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Abstract

Progress in cell purification technology is critical to increase the availability of viable 

cells for therapeutic, diagnostic, and research applications. A variety of techniques are now 

available for cell separation, ranging from non-affinity methods such as density gradient 

centrifugation, dielectrophoresis, and filtration, to affinity methods such as chromatography, two-

phase partitioning, and magnetic-/fluorescence-assisted cell sorting. For clinical and analytical 

procedures that require highly purified cells, the choice of cell purification method is crucial, since 

every method offers a different balance between yield, purity, and bioactivity of the cell product. 

For most applications, the requisite purity is only achievable through affinity methods, owing to 

the high target specificity that they grant. In this review, we discuss past and current methods 

for developing cell-targeting affinity ligands and their application in cell purification, along with 

the benefits and challenges associated with different purification formats. We further present 

new technologies, like stimuli-responsive ligands and parallelized microfluidic devices, towards 

improving the viability and throughput of cell products for tissue engineering and regenerative 

medicine. Our comparative analysis provides guidance in the multifarious landscape of cell 

separation techniques and highlights new technologies that are poised to play a key role in the 

future of cell purification in clinical settings and the biotech industry.
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1. Introduction

The ability to sort cells into distinct, mono-disperse populations is crucial to advance 

our knowledge of specific phenotypes, and explore their potential in tissue engineering 

and regenerative medicine [1, 2]. Efficient cell separation is therefore paramount in a 

multitude of fields, including personalized cell therapy [3–6], organ recellularization [7–

11], diagnostics and disease monitoring [12–17], drug discovery [18–22], and basic cell 

biology [23–25]. To meet the growing demand for highly pure cell products, there has 

been considerable effort to develop efficient and high-throughput separation methods. As a 

result, a multitude of techniques have emerged, which are classified into separations by (i) 
physical characteristics (i.e., cell volume and shape, density, and light scatter properties or 

fluorescence), (ii) surface properties (i.e., electrical charges, hydrophobicity, etc.) and cell 

constituents (i.e., such as nucleic acids, enzymes and other proteins), and (iii) adherence/

affinity features [26–29] (Figure 1).

When supplying cells for therapeutic applications, separation technologies must meet 

analytical benchmarks and regulatory compliance [30–32]. Consistency in product quality, 

in terms of cell viability and phenotype purity, is highly controlled to ensure product efficacy 

and patient safety [33–35]. The presence of adventitious agents is also rigorously monitored, 

and all processing steps must be compatible with sterility requirements [33, 36, 37].

Affinity-based separations have emerged as the main technology for cell isolation, as 

they meet the demand for high yield and purity, together with scalability and sterility 

[27, 38]. After three decades of developments, however, a systematic review is needed 

to recapitulate the diversity and complexity of affinity-based cell separation technologies 

and guide new users through the selection of appropriate purification methods. To this 

end, we present a comprehensive survey of affinity-based methods for cell purification, 

including traditional chromatographic techniques to more recent, non-chromatographic or 

pseudo-chromatographic systems (Figure 2, Table 1). These methods employ a variety 

of biorecognition agents for capture, ranging from traditional protein ligands to synthetic 

binders. Through this comparison, we also aim to identify emerging opportunities for 

improving the manufacturing of cells for tissue engineering and regenerative medicine.

2. Cells of interest

A list of clinically relevant cell products is provided in Figure 3. The isolation of 

erythrocytes is a prerequisite for estimating erythrocyte aging [39] and diagnosing 

conditions such as anemia[40] as well as vascular [41] and neurodegenerative diseases 

(Alzheimer’s and Parkinson’s) [12, 42]. Similarly, the isolation of lymphocytes is needed 

when assessing immune activation [13, 14], and as such, these cells are valuable in 

diagnosing or studying HIV infections [43], autoimmune diseases [44], post-operative 

infections [45], transplant rejection [46], and graft-versus-host disease (GvHD) [47, 48]. 
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Mast cells (MCs) also represent a relevant class of targets, especially for studying innate 

immune response, as their specific role in vivo is still unclear; while often associated 

with allergic response, specifically anaphylaxis, and hypersensitivity reactions [49, 50], 

MCs have also been found to have significant roles in a host’s defense against infections 

[51–53], angiogenesis during pregnancy [54], wound healing [55, 56], and autoimmune 

diseases [57]. Obtaining pure mast cell isolates has the potential to greatly improve our 

knowledge of disease mechanisms through the study of mast cell activation and immune 

response stimulation [58, 59]. Stem and progenitor cells are key ingredients in regenerative 

medicine and developmental biology, where they are used to reconstruct decellularized 

organs or to seed scaffolds for tissue and organ engineering [7, 9, 60]. For these reasons, 

stem cells have shown promise to help relieve the shortage of transplant organs [61, 62], to 

treat a number of conditions including macular degeneration [63] and Parkinson’s disease 

[64, 65], or as a therapy to repopulate heart tissue after myocardial infarction [66, 67]. 

The isolation of stem cells involves an additional challenge compared to common cell 

purification, as undifferentiated cells must be removed prior to implantation to reduce the 

risk of teratoma formation [68, 69]; with an average of 107 – 109 cells being required for a 

transplant [70, 71], even a 0.1% impurity level can result in a load of 106 undifferentiated 

cells and teratoma formation [72, 73]. Several technologies have been developed for stem 

cell purification based on cell phenotype, including density-gradient separation [74, 75], 

fluorescence-activated cell sorting (FACS) [73, 76, 77], and metabolic selection [78]. 

Improved cell purification techniques would also be beneficial to detect and monitor 

circulating tumor cells [79, 80] and pathogen infections [81]. It is in fact particularly 

difficult to isolate circulating tumor cells due to their rarity (~ 1 circulating tumor cell per 

108 red blood cells [82]). Additionally, cell separation techniques have been used to remove 

virus-infected cells from a patient to reduce a their overall viral load, as shown with malaria 

and hepatitis C [83–87]. Improved pathogen infection detection is not only beneficial for 

human related infections like those caused by HIV [88, 89], but also for the monitoring of 

food-related pathogens [90–92].

3. Non-affinity methods

Outside of affinity-based methods, cell separation is typically based on the physical 

properties of cells [93, 94]. These methods include density gradient centrifugation [95–

100], dielectrophoresis [101–105], field-flow fractionation [102, 106–111], filtration [112–

118], and elutriation centrifugation [119–123]. While useful for primary enrichment, these 

methods lack the specificity and resolution to achieve the levels of purity required for 

therapeutic and analytical applications [93, 94, 124, 125], and typically afford low yield for 

rare cell types [107, 126]. To overcome these limitations, affinity-based methods have been 

implemented to improve recovery and purity [29, 127–131]. These rely on the specific 

recognition and binding of a cell surface target by a complementary molecule, called 

ligand, immobilized on a suitable carrier or surface [132, 133]. Protein ligands, especially 

antibodies, are currently the major workhorse in affinity-based cell purification, owing 

to their high capture strength and selectivity [134–137]. Biological ligands, however, are 

expensive and often suffer from low biochemical stability. Furthermore, their strong binding 

often makes the elution of cells challenging [133, 138, 139]. Thus, improvements in affinity 
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methods are needed to enable therapeutic and analytical approaches that rely on consistent 

and cost-effective cell purification. The main channels of innovation are (i) the identification 

of cost-effective synthetic affinity or pseudo-affinity ligands for replacing biological ligands, 

(ii) the development of purification formats that improve upon classic chromatography 

originally designed for protein purification, and (iii) the determination of unique surface 

receptors on the target cells that are appropriate for use as affinity targets to ensure high 

phenotypical purity of the cell product.

4. Conventional Affinity Ligand Formats and Selection for Cell Separation

In cell separations, ligands bind proteins that are ideally unique or overexpressed on the 

cell membrane of the population of interest. Three ligand families are currently the most 

employed in cell separation: antibodies, proteins, and lectins. More recently, however, 

synthetic ligands have emerged as promising and cost-effective alternatives. In this section, 

conventional ligands used for cell separation are described as well as the desired ligand 

properties to achieve successful cell purification.

4.1. Cell properties that determine the outcome of affinity-based cell purification.

Cell sorting relies on the identification of a target receptor on either the cell phenotype 

of interest (positive cell enrichment) or the background cells (negative cell enrichment) 

[13, 14, 140, 141], based on the target’s abundance on the cell surface, the heterogeneity 

of cell population, and the requirements for the final cell product [142–144]. Typically, 

each receptor forms only ~ 0.01% of the total membrane protein content [145, 146], 

although proteins considered of “low-abundance” can be considerably less, as occurs on 

T or B lymphocytes [147]. The difficulty in identifying unique biomarkers for a target 

cell phenotype complicates the separation process and renders the assessment of cell 

product purity challenging [140, 148–150]. Cell surface receptors may vary among donors 

and different tissues isolated from an individual donor [151–153]. This heterogeneity 

complicates the selection of target cell markers for affinity purification and has slowed 

considerably the study of certain cell classes. This has particularly been the case for mast-

cells [51, 53, 56], whose purification by affinity is predominantly based on CD117 (c-Kit) 

targeting, although this receptor is not specific to mast cells and is present in many stem 

cell phenotypes [154]. For target cells featuring a particularly low surface density of unique 

receptors, negative enrichment is the preferred strategy [13, 155–157]. When low expression 

level is combined with low target cell abundance, microfluidic devices integrating negative 

selection strategies and physical separation methods (e.g., fluid, electric, or magnetic field) 

represent the technology of choice [156, 158–160].

Additional considerations when selecting the target receptor come from the biochemical 

effects that occur upon receptor binding. External cell receptors are inherently connected 

to cell metabolism, and ligand/receptor interactions can trigger undesired events such as 

internalization of the receptor, metabolic alteration, and even differentiation, in the case of 

stem cells [151, 152, 161]. Metabolic changes caused by affinity binding have been observed 

on mast cells enriched by targeting c-kit and FcεRI; while utilized for the positive selection 
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of mast cells, these markers are crucial in IgE activation and are likely to impact cellular 

metabolism [58, 162].

Ligand selection must also take into account both kinetic (kon and koff) and thermodynamic 

(KD) binding parameters [163–166]. Binding strength (KD) is crucial to ensure product 

purity, and, in the case of positive selection, to ensure that the target cells can be eluted from 

the affinity adsorbent. High-affinity ligands (low KD), while binding target cells specifically, 

make cell elution difficult, whereas low-affinity ligands (high KD), while allowing for 

easier elution, may not provide sufficient throughput. Thus, an ideal affinity ligand offers a 

balance between specific binding and effective elution [133]. Furthermore, quantifying cell 

adsorption in terms of KD only is not accurate, due to multi-point interactions between a 

target cell and multiple immobilized ligands known as avidity. Cell size, aspect ratio, and 

receptor density can be used to estimate the number of interactions per cell, and select an 

appropriate ligand density for a given value of KD [167, 168]. Finally, cell elution conditions 

are also crucial, as they strongly affect the viability of the recovered cells [138]. Elution can 

be achieved (i) non-specifically, by manipulating the salt concentration, pH, or temperature, 

or (ii) specifically, by using eluents that inhibit the ligand-cell interactions [139, 140]. 

Non-specific methods can damage the cells, while specific methods tend to be expensive. 

To overcome these issues, specific elution methods using multivalent competitive inhibitors 

have been presented, which have shown increased cell recovery compared to monovalent 

inhibitors [139, 169].

4.2. Antibodies.

“Immunoaffinity”, i.e. the use of antibodies as affinity ligands (Figure 4), has been 

widely applied for cell purification, owing to the antibodies’ binding selectivity and ability 

to operate effectively under physiological conditions [93, 150, 170–175]. Following the 

seminal work by Peterson [176] and Wigzell [177, 178], immunoaffinity has been employed 

to purify a wide variety of cells, including pathogenic bacteria [179], lymphocytes [180–

185], mast and inflammatory cells [186, 187], neural cells [188, 189], and stem cells [190–

192]. Recently, antibody fragments, such as Fabs and scFv, have been utilized as ligands in 

lieu of whole antibodies, as they possess the same binding activity while being produced 

more affordably [193, 194]. The strength of the interaction between the antibody and target 

protein, however, requires harsh elution conditions that may impact the cells’ viability. To 

address this issue, elution strategies have included competitive elution [181, 195, 196] and 

cleavable linkers [197, 198].

4.3. Protein A/G.

Another antibody-based method for cell isolation relies on Protein A and Protein G, two 

antibody-binding proteins expressed respectively by Staphylococcus aureus and group C and 

G Streptococcal bacteria [199]. In Protein A/G-based methods, a cell mixture is incubated 

with a receptor-specific antibody and passed through a Protein A/G-linked adsorbent 

[200–205], where the antibody-labeled cells are selectively retained (Figure 5). As the 

binding to Protein A/G is less impacted by steric hindrance than binding to immobilized 

antibodies directly, this variant of immunoaffinity cell chromatography is more efficient, and 
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has been demonstrated in different formats, such as rosetting [206, 207] and solid-phase 

chromatography [201, 208].

4.4. Protein and synthetic antigens.

Antigens represent a broad class of ligands ranging from proteins to small synthetic 

molecules [93, 171, 209–211]. The use of antigenic ligands for purifying white cells has 

been pioneered by Wigzell et al., who isolated immunized mouse lymph node cells using 

glass and plastic beads functionalized with human serum albumin, bovine serum albumin, 

and ovalbumin with yields between 60–95%, but poor enrichment (2.5-fold) [212]. Later 

work on lymphocytes has utilized enzyme-substrate interactions to isolate lymphocytes 

raised against enzyme antigens [213]. To purify enzyme-binding lymphocytes, Deluca et 
al. contacted white cells with the antigen enzyme and then exposed the solution to beads 

decorated with the enzyme’s substrate to specifically capture enzyme-bound lymphocytes 

[210].

Synthetic antigens represent the first use of synthetic ligands for cell purification [214–

217]. Truffa-Bachi et al. utilized haptens as antigens to stimulate an immune response, 

and subsequently as immobilized ligands to isolate white cells with anti-hapten activity 

[214, 215]. This method addresses two main difficulties encountered in affinity-based 

capture, namely (i) non-specific binding of non-target cells and (ii) detaching cells from 

the adsorbent without impacting their viability. In this context, Haas et al. utilized a gelatin 

matrix containing dinitrophenyl as a ligand for adsorbing mouse spleen cells, demonstrating 

that 30-fold enrichment and high viability could be achieved by melting the gelatin, 

providing for a gentle elution strategy [217].

4.5. Lectins.

Lectins recognize specific carbohydrate sequences on glycoprotein cell surface markers and 

have been widely utilized for cell fractionation (Figure 6) [218]. Herz et al. have used 

soybean agglutinin as a ligand to isolate T lymphocytes from peripheral blood for use in 

the prevention of graft vs. host disease in bone marrow transplants [219]. Hellström et al. 
have shown how helix pomatia A hemagglutinin can bind T cells treated with neuraminidase 

by targeting surface carbohydrates [220]; because only a small fraction of B cells interact 

with helix pomatia hemagglutinin, this method represents an efficient strategy to separate 

T cells from B cells [221]. This work shows how lectins enable highly specific cell 

fractionation as they target post-translational modifications; helix pomatia hemagglutinin, 

in fact, is selective for human T cells over many B cells since T cells express proteins 

with unique post-translational modifications [222]. Another major advantage of lectins is 

that cell elution can be triggered by mono- and disaccharides, which are harmless to cells 

[171]. In one instance, though, the elution of mouse thymocytes from concanavalin A was 

accomplished by cleaving the mercury-sulfur bond conjugating the lectin ligands from the 

chromatographic substrate using a short thiol, affording quantitative recovery and high cell 

viability [223].
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5. Formats of affinity-based cell separation

The principles of affinity purification have been applied in different ways for cell capture, 

depending on the source fluids and the required throughput [26, 100, 140, 150]. Cell-binding 

ligands have been immobilized onto solid substrates (chromatographic-like methods) [128] 

or polymer carriers (pseudo-/non-chromatographic method) [224] as well as magnetic 

particles (MACS) [225] and fluorescent markers (FACS) [226] that enable separation by 

an electromagnetic field. More recently, affinity ligands have been displayed on the channels 

of microfluidic devices. This latest frontier of cell separation offers higher resolution and 

holds great promise to expedite the clinical implementation of cellular therapies relying on 

rare cell types.

5.1. Rosetting.

Rosetting was the first isolation method to combine affinity with traditional density-gradient 

separation methods [150, 227–229]. In this technique, antigen-specific cells are incubated 

with antigen-coated erythrocytes, with which they form aggregates, called “rosettes”, that 

are separated from non-rosetted cells by gradient centrifugation (Figure 7) [230]. Rosetting 

was first utilized to separate two mouse immune cell populations using sheep red blood cells 

[231]. Further work demonstrated that greater quantities and purities of rosette-forming 

antigen-specific cells could be obtained through avidin-biotin affinity [207], gradient 

density centrifugation [18], and in combination with magnetic fields [232]. Rosetting is 

now routinely employed for purifying B and T lymphocytes and stem cells [233], with 

commercial products such as the RosetteSep™ kit from StemCell, which offer good recovery 

and purity.

5.2. Chromatography.

Besides recovery and purity, other parameters, such as scalability and capacity, are critical to 

extend cell separation processes to clinical and commercial applications [128, 234]. In this 

context, cell affinity chromatography (CAC) shows great promise as a scalable technology 

[235], given its successful use in industrial protein purification [236, 237]. In CAC, cells 

are injected into a column packed with a porous material functionalized with affinity 

ligands. Target cells are retained by affinity on the chromatographic medium, while other 

components flow through (Figure 4). While similar to traditional protein chromatography, 

CAC faces unique challenges, due to the major differences between cells and proteins: cells 

are large, sensitive to shear stress [204], and possess a low diffusivity, which results in the 

need for convective transport to achieve sufficient interaction with the affinity surface [238–

240]. Most importantly, high binding avidity requires harsh elution conditions to elute the 

cells from the chromatographic substrate [204, 241–243]. These challenges have highlighted 

the need for matrices that are tailored for chromatographic cell separations.

Computational modeling has been utilized to simulate cell interactions with affinity surfaces 

and guide the design of CAC substrates. Hammer et al. modeled the receptor-mediated 

adhesion of cells to ligand-decorated surfaces [238] and found that adhesion mainly depends 

on (i) the cell receptor-ligand interaction, such as the bond formation rate (kon) and strength 

(KD), and (ii) the fluid mechanical force, receptor mobility, and contact area [244–250]. 
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The model predicts two regimes governing CAC, i.e. a rate-controlled high-affinity regime 

and a low-affinity regime. Additional studies have expanded on CAC modeling [251] by 

implementing advanced analytical [252–254] and numerical [244, 255–257] approaches, 

understanding the effect of contact time and presence of inhibitors on cell adhesion [258], 

evaluating the effect of cell deformability on adhesion to surfaces [259, 260], and observing 

cell binding in microfluidic channels [261, 262]. A model based on “cell rolling” behavior, 

inspired by leukocytes rolling against blood vessel walls [263, 264], was designed to 

increase the likelihood of ligand-receptor interactions [143, 145, 256, 265–268], reduce 

residence times, and secure the binding of cells with low surface marker density.

In place of traditional chromatographic substrates, alternatives such as fluidized bed CAC, 

cryogel CAC, and microfluidic CAC, have been proposed [234].

5.3. Fluidized Beds.

Fluidized bed, or expanded-bed, affinity adsorption is frequently used to harvest from crude 

feedstocks [269]. A fluidized bed is comprised of porous particles coated with cell-binding 

affinity ligands that are agitated by an upward flow of fluid containing the target cells 

(Figure 8). The advantages of this technique over traditional CAC are (i) improved mass 

transfer and (ii) large inter-particle volume, and (iii) high surface area [221, 270–272]. In 

one study, perfluorocarbon-based beads functionalized with lectin Concanavalin A were 

utilized to capture Saccaromyces cervisiae cells [271, 273]. The rapid adsorption kinetics 

enabled the capture of up to 6.8.109 cells/mL, although elution was hindered by the “avidity” 

effect; to facilitate elution, ion-exchange groups were used in lieu of Concanavalin A 

[270, 271]. Fluidized bed separation was also utilized to isolate monocytes labeled with 

biotinylated antibodies from human peripheral blood using streptavidin beads [272]; cells 

were eluted using mechanical shear to a purity of 90%, yield of 77%, and viability of 

greater than 65%. While promising, fluidized beds suffer from limitations such as shear 

stress on cells, the need for large columns, long equilibration times, non-specific capture by 

the adsorbent base material, limited flow velocities, disengagement of absorbed cells from 

ligands [270], and fouling of the beads [274].

5.4. Cryogels.

Another alternative to traditional CAC is represented by monolithic cryogels [128, 234, 

275, 276]. Cryogel matrices are prepared by gelation or polymerization at sub-zero 

temperatures to create a continuous macroporous structure that enables cell suspensions 

to flow through [275] (Figure 9). While initially designed for the separation of proteins 

[277], oligonucleotides [278], and plasmids [279], cryogels have been shown to be ideal 

for the purification of viruses [280], cell organelles [281], and whole cells [234] owing 

to their (i) uniform and highly interconnected pores [128, 234], (ii) high channel width 

(>30 μm) that provides for efficient transport of cells between 2 and 15 μm [128, 282], 

(iii) efficient ligand conjugation [204, 205, 283], and (iv) high elasticity and hydrophilicity, 

which is particularly suited for mammalian cells [234, 284]. Finally, cryogels are attractive 

for large scale manufacturing as they exhibit high storage stability and have an extended life 

cycle [205, 285]. The two main approaches for cell capture using cryogels are mechanical 

entrapment in the cryogel matrix and ligand-mediated binding [140, 275, 286, 287]. Ligands 
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are conjugated to the cryogel either during or after cryogenic pore formation [281, 288]. A 

wide array of ligand formats [234, 285, 288] including antibodies [204, 205, 247, 289, 290], 

proteins [128, 204, 205, 286, 291], lectins, and synthetic ligands [290, 292–294] have been 

incorporated into cryogels for the separation of lymphocyte cells [128, 204, 285], myeloid 

cells [276, 295], microbial cells like Staphylococcus aureus [290], Escherichia coli [286, 

291, 296], Bacillus halodurans [297], and yeast cells [286, 291]. Elution from cryogels can 

be achieved by traditional methods, as well as by elastic deformation and thermally-induced 

shrinkage of the matrix to ensure viability of the recovered cell product [291].

6. Pseudo-chromatographic systems

6.1. Gel Affinity Separation.

Among polymer-based media, gels are particularly attractive as single-use adsorbents for 

cell purification, as they can be disintegrated thermally or enzymatically to release viable 

cells [298–305]. Haas and Layton developed antigen-coated gelatin layers to separate 

spleen cells with a 30-fold enrichment [217]; the bound lymphocytes were recovered by 

melting the gelatin. Because cell recovery could only be performed below gelatin’s melting 

temperature, Maoz et al. modified this process by including matrix-specific enzymes (i.e., 
collagenase) [303]; less than 5% of non-specific cells bound the gel, and non-adherent cells 

had significantly lower cytotoxicity than the bound cells, indicating that this method can 

specifically isolate functional T cells. Bröcker et al. developed antigen-functionalized gelatin 

for purifying T cells with up to 100-fold enrichment and purity of 80–90% [304]. Similarly, 

Webb et al. used an anti-mouse IgG for the selective capture of B cells [302]; on average 250 

cells/mm2 attached to the immobilized antibody and the B cells had a minimum viability of 

60%.

6.2. Fiber-based affinity separations.

Arrays of parallel hollow fibers have gained popularity as substrates for affinity purification 

of cells [306–313]. Fibers introduce a new component in cell adhesion, represented by 

the fiber’s cross-section geometry and flexibility [309, 312]. Fiber-based adsorbents are 

also attractive as they can be regenerated by washing at high shear [308, 312] and can 

be manufactured affordably at large-scale. The first use of fibers for cell isolation was 

published by Edelman et al. [306], who described the isolation of spleen cells from mice, 

immunized against Dnp38-bovine IgG, using nylon fibers coated with Dnp38-BSA, tosyl30-

BSA, and BSA antigens. The cells were detached mechanically, chemically, or competitively 

by incubation with inhibitors. While the eluted cells were up to 90% viable, significant 

non-specific binding occurred, which limited purity to 63–88%. To increase specificity, 

several authors have coupled antibodies and antigens to the luminal surface of cellulose 

hollow fiber modules. Pope et al. covalently attached goat anti-mouse antibodies to cellulose 

fibers to capture CD4+ lymphocytes, resulting in 63–99.9% depletion of the CD4+ cells 

from the starting population [314]. Similarly, Nordon et al. covalently coupled an anti-CD34 

antibody directly to the luminal surface of their system’s fibers to enrich CD34+ cells from 

mononuclear cells at 94% purity and 61% yield [307]. Other groups have developed fusion 

proteins comprising an antibody-binding domain and a fiber-binding domain for mediating 

the adhesion of antibody-labeled cells onto the fibers. Specifically, Craig et al. developed 
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a fusion protein (“protein LG”) that captured more than 90% of the antibody-labeled 

CD34+ cells onto a cellulose fiber module [311]. The use of these chimeric proteins helps 

overcome problems associated with ligand conjugation to hollow fibers such as low yield, 

random orientation, and structural alterations or degradation caused by the conjugation 

chemistry [311]. Hollow fiber systems enable the implementation of unconventional elution 

techniques. For example, bound cells can be fractionated into populations with varying 

binding strength by adjusting the flow rate (shear elution) [312]. Bound cells can also be 

eluted if labile links (e.g., a disulfide bond) are included between the ligands and fibers.

6.3. Affinity Membranes.

Membranes are suitable substrates for affinity cell separations, as the balance between 

trans-membrane flux and fluid velocity parallel to the surface can be easily controlled to 

optimize adsorption and elution [138, 315]. Additionally, the pore size of membranes and 

surface shear can be varied to minimize concentration polarization and fouling, which 

is advantageous when processing high-density cell suspensions. In an early example, 

Mandrusov et al. used a cellophane dialysis membrane functionalized with goat anti-mouse 

immunoglobulin to purify mouse B-lymphocytes [316]: cells were eluted with a low pH 

buffer by trans-membrane diffusion, while a shear-producing flow was applied to promote 

detachment of the cells from the membrane and neutralization of the acidic environment. 

Feeding the elution buffer on the membrane side opposite to the bound cells afforded a 

100% yield and 60% viability, indicating that a trans-membrane pH gradient is needed to 

elute cells effectively without decreasing cell viability.

Affinity membranes enable cell separation processes that employ bubble-induced cell 

detachment [317]. This technique is attractive as cells can be removed from adsorption 

surfaces without excessive dilution. Wang et al. utilized this method with tubular capillaries 

coated with antibodies to purify specific blood cell populations [127], obtaining 85.7% 

yield, 97.6% purity, and 85.8% viability of CD4+ cells isolated from blood samples. 

Specifically, > 90% of cells detached by bubble-induced elution, whereas compression 

and flow-induced elution resulted in 40–80% and 10–40% of cell detachment, respectively 

[317].

Thermo-responsive polymers have also been integrated in membranes to improve 

elution. Specifically, a poly(N-isopropylacrylamide)-grafted polypropylene (PNIPAAm-g-

PP) membrane functionalized with monoclonal antibody ligands was developed for 

purifying CD80+ cells [318]. PNIPAAm displays a thermo-responsive phase transition at 

32°C, where it switches from a hydrophilic to a hydrophobic state. At 37°C, antibody 

ligands adhere to the PNIPAAm-g-PP membranes by hydrophobic interaction, enabling the 

affinity capture of CD80+ cells; at 4°C, the IgG ligands detach from the PNIPAAm coating, 

thereby releasing the cells. The recovered cells were enriched from a 1:1 cell suspension to 

72%, proving to be the first case of affinity-based capture of cells where temperature is used 

for cell elution. In a similar work, anti-CD34 antibodies were adsorbed onto a PNIPAAm-

g-PP membrane and utilized to enrich CD34+ cells. The CD34+ cell concentration was 

increased from 50% in the feedstock to 85% in the eluate, and 95% of the recovered cells 

were viable [319].
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7. Non-chromatographic affinity purification methods

A variety of non-chromatographic techniques have been developed, such as two-phase 

separations, magnetic-activated cell sorting (MACS) and fluorescence-activated cell sorting 

(FACS) [148]. Two-phase separations employ polymeric materials often labeled with affinity 

ligands to drive the selective migration of cells into an aqueous phase (Figure 10). In MACS 

and FACS, the target cells are tagged with labeled affinity ligands that enable separation; 

magnetic labels are used in MACS (Figure 11), while fluorescent labels are used in FACS 

(Figure 12). While MACS and two-phase separations isolate cells into bulk groups, FACS 

is unique in its ability to analyze and sort single cells, allowing for more precise cell 

separation.

7.1. Affinity two-phase partitioning.

Affinity two-phase partitioning is a powerful preparative method for cells, cell membranes 

and organelles, and viruses [140, 320–329]. Aqueous two-phase systems (ATPS) form when 

two polymers added to a water solution produce two non-miscible liquid layers, across 

which other components in solution migrate based on their differential affinity towards 

the polymers (Figure 10). To improve the selectivity of cell migration, affinity ligands 

such as lectins, antibodies, and receptor-specific molecules have been conjugated to the 

phase-forming polymers [330, 331]. Polyethylene glycol (PEG) and dextran are the most 

commonly utilized polymers for ATPS, with PEG being used as the ligand carrier and 

the dextran-rich phase acting as the receptacle for the bulk contaminants [325, 332–334]. 

Monoclonal antibodies coupled to PEG have been utilized for separating human red blood 

cells from sheep and rabbit blood cells, resulting in up to 92% partitioning of the human 

red blood cells to the top phase [321, 335, 336]. Antibody-PEG conjugates have also been 

used to purify hybridoma 16–3F cells from their parental NS-1 cell line, resulting in 24% 

recovery and 80% purity [332].

Two-phase affinity partitioning has flourished with the introduction of stimuli-responsive 

polymers. Kumar et al. have utilized PNIPAM decorated with antibody ligands to separate 

CD34+ human acute myeloid leukemia KG-1 cells from Jurkat cells (immortalized human 

T lymphocytes) [337]. While more than 80% of the KG-1 cells were partitioned to the top 

phase, a small contamination of Jurkat cells was observed; however, incomplete recovery of 

the conjugates lowered the yield of KG-1 cells to 75% during subsequent use. In addition to 

antibodies, cell separation by two-phase partitioning has also been demonstrated with other 

ligands, such as transferrin [323], synthetic dyes [338–342], and immobilized metals [333, 

343].

Owing to its biocompatibility, mild operating conditions, and scalability, ATPS is regarded 

as a high-potential technology for the recovery of cell targets for which the minimization 

of mechanical stimuli is critical (e.g., stem cells and neurons) [327, 328]. Sousa et al. used 

PEG800-dextran functionalized with anti-CD34 antibodies to separate and recover CD34+ 

stem cells from umbilical cord blood [325]. The CD34+ cells were enriched from a starting 

population of ~ 0.2% CD34+ cells to ~ 42% in the final population, and recovered with 81–

95% yield; in contrast, with PEG alone, a cell enrichment of 13% and 2.3% recovery was 

achieved. Using a three-polymer (PEG, ficoll, dextran) system and an anti-CD133 antibody, 
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González-González et al. recovered CD133+ stem cells from umbilical cord blood with a 

final recovery of 62% and 98% viability [328].

A significant limitation of two-phase separations is the recurring presence of impurities 

in the top (product) phase. Accordingly, separations using ATPS generally result in lower 

purity than what is achieved using chromatographic technologies. Further work to improve 

ATPS separations, especially by increasing the partition preference of antibodies to a top 

clean phase, is considered a worthwhile effort to achieve a truly scalable process for cell 

separation.

7.2. Magnetic-activated cell sorting (MACS).

MACS is a relatively recent cell separation technology that employs affinity ligands 

conjugated to magnetic particles comprising an iron core coated by a hydrophilic shell 

to reduce non-specific binding (Figure 11) [344]. Upon incubating ligand-coated particles 

with a cell mixture, a magnetic field is applied to separate the target cells bound to the 

magnetic particles from the unbound cells [345]. Pioneered by Zborowski and co-workers 

[142, 346–350], MACS is now recognized for its speed of separation, with rates in the range 

of ~1011 cells/hour [100]. Recent developments enable simultaneous separation of multiple 

cell types using magnetic field gradients [348, 351] or by combination with microfluidic 

devices [352, 353]. The predominant MACS format is antibody-based, where target cells are 

either directly bound onto antibody-coated beads [225, 347], or are labeled in solution with 

a primary antibody and subsequently captured onto beads coated with a secondary antibody 

[354, 355].

Ligand immobilization techniques are highly dependent on the nature of the ligand. 

Methods for antibody immobilization to magnetic particles include covalent binding [356, 

357], streptavidin-mediated immobilization (specific for biotinylated antibodies) [358, 359], 

Protein A-/G-mediated immobilization [360], conjugation to boronic acid or hydrazinyl 

groups [360, 361], and oligo-dT coating [362]. Besides antibodies [225, 345, 363–365], 

other affinity ligands have been successfully utilized in MACS [366–375]. Herr et al. 
utilized DNA aptamers to capture acute leukemia cells from complex mixtures with a 

40% recovery [371]. Magnetic nanoparticles coated with bis-Zn-DPA, a synthetic ligand 

that binds Gram-positive and Gram-negative bacteria, have been utilized for separating 

Escherichia coli from blood with complete bacterial clearance in two separation cycles 

[375]. This work has also demonstrated that nanoparticles outperform micrometer-scale 

particles in terms of binding capacity and kinetics, and separation output.

The increasing relevance of immunomagnetic separation technology is demonstrated by the 

recent FDA approval of the CellSearch system, which can isolate circulating tumor cells 

using a epithelial cell-adhesion molecule (EpCAM) antibody [376–378].

7.3. Fluorescent-Activated Cell Sorting (FACS).

In FACS, fluorescently-tagged ligands are utilized to individually sort cells using 

fluorescence and light scattering [379–381]. When injected into the sorter, the stream of 

cells tagged with fluorescent ligands is broken into droplets that contain a single cell; each 

droplet passes through an illumination detection zone, and a charge is placed onto any 
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cell that meets the separation criteria. As the charged droplets fall through electrostatic 

deflecting plates, they are sorted into different containers based on their charge (Figure 

12). FACS has been extensively utilized for sorting therapeutic cell products, especially 

stem cells [29, 31, 382–384] and blood cells [385, 386]. FACS has gained popularity as it 

provides highly pure (>95%) cell populations and can sort at the single cell level due to the 

high sensitivity of fluorescence detection [100, 387]. FACS also allows population-averaged 

single cell data, as it can be used to efficiently perform high throughput cell sorting and 

counting [387]. Recent advances in fluorescent dyes and laser detectors allow researchers to 

simultaneously track multiple cell parameters [388, 389]. On the other hand, FACS requires 

the use of expensive equipment and suffers from limited throughput (~ 107 cells/hour) and 

long processing times (3–6 hours), which prevents its use in large scale manufacturing of 

therapeutic cells [380].

Elements of MACS and FACS sorting can be combined in a method known as “ratcheting 

cytometry” to perform multicomponent purifications of specific subpopulations [390]. This 

method is frequently used for continuous and quantitative purification of T cell subsets 

for cell therapy manufacturing. Specifically, T cells from apheresis or peripheral blood 

mononuclear cell samples are magnetically labeled using magnetic particles featuring 

different iron oxide content and size, and antibody functionalization. As magnetic particles 

travel differently within the sorting cartridge based on their magnetization and size, cells 

specifically bound to a magnetic particle population can be isolated from other cells in the 

mixture [390]. Ratcheting cytometry also enables sorting cells based on differential levels of 

antigen, as this determines the number of magnetic particles bound to a cell. This method 

has been used to simultaneously isolate CD4 and CD8 T cells from a sample via labeling 

with antigen-specific magnetic particles [391].

8. Emerging Trends

Cell purification technology is rapidly evolving, owing to the introduction of target-specific 

biorecognition moieties for capture (i.e., biological and synthetic ligands) and isolation 

formats (e.g., microfluidic devices).

8.1. Microfluidic devices for cell separation.

The latest frontier of CAC is represented by microfluidic devices that comprise sub-

millimeter channels coated with affinity ligands (M-CAC) [129, 131, 159, 392–396]. The 

high surface-area-to-volume ratio of microfluidic channels, enhanced by micro-fabricated 

structures with complex geometry, has enabled the capture of cells at extremely low 

concentrations by M-CACs [261, 392, 397–399]. M-CAC systems have been utilized to 

separate T- and B-lymphocytes at high purity (> 97%) from mixed suspensions [127, 175, 

400]. To ensure binding specificity, the channels are often grafted with hydrophilic polymer 

brushes (e.g., PEG) or coated with hydrogels (e.g., alginate) functionalized with antibody 

ligands [401, 402]. Chang et al. have developed a M-CAC system coated with E-selectin IgG 

molecules to separate HL-60 and U-937 myeloid cells with purity greater than 70% and 200-

fold enrichment [262]. M-CAC also enables the sorting and capture of multiple cell types 

from a complex mixture. Li et al. incorporated a pneumatic-actuated control layer into an 
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affinity separation layer to create different antibody-coated regions within the same channel 

[129]. Ramos cells were flown through anti-CD19- and anti-CD71-coated regions, with the 

anti-CD19 region having a capture density 2.44-fold higher than the anti-CD71 region. The 

authors also coated a second channel with two different antibodies targeting either Ramos 

or HuT 78 cells, allowing specific retention of the cells in their complementary region at 

greater than 90% purity. Lastly, a four-region antibody-coated device was developed for 

the simultaneous capture of three different cell lines in a single channel, thereby enabling 

multiple cell sorting.

Microfluidic devices coated with antibodies against specific cell markers have gathered 

considerable interest as tools for detecting rare tumor circulating cells (CTCs) [397, 403–

405]. Isolating CTCs from the bloodstream enables the detection, characterization, and 

monitoring of non-hematological cancers [406], but is made extremely challenging by their 

low concentration (1 −100 CTCs per mL of blood [82, 376–378, 407, 408]). Researchers 

have shown that microfluidic devices (CTC-Chip) containing an array of microposts 

functionalized with epithelial cell adhesion molecules (EpCAM) can capture CTCs [397]. 

Many attributes of the device have been explored to enhance CTC enrichment. Gleghorn 

et al. described how the geometry of the microposts can enhance CTC enrichment [398]. 

CTC-ligand binding has also been improved by introducing a high-throughput microfluidic 

device called “HB-Chip”, which mixes the blood cells by generating micro-vortices that 

increase the interactions between the target CTCs and the antibody-coated channels [406]. 

To increase binding sensitivity, Myung et al. developed high-avidity ligands by conjugating 

multiple EpCAM ligands to dendimers [409]. The combination of multivalent binding and 

cell rolling in the channels mediated by E-selectin granted high sensitivity and specificity 

towards CTCs. This work has led to a device, commercialized by Biocept, which employs 

streptavidin-coated microposts to capture CTCs tagged with biotinylated antibodies, 

followed by fluorescent microscopy-based detection and in situ cytogenic interrogation [399, 

410]. Another approach for the isolation of CTCs is represented by negative enrichment 

(or negative selection) using microfluidic technologies [411], which takes advantage of 

the physical and biochemical properties of cells [412]. Unlike hematopoietic cells, which 

display the cell surface markers CD15 (granulocytes), CD66b (granulocytes) and CD45 

(leukocytes), CTCs are CD15/45-negative. Accordingly, negative enrichment technologies 

feature microfluidic channels, nanoparticles, and micro-scale adsorbents functionalized 

with anti-CD15, anti-CD66b and, most commonly, anti-CD45 antibodies [155–157]. The 

affinity-based selection alone, however, is often not sufficient to achieve the desired 

enrichment factor, and must be complemented by size exclusion-based or fluid dynamic-

based separation techniques [157, 158, 160, 413, 414].

Lastly, emerging technologies for droplet-based single cell analyses are flooding the 

contemporary literature landscape. While there is significant focus on droplet barcoding 

for single cell sequencing and transcriptomics [415–418], some efforts are aimed at 

employing droplet-based technologies for human cell isolation, sorting, and studying 

biomolecular interactions [419–425]. An in-depth review of droplet-based cell analyses was 

recently provided by Huck et al. [426]. Briefly, the formation of water-in-oil plug flow in 

microfluidics can generate picoliter-sized droplets for carrying cells or other biomolecular 

residents, and these droplets can be generated in a highly repetitive and chemically-defined 
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manner [427–430]. When employed for cell isolation and sorting, the physico-chemical 

properties of the droplet can be tuned to promote interaction with specific surface features 

of the microfluidic device, resulting in droplet isolation and sorting [431–435]; for example, 

the interfacial tension of the droplet can be made sensitive to pH causing the droplets to 

interact with the microfluidic channel’s surface [422]. The physico-chemical properties of 

the resident cell can also be made responsive, so that the droplet can be sorted via imaging 

and fluorescence-activated techniques [436–440].

In regard to using these techniques for studying affinity-based chemistries, droplet 

microfluidics have been employed to screen drug and antibody binding by generating 

sub-nanoliter reactors [441–444]. In one example, hybridoma cells secreting antibodies 

were individually co-encapsulated with a target cell in nanodroplets to select hybridoma 

clones expressing antibodies featuring affinity for the target cell [440]. While there have 

been limited studies of strictly affinity-based sorting via droplet microfluidics, based on the 

aforementioned examples there is an emerging lane of study for using droplet microfluidics 

for therapeutic antibody discovery, especially since the single-cell droplet approach is 

amenable to use with primary human plasma cells, which secrete antibodies.

8.2. Synthetic Ligands.

A significant barrier to improving the affordability of cell products is represented by 

the cost of biological ligands [133]. While highly selective, proteins and antibodies are 

biochemically labile [445], and a complex engineering process is required to discover 

viable ligands [446]. Further, they are generally characterized by high binding strength, 

which can trigger undesired intracellular signaling cascades upon binding and even cell 

death [447–449]. To overcome these limitations, synthetic ligands have been proposed 

to maintain targeted affinity while lowering binding strength to facilitate cell elution. In 

addition, synthetic ligands are biochemically stable and can be synthesized affordably at 

large scale.

Hormones are the first small molecules to ever be utilized as affinity ligands [450]. 

In particular, histamine [451, 452], catecholamines [453], and prostaglandins [454, 455] 

coupled to Sepharose beads have been used to separate 19S and 7S plaque-forming cells 

from the total spleen leukocyte population. The hormone-based adsorbents were able to 

capture 56% and 84% of the 19S and 7S plaque-forming cells respectively. Similarly, 

glycans (e.g., mannose) immobilized on Dowex resins have been utilized to separate E. coli 
K12 and Campylobacter jejuni NCTC 11168 cells with high yield (94–96%) and selectivity 

[456].

Recent advances in selection technology have spurred the use of synthetic ligands with 

engineered affinity and selectivity for any target cell [133, 457–459]. Aptamers and peptides 

represent the main classes of synthetic ligands [449, 460–470]. Aptamers consist of single-

stranded DNA or RNA molecules and have seen rising popularity in cell purification [469]. 

The development of these ligands is supported by a high-throughput screening method 

known as “systematic evolution of ligands by exponential enrichment” (SELEX) [464, 471–

474]. Xu et al. have selectively captured three leukemia cell lines (CCL-119, Ramos cells, 

and Toledo cells) using a microfluidic device coated with cell line-specific aptamers, with up 
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to 136-fold enrichment [475]. Aptamers have also been demonstrated as cell capture ligands 

in more traditional pseudo-chromatography applications, as described by Zhang et al., where 

aptamers coupled to a hydrogel bound and eluted target cells with a resulting viability 

of ~ 99% [476]. Aptamers have also been successfully used in MACS applications [371, 

372, 475, 477–480], microfluidic devices, and hydrogels, with reported capture efficiencies 

and cell purities at > 80% [131, 403, 481–483]. These case studies showcase the value of 

aptamers as cell capturing ligands. Nonetheless, some improvements are still needed, such 

as increasing binding selectivity to improve capture [484], tuning the binding strength to 

facilitate cell elution [485], and addressing safety concerns by implementing rigorous tests 

of biocompatibility [486].

Peptides have also emerged as robust and cost-effective alternatives to protein ligands [133]. 

Over the past two decades a number of selection techniques have been developed, ranging 

from the screening of biological and synthetic libraries in liquid or solid phase to in silico 
approaches, such as computational design and machine learning. This has resulted in a 

myriad of peptides targeting analytical and medically relevant target cells. Veleva et al. 
identified an angiogenic tumor-binding peptide via in vitro enrichment of a peptide library 

against peripheral blood outgrown endothelial cells followed by in vivo screening of the 

enriched library to identify tumor-binding peptides [487]. Similarly, Oyama and coworkers 

identified peptides from a phage library to bind human lung cancer cell lines and noted 

that the selected peptides were specific towards the target cancer cells without negative 

selection [461, 466]. In 2008, Choi et al. identified a Raji cell-targeting peptide as a model 

for Burkitt lymphoma cells with seemingly high specificity for these cells as determined by 

lack of binding to normal, non-cancerous B cells, peripheral blood cells, or other leukemia 

cells [488]. Wang et al. also utilized phage display to identify affinity peptides for imaging 

detection of human colorectal cancer cells (Caco-2); the specificity of the peptide was 

confirmed using negative-control cell lines HEK293, SGC-7901, and SMMC-7721 [489]. 

Peptide ligands have also been employed in a number of cell adhesion applications, which 

are of primary interest for cell separations. De et al. demonstrated the use of peptides in 

pathogen removal applications by isolating pancreatic beta-cells infected by Mycoplasma 
arginii from healthy cells, showcasing a 10-fold reduction in the number of infected cells 

[490]. Success in separating different phenotypes of primary cells has also been shown 

in multiple cases by microcontact printing of tetrameric peptides in microfluidic devices. 

These have been used for the separation of osteoblasts from fibroblasts by Hasenbein 

and coworkers [491], or the fractionation and characterization of different human cell 

phenotypes by Murthy and coworkers [492–494].Peptide ligands have been discovered for 

a number of cell surface markers that identify analytically or therapeutically relevant cells, 

including CD-34 [495], CD-133 [496, 497], CD-38 [498], VCAM-1 [499–502], and Flt-3 

[503, 504].

Large peptides, developed from non-antibody scaffolds, also represent a viable alternative 

for cell separation purposes. Our group has identified the first non-antibody binders 

for CD-117 by screening a yeast-display scaffold library against magnetized yeast cells 

expressing the extracellular domain of CD-117 [505]. Two nanobody mutants were 

identified with good affinity (i.e., 131 and 204 nM) for CD-117. While binding of these 

mutants for CD-117 was only confirmed for yeast displayed CD-117, a combination of 
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these ligands would likely enable the purification of phenotypically pure cells such as 

endothelial stem and progenitor cells (ESCs, HSC), and hematopoietic stem and progenitor 

cells (EPCs, HPCs) [506–517]. Additionally, the mid-nanomolar affinities of the nanobody 

ligands promote gentler compared to antibody ligands.

Peptide ligands can also be engineered to enable the control of cell binding and release 

upon exposure of biocompatible stimuli. To this end, stimuli-responsive monomers can 

be incorporated into the amino acid sequence, allowing the peptide to reversibly switch 

between a binding and a non-binding mode upon cooling, or exposure to light or a magnetic 

field (Figure 13). Our group, for example, has developed VCAM1-binding azobenzene-

cyclized peptides for the light-controlled labeling of endothelial progenitor cells [518]. 

Upon exposure to light, the ligands undergo a remarkable ~ 1300-fold variation in binding 

strength, which enables selective and stable light-controlled labeling of cells. Notably, 

modified azobenzene linkers have been engineered to photo-switch in different wavelength 

windows, namely red, green, and blue (RGB) light [519–524]. Therefore, a combination 

of peptide ligands targeting different cell markers, whose binding/release is triggered at 

different wavelengths, could be used to produce and dynamically modify patterns of cells on 

solid substrates by exposure to sequences of red, green, or blue photo-patterns, for example 

using liquid crystal display light-emitting diodes (LCD-LED) arrays.

9. Conclusions.

Cell separation technologies have progressed steadily to meet the demands for basic 

research, diagnostic, and therapeutic applications, resulting in cell isolation methods that 

are more efficient, scalable, and dependable. Affinity-based approaches are now the most 

utilized, owing to their ability to achieve high purity. A wide variety of affinity-based 

approaches are available, ranging from traditional chromatographic to pseudo- and non-

chromatographic systems. Each system has advantages and disadvantages, as outlined in 

this work, which must be carefully considered when choosing a cell separation method. 

Microfluidic technologies represent the next frontier of cell manufacturing as they offer 

the capacity to perform multiple functions (mixing, counting, lysis, single cell analysis, 

etc.) in a single device. Advances in parallelization and scale-up hold great promise to 

overcome the low throughput of current devices and enable processing of large sample 

volumes. Further, the ability to integrate post-sorting molecular, cellular, and functional 

characterization furthers the appeal of using microfluidic devices for cell separation.

On the biorecognition front, affinity-based separations are shifting from protein and 

antibody ligands towards synthetic ligands. Biological ligands, in fact, while highly specific, 

are limited by their high cost and exceedingly strong binding. Synthetic ligands, on the other 

hand, can be synthesized affordably, at large scale, and with no batch-to-batch variability. 

The need to develop gentle cell elution conditions has stimulated the development of 

stimuli-responsive ligands, such as photo-switchable peptides, whose binding activity can 

be controlled by exposure to biocompatible stimuli. In this regard, further progress in the 

fields of in vitro and in silico selection methods is needed to expand the portfolio of peptides 

and aptamers with tailored affinity and binding mechanism for cellsurface markers. Further 

studies – both experimental and modeling – are also needed to understand the balance 
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between affinity, multivalent binding due to expression level of surface markers, in order 

to optimize the balance between efficient cell capture and elution, ultimately enabling high 

recovery and bioactivity.

Currently, the major challenge for cell therapies and related clinical applications resides in 

achieving rapid, efficient, and affordable separation while minimizing costs and attaining 

the required purity, yield, and functionality of the cellular product. Membrane-based 

separations show exceptional potential in large-scale production, particularly in combination 

with cell-specific biorecognition moieties that ensure high recovery, purity, and bioactivity 

of the cell product. Owing to their high pore diameter and porosity, in fact, membranes 

enable processing high volumes of cell suspensions at high flow rates, thereby increasing 

throughput and minimizing processing time, which aids in maintaining the viability of the 

cell product. On the front of basic cellular research and personalized medicine, the continued 

identification of highly specific markers defining cell populations [525], combined with the 

advancements in integrating physical and affinity-based strategies in miniaturized devices, 

will be critical for the fruition of patient-specific cellular therapies.
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Statement of significance.

Technologies for cell purification have served science, medicine, and industrial 

biotechnology and biomanufacturing for decades. This review presents a comprehensive 

survey of this field by highlighting the scope and relevance of all known methods for 

cell isolation, old and new alike. The first section covers the main classes of target 

cells and compares traditional non-affinity and affinity-based purification techniques, 

focusing on established ligands and chromatographic formats. The second section 

presents an excursus of affinity-based pseudo-chromatographic and non-chromatographic 

technologies, especially focusing on magnetic-activated cell sorting (MACS) and 

fluorescence-activated cell sorting (FACS). Finally, the third section presents an overview 

of new technologies and emerging trends, highlighting how the progress in chemical, 

material, and microfluidic sciences has opened new exciting avenues towards high-

throughput and high-purity cell isolation processes. This review is designed to guide 

scientists and engineers in their choice of suitable cell purification techniques for 

research or bioprocessing needs.
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Figure 1. 
Cell properties and corresponding purification techniques.
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Figure 2. 
Cell purification technologies.
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Figure 3. 
Cell targets and their diagnostic or therapeutic applications.
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Figure 4. 
Cell immunoaffinity chromatography. (A) Contacting a mixture of cells with the affinity 

substrate (e.g., an immunoaffinity adsorbent); (B) Removing the unbound cells by washing; 

(C) Eluting the target cell.

Bacon et al. Page 49

Acta Biomater. Author manuscript; available in PMC 2023 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Protein A-based cell affinity chromatography. (A) Mixing the target cell and other cells with 

target-specific antibodies (e.g., an immunoaffinity adsorbent); (B) Removing the unbound 

cells by washing; (C) Eluting the target cell.
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Figure 6. 
Lectin-based cell affinity chromatography. (A) Contacting a mixture of cells with the lectin 

substrate; (B) Removing the unbound cells by washing; (C) Eluting the target cells using a 

mixture of sugars.
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Figure 7. 
Cell rosetting technique. (A) Contacting the target cell and other cells with bispecific (target 

cell and red blood cells) ligands resulting in (B) the formation of a complex; (C) Incubating 

the tagged target cells with red blood cells; (C) Procedure of cell purification by rosetting.
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Figure 8. 
Cell purification by expanded bed chromatography. (A) Filling the column with beads; (B) 

Expanding the beads; (C) Loading the cell mixture; (D) Compacting and washing the beads; 

(E) Eluting the target cells

Bacon et al. Page 53

Acta Biomater. Author manuscript; available in PMC 2023 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. 
Process of cryogel production.
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Figure 10. 
Cell purification by affinity-based aqueous two-phase partition. (A) Suspending the cell 

mixture; (B) Adding the affinity-polymer forming the second phase; (C) Mixing the two 

phases; (D) Allowing the two phases to separate and recovering the target cells in the top 

affinity phase.
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Figure 11. 
Cell purification by MACS. (A) Contacting the cell mixture with ligand-functionalized 

magnetic beads; (B) suspending the magnetic beads in the cell mixture; (C) Applying a 

magnetic field to isolate the magnetized target cells and remove all unbound cells; (D) 

Resuspend and wash the magnetized target cells; (E) Elute the target cells from the magnetic 

beads.
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Figure 12. 
Cell purification by FACS.
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Figure 13. 
Cell purification using stimuli-responsive peptide ligands. (A) Reversible photo- or thermo-

switching of an azobenzene-cyclized peptide; (B) Principle of cell capture and release using 

stimuli-controlled cyclic peptides.
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Table 1.

Comparison of physical (non-affinity) and affinity-based cell separation techniques.

Method mechanism Target cells Advantages

Physical (non-affinity) methods

Density gradient 
Centrifugation

Cells migrate through a 
vertical density gradient (aqueous 
solutions of biopolymers) during 
centrifugation and collect in the 
region where the local density 

corresponds to their own.

Human mesenchymal stem cells, 
hematopoietic stem and progenitor 

cells, blood cells (erythrocyte, platelets, 
granulocytes, lymphocytes, monocytes), 
circulating tumor cells, sperm cells, and 

neurons. Rat pancreatic islets.

Label-free technology, which 
enables processing large volumes 

in short process times and 
concentrating the cell product; 

high viability of the cell 
product; reproducible results; 
facile scale up; commercially 

available equipment.

Dielectrophoresis

Cells placed in a gradient electric 
field act as induced dipoles 

and migrate at: different rates 
based on their size and dielectric 

properties as well as the dielectric 
properties of the medium.

Hematopoietic stem and progenitor 
cells, leukocytes (B and T-lymphocytes, 

monocytes, and granulocytes), circulating 
tumor cells, astrocyte and neuron-biased 
cells, neural stem and progenitor cells. 
Isolation of pathogenic bacteria from 

blood. Fractionation of viable vs. non-
viable cells (yeast and mammalian cells).

Label-free, continuous technology 
that enables sorting cells based 
on viability without dilution, 

thereby reducing sample volumes; 
short processing time and high 

sensitivity; can be integrated with 
microfluidic devices.

Field flow 
fractionation

A cell suspension is flown 
through a channel where a field 
(e.g., crossflow, sedimentation, 

and electrical) is applied 
perpendicular to the direction of 

flow enabling separation based on 
mobility differences.

Pathogenic bacteria, yeast cell 
subpopulations. Human blood cells 

(erythrocyte, platelets, leukocytes), cancer 
cells, neurons from cerebral cortices, 
embryonic stem cells, mesenchymal 
stem cells, hematopoietic stem cells, 

electroporated vs. non-electroporated cells, 
and cells undergoing apoptosis.

Label-free, continuous technology 
that grants high viability and 

bioactivity of the cell product, 
under short process time; 

reduced sample volumes; high 
reproducibility.

Filtration

Cells are captured non-
specifically on the surface of a 

material with controlled porosity 
based on physical properties 

such as cell diameter (volume) 
and aspect ratio. Generally used 

as preparative tool for further 
purification.

Blood cells (leukocytes, erythrocytes), 
hematopoietic stem and progenitor cells, 
adipose-derived stem cells, mesenchymal 

stem cells, circulating tumor cells. 
Bacterial and mammalian (e.g., Chinese 
Hamster Ovary (CHO) cells) cells for 

metabolomics preparation.

High-throughput, simple, and 
scalable technology, which can be 
integrated into a microfluid device 

platform.

Elutriation 
Centrifugation

Cells are separated based on their 
sedimentation velocity.

Blood cells (granulocytes, lymphocytes, 
monocytes, platelets), macrophages, 
Kupffer cells from liver, mast cells, 

hepatocytes, sperm cells (rats and human), 
separation into age-related fractions (yeast, 
erythrocytes, prostate and ovarian cancer 

cells from tumors, and hematopoietic stem 
and progenitor cells.

Rapid processing of large volumes 
of cells featuring a wide range 
of sizes; applicability at low 
temperatures to impede cell 

activation; high recovery and 
viability of the cell product.
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