or tethering of
MVBs to the plasma membrane

RAB35 was the first RAB protein to be discovered.
TBC1D10AeC is the GAP for RAB35, which inhibits the ac-
tivity of RAB35 by hydrolyzing GTP. Inhibition of RAB35
bound to the surface of Oli-neu oligodendrocytes causes
endosomes to accumulate in the cell and reduces the
secretion of exosomes, suggesting that active RAB35 may
promote the docking and tethering of MVBs to the plasma
membrane.55 It was later confirmed that RAB35 is specif-
ically involved in exosome secretion in primary oligoden-
drocytes56 and brain cells.57 Furthermore, the highly
expressed lncRNA HOTAIR regulates the transport and
docking of MVBs to the plasma membrane of liver cancer
cells by regulating RAB35 expression.58

To date, many interesting findings have been made that
help to explain how RAB proteins are involved in exosome
secretion. However, more comprehensive and in-depth
research work is needed to fully understand the exact
contributions of RAB protein family members in the
biogenesis of exosomes.

RAB7 guides late endosomes to fuse with
lysosomes for degradation

RAB7 is mainly responsible for coordinating traffic between
late endosomes and lysosomes.59 It relies on a more
complicated mechanism to direct MVBs carrying some cargo
considered as garbage to lysosomes for degradation, thus
avoiding unwanted side effects. Lysosomes are the main
sites for degradation in cells and they are rich in hydrolytic
enzymes that hydrolyze biomolecules into metabolites.60

Following the transport of MVBs to a certain location, their
fate must be decided as either storage, to play a specific
role, or to be metabolized by degradation pathways. Ly-
sosomes are important organelles that regulate the secre-
tion of exosomes. The number of exosomes released into
the extracellular space is inversely correlated with the
number of late endosomes degraded by the lysosomal
pathway. In other words, more degradation of late endo-
somes by lysosomes results in fewer exosomes being
released from cells.

Two lysosome degradation pathways have been identi-
fied. MVBs are sometimes not directly transported to the
lysosome but instead fuse with the autophagosomes before
being transported to the lysosome for degradation. Auto-
phagosomes are organelles that phagocytose cytoplasmic
proteins, transport them from autophagosomes to lyso-
somes, and then fuse with the lysosomes to form auto-
phagolysosomes that degrade the contents they
encapsulate. This was confirmed by the observation that
the enhanced autophagy induced by starvation reduces the
release of exosomes.61 In addition, RAB2 has been shown to
play a key regulatory role in the fusion of late endosomes
with lysosomes,62 as well as the fusion of autophagosomes
with lysosomes in Drosophila.63 However, the regulatory
mechanism responsible for balancing the secretion and
degradation of MVBs remains unclear.

The tethered complex HOPS (homotypic fusion and
protein sorting complex) is recruited by the RAB7 GEF RILP
(RAB7-interacting lysosomal protein)64 and interacts with
RAB7 to activate it to RAB7-GTP. Through the synergistic
effect of RAB7 expressed on the late endosome and lyso-
somal membranes, the v-SNAREs and t-SNAREs with fusion
functions are bridged and assembled by the HOPS-RAB7-
RILP complex between the adjacent membranes. The
“zipper” complex that triggers membrane fusion creates a
double membrane opening that mediates the fusion of late
endosomes with lysosomes.65,66 For example, the v-SNARE
VAMP7 mediates the fusion of the MVB restriction mem-
brane with the plasma membrane. VAMP7 has also been
suggested to play a key role in the fusion between late
endosomes and lysosomes. Overexpression of the Longin
domain in VAMP7 prevents this fusion event from occurring
(Fig. 3B).67

The EPG5 protein is a RAB7 effector involved in the
autophagy-lysosomal degradation pathway. The specific
tethering function of EPG5 suggests that it functions as a
fishing net to combine autophagosomes with RAB7-
expressing late endosomes/lysosomes. EPG5 recognizes
and captures autophagosomes and late endosomes/lyso-
somes by simultaneously binding the specific proteins
LC3/LGG-1 and RAB7, respectively. Then, the R-SNARE
VAMP7/8 on late endosomes/lysosomes and the STX17-
SNAP29-Qabc-SNARE complex assembled on autophago-
somes are connected in series by EPG5. This promotes the
assembly and stabilization of the trans-SNARE complex
STX17-SNAP29-VAMP7/8, ultimately causing the three
membranes to fuse with each other and promote
degradation.68



Figure 3 The lysosomal degradation pathway of MVBs. (A) The microtubule system transports MVBs to the lysosome. The motor
protein dynein at the plus end of the microtubule interacts with its regulatory factor, dynactin. At the same time, the p150Glued

subunit of dynactin forms a complex with RILP, RAB7 and cholesterol-sensitive protein ORP1L in order to transport MVBs to the
lysosomes located at the minus end of the microtubule. (B) The HOPS complex participates in the fusion of MVBs with lysosomes.
The HOPS complex includes two RAB binding regions and a SNARE binding region. With the assistance of RILP, it can bind to RAB7 on
both the MVBs and lysosomes and bring v-SNARE on the MVBs close to t-SNARE on the lysosomes. Once the two SNAREs are tightly
tethered, MVBs fuse with the lysosome and are subsequently degraded.
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Cytoskeletal proteins drive MVB movement
and exocytosis

If the RAB proteins control the direction of MVB movement
like a steering wheel, then the cytoskeletal proteins are
responsible for providing the power for MVB movement like
an engine. The movement of intracellular vesicles is
mediated by cytoskeletal structures such as actin or mi-
crotubules and their associated molecular motors to ensure
the direction and effectiveness of vesicle transport. The
cytoskeleton is the protein fiber network system in
eukaryotic cells responsible for support, movement, and
transportation. RAB GTPases adjust the short- and long-
distance movements of vesicles by recruiting motion
adapters or by directly interacting with motors along actin
filaments or microtubules, respectively.69,70 However,
although scholars have obtained some knowledge, the
specific mechanisms used by cytoskeletal proteins in
membrane transport are not yet well understood.
Actin coordinates the directional transport of
vesicles and the occurrence of membrane
fusion events

Actin filaments polymerize beneath the plasma membrane
to form a dense network structure, with cortical actin
blocking MVBs at the edge of the cell. Therefore, poly-
merized actin must be dynamically reshaped or cut to allow
the MVBs that reach the inner wall of the plasma membrane
to fuse and be released from the cell.71 On the other hand,
the actin network structure is also thought to promote
vesicle docking.72 Therefore, the occurrence of a complete
membrane fusion event is thought to require the dynamic
disassembly and reassembly of cortical actin.

Rho GTPase family proteins, including key regulators of
the actin cytoskeleton, play an important role in the rapid
remodeling and contraction of actin.73,74 ERM (Ezrin, Radi-
xin, and Moesin) protein acts as a scaffold protein. Through
indirect regulation by the Rho protein, the carboxyl terminus
of ERM interacts with F-actin (filamentous actin) to anchor
monomeric actin filaments to the plasma membrane in
preparation for the polymerization and rearrangement of
actin.75 WASP (Wiskott-Aldrich syndrome protein) can be
activated as a downstream molecule of Rho GTPases such as
Rac and Cdc42. Arp2/3 (actin-related protein 2/3) com-
plexes and actin monomers then directly regulate actin
polymerization by binding to the common domain of the
carboxyl terminus of the activated WASP family, respec-
tively.76 Interestingly, Cdc42 appears to participate only in
the extracellular shedding of larger diameter microvesicles
(MVs) (>200 nm) and does not play a role in the release of
smaller exosomes.77 The Arp2/3 complex is the core of actin
assembly and helps to synthesizes and assembles actin
monomers into actin filaments, thereby promoting the for-
mation of filopodia78 and lamellipodia.79 In addition, a spe-
cial actin-rich subcellular structure, invadopodia, mediates
the hydrolysis of matrix proteins and is the specific and key
docking and secretion site for CD63-and RAB27A-positive
MVBs. Inhibiting or inducing the formation of invadopodia
reduces or increases, respectively, the concentration of
exosomes released into the medium.80 Branched actin pro-
teins assembled on the cytoplasmic side of the cell mem-
brane serve as docking sites for receiving MVBs transported
from a distance. Their quantity and quality directly affects
the secretion of exosomes without changing the exosomal
loading of cargo. The actin-binding protein cortactin binds to
the branched actin located in the cortex and stabilizes its
structure, thereby increasing the number of docking sites for
MVBs and the stability of exosome secretion.81

Actin also acts in another way that is closely related to
its molecular motor function. The myosin V family is a
recognized actin motor that specifically attaches to intra-
cellular vesicles in a RAB-dependent manner and drives the
vesicles to use actin cables as tracks for directional trans-
port.82,83 A classic and important model for this is RAB27A
binding to melanosomes, thereby recruiting melanophilin
to the melanosome membrane. Melanophilin then binds to
myosin Va and forms a complex that directs melanosomes
to the plasma membrane at the periphery of the cell where
exocytosis occurs.84
Microtubules drive endosomes for long-
distance bidirectional movement

Microtubules are similar to well-built two-way highways,
while endosomes enclosed in a lipid bilayer membrane are
similar to speeding cars. Endosomes move along the mi-
crotubules through the traction of two molecular motors,
kinesins and dyneins. Kinesins move toward the positive
end of the microtubule that extends to the periphery of the
cell,85 while cytoplasmic dyneins move toward the negative
end anchored in the center of the microtubule tissue.86 RAB
GTPases can adjust movement in any direction along the
microtubule by interacting with these two types of micro-
tubule motors.87 The activation of dynein-related move-
ments depends upon their interaction with microtubule-
positive end proteins (þTIP proteins), including EB1, EB3,
and CLIP-170.

RILP and oxysterol-binding protein-related protein 1L
(ORP1L) interact with active RAB7 located in late endo-
somes and lysosomes to form a ternary complex.88,89 The
CAP-Gly region of p150Glued, a subunit of dynactin, interacts
with CLIP-17090 or directly with microtubules91 to recruit
dynactin to the positive end of microtubules, thereby
recruiting and activating dynein.92 Subsequently,
cholesterol-sensitive ORP1L transports the RAB7-RILP
complex to bIII spectrin (a dynein receptor) on the endo-
some in the presence of high cholesterol concentrations
and binds to dynein to induce the dynein-dynactin complex.
This initiates the movements of the late endosome toward
the negative end of the microtubule, eventually trans-
porting these late endosomes to the centrosome and lyso-
some (Fig. 3A).88 ORP1L changes its conformation in the
presence of low cholesterol concentrations, thereby
exposing the FFAT motif and interacting with the ER protein
VAP-A. VAP-A removes the dynein motor from the RAB7-
RILP complex, at which time the endosome relocates to
the cell periphery.93
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SNARE mediates the fusion of MVBs with the
plasma membrane in the final step of secretion

The final and critical step for the release of MVBs into the
extracellular space to form exosomes is the fusion of the
MVB restriction membrane with the cell membrane. This
process has been proven by multiple scientists to be
dependent on the SNARE protein family. SNARE proteins
include the SNAP receptor protein located on the vesicle
membrane (vesicle-SNARE, v-SNARE) and the SNAP receptor
protein located on the target membrane (target-SNARE, t-
SNARE). These mediate specific recognition and fusion of
the transport vesicle membrane with the target membrane.
v-SNAREs determine the direction of transport and specif-
ically recognize and interact with t-SNAREs to form a
complex so that the vesicles can attach to the cell mem-
brane, thus ensuring the accuracy of vesicle transport.

A credible SNARE membrane fusion mechanism has been
proposed whereby a v-SNARE from the vesicle membrane
and three t-SNAREs from the target membrane are brought
into close proximity through traction of the tethering fac-
tor.94,95 Cys amino acid residues interact and assemble into
a very stable, four-stranded, helical bundle transmembrane
complex. The two membranes in contact with each other
and gradually fuse based on the bridge provided by the
SNARE complex,96,97 opening a path for the release of the
vesicle contents. Once this process is complete, the SNARE
complex is disassembled in an energy-consuming manner
and with the participation of ATPase. Notably, the v-SNAREs
that were originally exist on the vesicle have now been
transferred to the target membrane through membrane
fusion. If these proteins are to function again, they must
first be recycled to the vesicle membrane in readiness for
the next fusion event (Fig. 4).

Many studies have been conducted on the membrane
fusion function of SNARE family members during exosome
secretion. Vesicle-associated membrane protein (VAMP) is a
typical v-SNARE, with VAMP2, VAMP3, VAMP7, and VAMP8 all
involved in cell exocytosis. Their roles in exosome secretion
are currently under investigation. VAMP2 interacts with
syntaxin4 to form a fusion complex that promotes oligo-
dendrocytes to secrete microvesicles similar in size to
exosomes.98 In neuronal cells with high-frequency electro-
physiological activity, the abundance of VAMP3 (cellu-
brevin) is upregulated by basic fibroblast growth factor
(bFGF), which indirectly increases the frequency of fusion
events between MVBs and the plasma membrane and
demonstrates that exosome secretion is induced by elec-
trical activity.99 The v-SNARE protein VAMP7 is present in
late endosomes and is required for MVBs to fuse with the
plasma membrane and release exosomes in leukemia
K562 cells.100 YKT6 is also a v-SNARE protein and has been
shown to promote the secretion of exosomes specifically
loaded with Wnt signaling proteins in HEK293 cells.101

Similarly, both YKT6 gene knockdown and the use of YKT6
inhibitors significantly reduced the number of exosomes
secreted by A549 lung cancer cells.102 YKT6 also mediates
the fusion of MVBs with the plasma membrane in pancreatic
cancer cells through its own palmitoylation and colocali-
zation with VAMP3. This event may be regulated by the
lncRNA PVT1.103
On the other hand, t-SNARE proteins include the syn-
taxin family and the SNAP25 (synaptosome-related protein
with a relative molecular mass of 25 kDa) family. In
Drosophila S2 cells, Syntaxin1A was shown to be necessary
for the secretion of evenness interrupted (Evi) - exo-
somes.104 pH-sensitive optical reporters connected to tet-
raspanin have been designed to intuitively observe the
process of docking and fusion of MVBs with the plasma
membrane (PM) under live total internal reflection fluo-
rescence (TIRF) and dynamic correlative light-electron mi-
croscopy. Depletion of Syntaxin4 in the cells was observed
to reduce the frequency of MVB-PM fusion.105 Experiments
with Caenorhabditis elegans showed that Syntaxin5 is
activated or recruited by the GTPase RAL-1 located on the
MVB membrane and directs MVBs to dock and fuse with the
plasma membrane.106 Syntaxin6 and CD63 are colocalized
in prostate cancer cells, with knockdown of the Syntaxin6
gene observed to significantly reduce the number of exo-
somes secreted by cells, which is related to the loss in
ability of Syntaxin6 to form SNARE fusion complexes.107

Another study showed that SNAP23 is phosphorylated by
pyruvate kinase type M2 (PKM2)108 or histamine H1 receptor
(H1HR)105 and then mediates MVB membrane fusion and
exosome release. A similar event was observed after
knocking down Syntaxin19 and SNAP29 in HeLa cells, i.e.,
the number of vesicles that fused with the plasma mem-
brane was significantly reduced. In addition, the loss of
SNAP29 resulted in the accumulation of vesicles docked
under the cell membrane, providing further evidence that
membrane fusion was blocked.109 Together, these findings
indicate that SNARE proteins are the main contributors to
membrane fusion events. However, more in-depth studies
are needed to gain a better understanding of the mecha-
nism of SNARE’s action.
The extracellular microenvironment induces
exosome secretion

The above discussion relates to the internal cellular
changes that affect the secretion of exosomes. The
external factors that affect exosome secretion will now be
reviewed below. Exosomes secreted by cells carry and
transmit signaling molecules to change the cellular micro-
environment.110 Conversely, changes in the cellular micro-
environment also induce exosome secretion to protect cells
from stress responses caused by various endogenous and
exogenous stimuli.111 Abnormal stress responses are the
basis for various pathological conditions, including cancer.
The occurrence and development of cancer are closely
related to the state of the tumor microenvironment. The
components of the tumor microenvironment are complex
and comprise a small ecological niche that includes tumor
cells, fibroblasts, endothelial cells, immune cells and
mesenchymal stem cells, as well as cytokines, chemokines,
and various other proteins.112 As tumors progress, the
tumor cells compete with normal cells for nutrients, oxy-
gen, and growth factors. Under this pressure, the stress
response mechanism of tumor cells is activated to promote
further tumor progression. Exosomes represent a new form
of intercellular communication that is activated under



Figure 4 SNARE assembly and disassembly mediate the fusion of MVBs with the cell membrane. One v-SNARE located on the
vesicle membrane and three t-SNAREs located on the target membrane are tightly tethered to each other as they approach and
assemble into a stable, four-stranded helical bundle transmembrane complex. This further brings the two membranes into contact
and promotes fusion, thus releasing the particles in the MVBs from the cells. After this step is complete, the SNARE complex re-
mains on the fused target membrane and is disassembled into monomeric proteins. In addition, the v-SNARE only continues to
function after it is recycled to the vesicle membrane.
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stress. The final destination of MVBs for either degradation
or secretion depends on the dynamic balance of cells.
Tumor cells protect themselves from stress by secreting
exosomes.113e116
The hypoxic state of diseases can stimulate
exosome secretion

Hypoxia is an important feature of solid tumors and is
considered to be one of the factors that triggers the
secretion of exosomes.117 The number of exosomes
secreted by breast cancer cells increases in a hypoxic
environment. This process is mediated by hypoxia-
inducible factor-1a (HIF-1a) activation of hypoxia
signaling through the oxygen-sensing pathway. Related
miRNAs, especially miR-210, are loaded into exosomes and
promote the survival and invasive ability of breast cancer
cells.118 Dorayappan et al. found that when exposed to a
hypoxic environment, ovarian cancer cells increased the
release of exosomes by upregulating RAB27A and down-
regulating RAB7, LAMP1/2, and neu-1, thus inducing a
secretory lysosomal phenotype. However, knockout of the
oncogene STAT3 (signal transducer and activator of tran-
scription factor 3) under hypoxic conditions increases the
degradation of MVBs within lysosomes and reduces the
docking of late endosomes to the plasma membrane. This
subsequently reduces the release of exosomes from
ovarian cancer cells through increased levels of RAB7, a
key protein in lysosome fusion, and decreased levels of
RAB27A, a regulatory factor that mediates the docking of
late endosomes to the plasma membrane.119

Recently, the hypoxic stress of oral squamous cell car-
cinoma (OSCC) caused by the tumor microenvironment was
shown to affect the anti- and pro-tumor properties of gdT
cells by altering the number of exosomes released by can-
cer cells, which in turn regulated the function of marrow-
derived suppressor cells (MDSCs) through the miR-21/PTEN/
PD-L1 axis.120 Hypoxia has also been found to stimulate the
release of exosomes from hypoxic breast cancer-associated
fibroblasts (CAFs) to promote cancer cell invasion.121 Based
on these results, a hypoxic microenvironment can increase
the secretion of tumor cell-derived exosomes and change
the tumor microenvironment.
Exosomes can biogenerate in a calcium-
dependent manner

Tumor progression and metastasis are often accompanied
by an increased level of intracellular calcium ions (Ca2þ),
which then acts as an intracellular signal to induce regu-
lated secretion from most cell types. Monensin (MON) is a
Naþ/Hþ exchanger that increases the intracellular Ca2þ
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concentration through the Naþ/Ca2þ reverse transport
protein. Savina et al. found that treatment of K562 cells
with MON stimulates exosome secretion, and that Ca2þ

chelating agents completely eliminated the MON-induced
exosome secretion. Similar results were obtained with
chloroquine and bafilomycin. Transferrin (TF) was also
found to be involved in the secretion of exosomes from
K562 cells in a calcium-dependent manner and as a physi-
ological stimulus.122 According to recent studies, the
calcium-dependent SNAP receptor and RAB-binding protein
Munc13e4 is expressed at high levels in various invasive
carcinomas, including lung cancer, breast cancer and
pancreatic cancer, which promotes the maturation of MVBs.
Meanwhile, Munc13e4 binds to RAB11 in a Ca2þ-dependent
manner, leading to increased secretion of exosomes by
cancer cells.123 Knockout of Munc13e4 reduces the secre-
tion of exosomes carrying the MT1-MMP enzyme by breast
cancer cells, thereby reducing their ability to destroy the
extracellular matrix.54
Increased glycolysis under hypoxia promotes
the secretion of exosomes

Numerous studies have shown that changes in cell meta-
bolism are a core feature of tumors. Compared with normal
cells, tumor cells secrete more exosomes. Moreover, the
quantity of exosomes secreted by liver cancer and lung
cancer cells are positively correlated with aerobic glycol-
ysis. As mentioned above, the level of PKM2 and its phos-
phorylation levels are increased in tumor cells, thus
promoting glucose uptake and lactic acid production.
Phosphorylated PKM2 is a protein kinase that phosphory-
lates the Ser95 residue of SNAP23, a component of the
SNARE complex, thereby positively regulating exosome
secretion from tumor cells.108 The inhibitory effect of shi-
konin on glycolysis reduces the release of exosomes, while
tumor necrosis factor alpha (TNF-a)-induced glycolysis in-
creases exosome secretion.108 The latest research shows
that after the uptake by cancer cells of exosomes secreted
by CAFs, their metabolism is reprogrammed to simulate the
occurrence of a hypoxic environment that regulates exo-
some secretion, as evidenced by hyperactive glycolysis and
decreased mitochondrial oxidative phosphorylation.124 This
result indicates a close relationship between cell meta-
bolism and exosome secretion.
Low intracellular pH promotes the acidification
and degradation of MVBs

The accumulation of lactic acid in the extracellular envi-
ronment is mainly caused by glycolysis and hypoxia, which
induce and maintain the typical acidic microenvironment of
tumor cells. This acidification is due to the activation of
multiple ion channels on the restriction membrane, and the
local pH stepwise reduction in pH is a necessary condition
for the normal operation of the entire endosomal transport
pathway.125 In melanoma cells, an acidic pH increases
exosome secretion,126 while alkaline conditions signifi-
cantly decrease exosome secretion.127 Although an acidic
environment has been confirmed to increase the release of
exosomes, studies have also shown that autophagy-related
genes (Atg), including Atg5 and Atg16L1, destroy the active
structure of V-ATPase (vacuolar-type ATPase). This inhibits
its proton pump activity and prevents the acidification of
MVBs that produce exosomes, thereby reducing their
degradation due to fusion with autophagolysosomes and
ultimately increasing exosome secretion.128 Similar results
were also reported in another study in which storage in an
acidic solution (pH Z 4.0) reduced the concentration of
exosomes. This may be related to the degradation of exo-
some proteins and to the reduced long-term stability of
exosomes in acidic environments, which may subsequently
affect their physiological functions.129

In addition to the aforementioned factors that affect the
cellular microenvironment, the absence of nutrient and
growth factors may also cause cells to secrete more exo-
somes.130 Tumor cells with DNA damage due to chemo-
therapy131,132 or radiation exposure133 also secrete more
exosomes, thereby promoting the metastasis of cancer cells.
Pathogenic effects of exosomes

The role of exosomes can often be seen everywhere in the
occurrence and development of many human diseases. As
“delivery trucks”, exosomes are loaded with a large num-
ber of cell type-specific bioactive components. Exosomes
from different cell sources are spread throughout the body
via circulation of body fluids and are taken up by target
cells to produce intercellular crosstalk, causing different
biological effects.

In general, there are two pathogenic modes of exosomes.
The first is that the increased secretion of exosomes en-
hances the delivery of pathogenic or stimulating biologically
active substances to healthy cells. Increased secretion of
exosomes with the same contents can maintain the over-
stimulation of recipient cells. For example, a high-fat diet
can trigger the secretion of more exosomes from white ad-
ipose tissue to enhance communication with liver tissue. The
enrichment of CD36 in these exosomes increases hepatic fat
uptake, ultimately leading to fat deposits in the liver and the
occurrence of nonalcoholic fatty liver disease.134 Tubular
epithelial cells (NRK-52E) stimulated by TGF-b1 show a
marked increase in exosome secretion whereby encapsu-
lated miR-21 is transported to fibroblasts and leads to their
activation via the PTEN/Akt pathway, thereby aggravating
renal fibrosis.135 Similarly, the release of exosomes from HIV-
infected cells is increased following stimulation by the HIV
accessory protein negative factor (Nef), which rides on these
exosomes to target CD4þ T cells, causing their apoptosis and
ultimately triggering immunodeficiency in the body.136

Furthermore, when lysosomal dysfunction occurs, a-synu-
clein-enriched MVBs in neuronal and glial cells cannot be
degraded through the normal lysosomal pathway. Instead,
they spread to nearby neurons via the secretion of exo-
somes, resulting in the neurodegenerative disorder of Par-
kinson’s disease (PD).137 Tumor cells are known to have a
higher capacity for exosome secretion than any other cell
type. The exosomes derived from tumor cells are loaded
with a large number of bioactive factors that are advanta-
geous for tumor development. Upon interaction with suit-
able target cells, they can produce effects such as pro-
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angiogenesis,138,139 pro-invasion and metastasis,140,141 and
pro-immune suppression,142,143 thus increasing the malig-
nant potential.

The second pathogenic mode for exosomes is that
reduced secretion can weaken the delivery of protective,
biologically active substances to healthy cells. CD8þ T
regulatory (Treg) cells actively perform immunosuppressive
functions under physiological conditions. When exosome
secretion from CD8þ Treg cells is blocked under patholog-
ical conditions, NADPH oxidase 2 (NOX2) secreted out of the
cell through the exosome endocytosis pathway is blocked in
the intercellular compartment. Hence, the CD8þ Treg cells
lose their ability to inhibit the activation of surrounding
CD4þ T cells. As a consequence, they cannot effectively
defend against the inflammatory attack of CD4þ T cells on
the aorta and large conductive arteries, resulting in auto-
immune giant cell arteritis (GCA).49
Conclusions and significance

In summary, exosomes clearly play important roles in both
physiological and pathological conditions. The future
development of methods to block the release of exosomes
and/or interfere with exosome-mediated communication
between cells will therefore be very important. These
strategies may be promoted as extremely effective and less
traumatic treatments for various diseases. Over the past
thirty years, a large number of studies on exosomes have
provided more profound, more detailed and more realistic
information on the multiple regulatory mechanisms of
exosome secretion. However, although some of the rele-
vant regulatory mechanisms are increasingly well under-
stood, the exact mechanisms of action of many regulatory
molecules are still not entirely clear. Moreover, it is not
fully understood how different MVB subtypes produced by
different types of cells can shunt to different secretory
pathways. Much more research is needed to explore the
mechanism of exosome secretion, to gain a better under-
standing of the potential use of exosomes, and to translate
the results of experimental research into improved capa-
bilities of clinical treatments.
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