Skip to main content
. 2023 Jul 10;17:1204186. doi: 10.3389/fninf.2023.1204186

Table 4.

Comparison of the performance of the proposed CMB detection method with existing conventional machine learning (ML) and deep learning (DL) methods.

Methods Datasets Performance
Sequence(s) (# test subjects) Total # CMBs Cl. TPR FPavg Cl. Prec
ML methods
Bian et al. (2013) SWI (10) 304 86.5% 44.9
Fazlollahi et al. (2014) SWI (41) 103 92% FPavgCMB - 6.7 FPavgnCMB - 16.8
Fazlollahi et al. (2015) SWI (66) 231 87% FPavgD - 10.28, FPavgP+D - 27.8
Ghafaryasl et al. (2012) T2*-GRE + PD (81) 183 91% 4.1
Dou et al. (2015) SWI (19) 161 80% 7.7 49%
Chesebro et al. (2021) T2*-GRE, SWI (78) 64 95% 9.7 (SWI), 17.1 (T2*-GRE) 11% (SWI),7% (T2*-GRE)
DL methods
Chen et al. (2015) SWI (5) 55 89% 6.4 56%
Dou et al. (2016) SWI (50) 117 93% 2.74 44%
Liu et al. (2019b) Phase + SWI (41) 168 96% 1.8 (5-fold CV)
Al-Masni et al. (2020) Phase + SWI (72) 188 94.3% 1.4 61.9%
Rashid et al. (2021) (Leave-one-out validation) QSM + SWI + T2w (24) ~172 89% 49%
Proposed method UKBB - SWI (78) 186 93% 1.5 59%
OXVASC - T2*-GRE (74) 366 90% 0.9 84%

Cl.TPR, cluster-wise TPR; FPavg, average false positives per image/subject; Cl.Prec, cluster-wise precision; FPavgCMB, FPavg for CMB subjects; FPavgnCMB, FPavg for non-CMB subjects; FPavgD - FPavg for “definite” CMB subjects; FPavgP+D, FPavg for “definite and possible” CMB subjects.