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Abstract

DYT1 or DYT-TOR1A dystonia is early-onset generalized dystonia caused by a trinucleotide 

deletion of GAG in the TOR1A or DYT1 gene leads to the loss of a glutamic acid residue 

in the resulting torsinA protein. A mouse model with overt dystonia is of unique importance 

to better understand the DYT1 pathophysiology and evaluate preclinical drug efficacy. DYT1 

dystonia is likely a network disorder involving multiple brain regions, particularly the basal 

ganglia. Tor1a conditional knockout in the striatum or cerebral cortex leads to motor deficits, 

suggesting the importance of corticostriatal connection in the pathogenesis of dystonia. Indeed, 

corticostriatal long-term depression impairment has been demonstrated in multiple targeted DYT1 

mouse models. Pappas and colleagues developed a conditional knockout line (Dlx-CKO) that 

inactivated Tor1a in the forebrain and surprisingly displayed overt dystonia. We set out to validate 

whether conditional knockout affecting both cortex and striatum would lead to overt dystonia 

and whether machine learning-based video behavioral analysis could be used to facilitate high 

throughput preclinical drug screening. We generated Dlx-CKO mice and found no overt dystonia 

or motor deficits at 4 months. At 8 months, retesting revealed motor deficits in rotarod, beam 

walking, grip strength, and hyperactivity in the open field; however, no overt dystonia was visually 

discernible or through the machine learning-based video analysis. Consistent with other targeted 

DYT1 mouse models, we observed age-dependent deficits in the beam walking test, which is 

likely a better motor behavioral test for preclinical drug testing but more labor-intensive when 

overt dystonia is absent.
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1. Introduction

Dystonia is the third most common movement disorder behind Parkinson’s disease and 

the tremor, resulting from the abnormal functioning of the brain, with about 250,000 

people afflicted in the United States alone. Of those 250,000, about 16,000 to 24,000 are 

DYT1 dystonia [1]. DYT1 or DYT-TOR1A dystonia is a type of early-onset generalized 

dystonia characterized by sustained or intermittent muscle contractions causing abnormal 

or repetitive movements, postures, or both, most commonly manifesting as abnormal 

flexion in the knee or foot [2]. DYT1 is caused by a heterozygous in-frame trinucleotide 

GAG deletion in the 5th exon of the TOR1A or DYT1 gene that leads to the loss of a 

glutamic acid residue in the resulting torsinA protein [3]. DYT1 dystonia disproportionally 

affects those of Ashkenazi Jewish heritage due to a founder effect [4]. The mechanism 

of how mutant torsinA protein leads to disease manifestation is poorly understood. DYT1 

dystonia is an autosomal dominant disease with reduced penetrance at about 30%, possibly 

modulated by interacting genetic factors [5]. TorsinA is a member of the AAA+ (ATPases 

Associated with diverse cellular Activities) family of proteins [3]. TorsinA level is reduced 

in both fibroblasts derived from DYT1 patients [6] and Tor1a knock-in mouse striatum [7], 

suggesting that partial loss of torsinA contributes to this disorder, ultimately compromising 

the cerebellothalamocortical connectivity [8] and synaptic homeostasis [9], disrupting 

nuclear laminar protein function [6,10], or malfunctioning of interactome or chaperone roles 

[11,12]. There is currently no cure for DYT1 dystonia therefore all treatments are based on 

alleviating symptoms. These often have limited effect due to dose-limiting side effects of 

anticholinergics or are highly invasive, like pallidal deep brain stimulation [13–16].

Historically, dystonia has been attributed to the malfunction of the basal ganglia and its 

connectivity, reviewed extensively [17–19]. However, more evidence has led to a developing 

view of dystonia as a network disorder involving multiple brain regions [20]. New attention 

has recently been paid to the cerebellum’s role in pathogenesis [21–24]. It has also been 

shown that disruption of input from afferent sensory neurons combined with a compromised 

nigrostriatal pathway can lead to dystonia [25]. This supports the shift from the pathogenesis 

of dystonia resulting from abnormal functioning of just the basal ganglia to an integrated 

network disorder, including the compromised connectivity of basal ganglia, cerebellum, and 

cortical motor areas.

Previous work generating tissue-specific conditional deletion and knock-in mice to 

manipulate this network-level connectivity can lead to motor deficits but fail to exhibit overt 

dystonia present in human patients [26–31]. We have demonstrated that Tor1a conditional 

knockout in the striatum or cerebral cortex leads to motor deficits suggesting the importance 

of corticostriatal connection in the pathogenesis of dystonia [27,29]. The striatum, as the 

main component of the basal ganglia, is mainly composed of medium spiny neurons 

and large cholinergic interneurons (LCIs), whose dysregulation plays a critical role in 
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the pathophysiology of DYT1 dystonia [32–45]. LCIs have been observed to have an 

autoregulation mechanism characterized by spontaneous firing patterns affected by intrinsic 

membrane properties rather than synaptic input [46–49]. It has also been observed that 

acetylcholine or muscarine can reduce cholinergic interneuron firing through muscarinic 

M2/M4 receptors [50–52]. Interestingly it has recently been observed that a blockade of M4 

muscarinic receptors on striatal cholinergic interneurons in DYT1 mouse models normalizes 

striatal dopamine release [53]. There is also alleviation of motor deficits in beam walking 

test, rescues in dopamine neurotransmission, and alleviation of reduced corticostriatal LTD 

through administration of anticholinergics like trihexyphenidyl in the knock-in mice that 

collectively suggest altered communication between cholinergic interneurons and medium 

spiny neurons may be involved in motor control abnormalities in targeted DYT1 mouse 

models [54,55].

High throughput identification of potential DYT1 therapeutics has recently vastly improved. 

Screening the ability to normalize protein mislocalization of TorsinA ΔGAG in knockin 

mouse models identified 18 compounds from the NCATS Pharmaceutical Collection, 

including the HIV protease inhibitor ritonavir, as potentially viable therapeutics [56]. 

However, to further examine the effects of these potential therapeutics like ritonavir, labor-

intensive and time-consuming procedures, including validating their effect in animal models, 

remains the most popular choice [57]. Determining the most appropriate quantification 

method for the effect of these treatments on the brain of a dystonic mouse is of paramount 

importance. Behavioral and motor coordination tests as assays are reductionist in nature and 

provide a narrow view into an animal’s pathology and drug effect [58,59], thus typically 

requiring supplementation with other forms of analysis. This data collection is a time 

consuming and error-prone process often prohibitively inefficient in today’s data intense 

world. However, recent advances in machine vision have led to new analysis methods to 

reduce labor and increase accessibility [60–62]. With this understanding, the application of 

machine vision to generate a high throughput preclinical drug screening is of value in both 

increased efficiency and precision. We explored whether the application of DeepLabCut 

(DLC) markerless pose estimation of user-defined body parts with deep learning [62,63] 

could quickly identify overt dystonia symptoms in mouse models for use in high throughput 

preclinical drug screening. We supplemented this investigation with more traditional means 

of assaying motor abnormalities in murine models like accelerated rotarod, beam walking, 

open field and grip strength tests to form a complete picture of the model’s condition and 

compare their ability to discern dystonic symptoms.

In this framework of DYT1 dystonia as a network disease, the Dauer group developed 

a Dlx-CKO mouse that targeted Tor1a in progenitors of forebrain cholinergic neurons 

and GABAergic neurons of the cerebral cortex [41]. This model surprisingly has overt 

dystonia characterized by abnormal twisting-like movements that coincide with selective 

degeneration of dorsal striatal LCIs, and LCI abnormalities in electrophysiology and 

connectivity. Motor deficits in their Dlx-CKO mice were observed through increased limb 

clasping, decreased performance in the grid-hang test, and robust hyperactivity in open field 

analysis. We generated Dlx-CKO mice to characterize any abnormal motor behaviors. We 

set out to investigate whether conditional knockout affecting both cortex and striatum would 

lead to overt dystonia and whether machine learning-based video behavioral analysis could 
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be used to diagnose pose abnormalities; or if not, what is the most appropriate test for 

assaying motor abnormalities in the dystonic mouse.

2. Material and Methods

2.1. Animals

All experiments were approved by the Institutional Animal Care and Use Committee at 

the University of Florida (Protocols: 202110195, 202009761) in accordance with guidelines 

for the care and use of laboratory animals. The mice were housed under the condition 

of 12 h-light and 12 h-dark with ad libitum access to food and water. Dlx5/6Cre 

animals were obtained from Jackson Lab (Tg(dlx6a-Cre)1Mekk/J; stock number 008199,

[64]), and the Tor1aflx as well as the Tor1a− alleles were generated and maintained in 

house as previously described in C57BL/6 background as is recommended for mouse 

behavioral testing [27]. Animals were generated following the breeding scheme Dlx-Cre+/− 

Tor1a+/− × Tor1aflx/flx. The Dlx-cre allele was maintained with Tor1a+/− to avoid potential 

germline recombination. All experiments involving Dlx-CKO animals used littermate 

controls (FloxC and CreC, Fig 1A) to reduce variability further. After it was determined 

that there was no significant difference in motor performance between CreC and FloxC 

animals, they were combined as control mice to be analyzed versus the Dlx-CKO mice. 

The deletion of exons 3 and 4 for Tor1a− was genotyped by primer set tcko (fw: 

5’-CGGCTGAGCTATGCAGAACTA and rev: 5’-CCATAGCTGGACCTGCAATTAAG) 

as previously described [27]. The presence of cre was confirmed via primers fw: 

5’-CAGCTAAACATGCTTCATCGTC and rev:5’-GTTATTCGGATCATCAGCTACACC. 

Tor1aflx sites were confirmed with primers fw:5’-GAGGAGAAAATAGGGGCTCAGTAT 

and rev: 5’-GAAGGTTGAGAAACTGCCTTAGAG.

2.2. Western Blot

For western blot analysis, 2 male and 2 female each of CKO, CreC, and FloxC age-matched 

animals were sacrificed to confirm conditional knockout at four months of age (Fig 1B). 

After animal sacrifice, the striatum was dissected and quickly frozen in liquid nitrogen. 

The striata were homogenized in 200 ml of ice-cold lysis buffer [50mM Tris-Cl (pH 

7.4), 175mM NaCl, 5mM EDTA, Protease inhibitor tablets (Roche Ref: 04693124001)] 

and sonicated for 30 seconds to generate cell lysates. Triton X-100 was added to cell 

lysate to a final concentration of 1%, vortexed, and incubated for 30 min on ice. These 

lysates were centrifuged at 10,000 g for 15 min at 4°C to collect the supernatant. 

Bradford assay was performed using bovine serum albumin as standard to calculate 

protein concentration and subsequently standardized to 1μg/μl for loading. The samples 

were mixed with the SDS-PAGE loading buffer, boiled for 5 min, chilled on ice for 1 

min, and then centrifuged for 5 min to obtain the supernatant. 15 μg of the sample was 

then loaded into 10% Tris-Glycine SDS gels. Separated protein bands were transferred 

to the Millipore Immobilon-FL transfer polyvinylidene difluoride (PVDF) membrane at 

100 V for 1 hour. After blocking, the membrane was incubated overnight at 4°C with 

mouse primary calnexin antibody (MAB3126: Chemicon International) for internal loading 

control and rabbit primary torsinA antibody (Ab34540: Abcam). The membrane was then 

incubated with the anti-mouse and anti-rabbit secondary antibodies (Li-Cor) for an hour 
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at room temperature, blocked from light. Membranes were imaged using Odyssey CLx-

imager to visualize torsinA and calnexin standard control. Following TorsinA imaging, 

membranes were stripped using LI-COR stripping buffer. Membranes were re-incubated 

with antibodies for ChAT (Millipore, AB144P) and VAChT (Millipore, ABN100) and with 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as control (Fig 5). Each protein’s 

molecular weight was estimated by comparing the migration distance of the corresponding 

protein band with the pre-stained protein standard ladder (Bio-rad, #1610373).

2.3. Tail Suspension Test

The tail suspension test was performed to assess abnormal postural behavior at 4 months 

of age. After a 1-hour acclimation period in a sound-attenuated testing room, mice were 

picked up by the tail and suspended in the air for 60 seconds 6 inches above the ground 

and observed for the presence of forelimb and hindlimb clasping as well as trunk clasping 

as described by [41]. Recordings of this were used for the application of DeepLabCut 

Markerless pose estimation software [62], and recordings at 8 months were scored for 

clasping and abnormal movements by 2 independent investigators blinded to genotypes [41]. 

4-month cohort had 31 mice (14 CKO [9 male, 5 female], 9 CreC [6 male, 3 female], 8 

FloxC [6 male, 2 female]) at 135.6 ± 18.4 days old; 8-month cohort had 34 mice (17 CKO 

[12 male, 5 female], 11 CreC [7 male, 4 female], 6 FloxC [5 male, 1 female]) at 257.1 ± 

16.4 days old.

2.4. DeepLabCut

We applied DLC pose estimation software [63] to quantify the overt dystonic phenotype 

present in the tail suspension test recordings in the Dlx-CKO mice compared to their 

control littermates. We trained the network on 620 frames of video recordings of mice 

undergoing tail suspension test at 4 months and 380 frames at 8 months (60 seconds apiece 

at 30 fps with 720x480 resolution on a total of 31 mice at 4 months and 120 fps with 

1920x1080 resolution on a total of 19 mice at 8 months). About 20 representative frames 

were extracted using DLC. A total of 17 body parts were labeled, comprising the hindlimbs 

and tail-base labeled by an investigator blinded to the animal’s genotype. Training of the 

network was done for 50,000 iterations until loss plateaued. Features for K-means cluster 

analysis of the labeled videos were chosen to be those reflective of dystonic phenotypes 

observable in both published work and expectedly present in the Dlx-CKO mice [41,65]: 

mean distance between hindpaws and the tail-base. For k-means analysis we used Python 

(sklearn.cluster.kmeans)[66] to implement K-means with a random seed for initialization. 

We implemented this five times and there was no change in results, and we reported one of 

the random initializations. Additionally, when checking SVM classification, we used Python 

(sklearn.svm) to implement the SVM classifier, with 22 subjects as the training set and the 

remaining as the testing set. We implemented this five times and shuffled the dataset every 

time to get different sets of training and testing. The classifier failed to classify the groups. 

Agreement between clustered videos and true genotype of the animals was used to measure 

the efficiency of the network to identify dystonic phenotype in Dlx-CKO animals, where 

agreement is calculated as = (TP + TN) / (TP + TN + FP + FN), where TP = True Positive, 

TN = True Negative, FP = False Positive, and FN = False Negative. We permute the clusters 

one (control group) and two (Dlx-CKO) optimally to obtain the maximum accuracy.
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2.5. Open Field

The open-field test was performed during the light period, as previously described [35]. 

After a 1-hour acclimation period in a sound-attenuated testing room, each mouse was 

placed in the center of a VersaMax Legacy plexiglass open field apparatus connected 

to a computerized Digiscan System (Accuscan Instruments, Inc. OH) and continuously 

monitored for 30 minutes at 1 min intervals. The 8-month cohort was tested at 262.1 ± 16.4 

days old.

2.6. Accelerated Rotarod

The accelerated rotarod test assesses the ability of mice to maintain balance and 

coordination on an accelerating rotating rod. After a 1 hour acclimation period to a sound-

attenuated testing room, the motor performance of mice was examined with an accelerating 

rotarod (Ugo Basile) as previously described [35]. The apparatus started at an initial speed 

of 4 rpm, and then one mouse was put on a slot before the rod speed was gradually 

accelerated at a rate of 0.2 rpm/s. The latency to fall was measured with a cutoff time of 3 

min at a final rate of 40 rpm. Each mouse tested was placed in the same slot to minimize 

variations. Mice were tested for three trials each day for 2 days. The trials within the same 

day were performed at about 1-hour intervals to allow time for rest. Mice were tested at 

around 4 months (124.6 ± 18.4 days) and 8 months (244.1 ± 16.4 days) of age.

2.7. Beam Walking

The beam walking test assesses the coordination and balance of mice as they traverse beams 

of decreasing width and differing shape. The test was performed after acclimation to a 

sound-attenuated testing room for a 1-hour period as described previously [35]. Initially, the 

mice were trained to traverse a medium square beam (14 mm wide) in three consecutive 

trials each day for 2 days walking from a light source towards a cage containing food. On 

the third day, after training, the mice were tested for two trials on two separate beams, twice 

on a medium square beam and twice on a medium round beam (17 mm diameter). On the 

fourth day, the mice were tested for two trials on two separate beams, twice on a small 

round beam (10 mm diameter) followed by twice on a small square beam (7 mm wide). The 

number of hind paw slips on each side was counted by investigators blind to the genotypes. 

All 4 beams were 100 cm long, and the slips traversing the middle 80 cm were counted. The 

4-month cohort was tested at 130.6 ± 18.4 days old, while the 8-month cohort was tested at 

251.5 ± 16.4 days old.

2.8. Grip Strength

We used a grip strength meter (BIO-GS3, BIOSEB) to assess forelimb and hind limb 

strength. The meter records the force of a metal grate being pulled in grams. After a 1-hour 

acclimation period in a sound-attenuated testing room, mice were measured for the strength 

of both forelimbs and hindlimbs. An investigator blinded to genotype placed each mouse on 

the metal grate until they gripped it, and they were then pulled away by their tail, and their 

strength was recorded. To measure forelimb strength, we loosely held the mice by the skin 

behind their neck and had them hold onto the grate with just their front limbs before pulling 

back and recording their strength. Each measurement was recorded for three separate trials. 
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The maximum of these three trials was used for analysis. The 8-month cohort was tested at 

277.5 ± 16.4 days old.

2.9. Statistics

All data were tested for normality using the SAS statistical package. The beam walking 

data was not normally distributed, and we used generalized estimation equations (SAS 

GENMOD with GEE) with a negative binomial distribution. Two-way interactions between 

genotype and age, weight, and sex were explored first. Once it was clear there was 

no statistical difference between CreC and FloxC controls; they were combined as a 

control group. The rotarod data were analyzed using SAS PHREG and GENMOD with 

GEE procedures where mice remaining on the beam at 180 seconds were censored for 

survival analysis to determine a marginal hazard ratio. When looking at open-field data, 

any measurement of a discrete distribution was analyzed using a negative binomial, while 

any continuous distribution involving time was analyzed using a gamma distribution. The 

grip strength data were not normally distributed. Therefore, GENMOD procedure with 

gamma distribution was used. Tail suspension scoring by independent investigators was 

also analyzed using the GENMOD procedure with gamma distribution. Western blots were 

analyzed using R program glm [67]. A shuffle test was performed to assess DLC’s ability 

to predict genotypes accurately based on the agreement between genotypes ad clusters. 

Labels “Dlx-CKO” and “Control” were randomly reassigned 100,000 times, the agreement 

between the K-means clustering and surrogate assignments was calculated each time, and 

the subsequent distribution of surrogate agreements compared to the true agreement value 

via a 2-way t-test to assess the probability of calculated agreement arising from chance. 

Significance was assigned at p < 0.05.

3. Results

3.1. No motor deficit in accelerated rotarod or beam walking at 4 months

Animals were generated following the breeding scheme Dlx-Cre+/− Tor1a+/− × Tor1aflx/flx, 

with four possible offspring genotypes: Tor1aflx/+ (WT), Tor1aflx/− (Flox control, FloxC), 

Dlx-Cre+/− Tor1aflx/+ (Cre control, CreC), and Dlx-Cre+/− Tor1aflx/− (Dlx-CKO) according 

to expected Mendelian ratios (Fig 1A). The knock-out of striatal torsinA in Dlx-CKO 

mice was confirmed by Western blot (Fig 1B). Dlx-CKO mice were born according to the 

Mendelian ratio (data not shown) and had no overt dystonia in contrast to the previous 

report [41] or at any point up to 4 months of age. Seizures were observed and previously 

reported in some Dlx-CKO mice [68] but were not present in the over 46 Dlx-CKO mice we 

produced. We turned to rotarod and beam walking tests to assess motor deficits. Mice hold 

or stand on the rotarod with 4 paws and the latency to fall, or the amount of time until the 

mice fall off of the rod, is an indicator of total motor performance, with decreased latency 

to fall indicative of motor deficit. At 4 months, the Dlx-CKO did not show any significant 

difference in accelerated rotarod performance (Fig 2A; p=0.88), in agreement with previous 

findings [41]. We further analyzed motor coordination using the beam walking test after 

accelerated rotarod analysis. Neither control nor Dlx-CKO mice slipped enough on either 

the medium square or medium round beam to accurately analyze, but when looking only at 

slips on small round and small square beams, there was no significant difference between 
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control and Dlx-CKO mice (Fig 2C; p=0.61). The mice were given time for recovery, and 

a tail suspension test was done and video recorded. After consultation with the Dauer Lab 

about the lack of overt dystonia visually discernable in our mice compared to their own, we 

turned to the application of DLC markerless pose estimation [62] to attempt to use machine 

vision to reveal some otherwise unobservable difference in animal posture in the 4-month-

old cohort. User-applied markers to hindlimb joints on representative frames were used 

to train a neural network until loss plateau to track markers through recordings. Relative 

positions of these markers over time were used as features in a k-means cluster analysis 

for an unsupervised discovery of clusters distinguishing control mice from Dlx-CKO mice. 

Clustering then based on the average relative distance between left and right hindlimbs 

as well as right hind limb and the tail-base showed only a 51.62% agreement between 

k-means predicted genotypes and true genotypes (Fig 3C). Shuffle test of agreement with 

randomly assigned labels “Dlx-CKO” and “Control” to k-means cluster points shows no 

significance in this agreement to accurately predict genotype (Fig S1A; p=0.99). Similar 

results were obtained using supervised approaches such as Support Vector Machines (SVM). 

These results are not reflective of any reliable use of these markers as a way to distinguish 

between control and Dlx-CKO mice or revealing of any overt dystonia or machine vision 

sensitive pose abnormalities in the model.

3.2. Behavioral testing at 8 months reveals deficits in accelerated rotarod, beam walking, 
forelimb grip strength, and hyperactivity in open field analysis

It is not uncommon for DYT1 mutant animals to develop motor deficits over time [26–28]. 

Because of this, we allowed the animals to age for four more months under observation 

before retesting in behavioral assays at around 8 months. As in the 4-month set of tests, 

the mice were initially tested on the accelerated rotarod. However, contrary to earlier 

4-month findings and previous work in the model, mice had significantly decreased latency 

to fall (Fig 2A; p = 0.0361). The mice were subsequently tested in performance on the 

beam walking test following the same sequence of behavioral testing done at 4 months. A 

significantly increased number of slips was observed in Dlx-CKO mice compared to control 

mice on all beams (Fig 2B; p = 0.0174) and on just small beams (Fig 2C; p = 0.0092), 

indicative of motor deficit in the mice at 8 months. Tail suspension test was then performed 

again, and two independent scorers blinded to animal genotype tracked the duration in 

seconds of “abnormal posturing, clasping or twisting” as defined in previous work on the 

model [41]. No significant difference was observed in the duration of abnormal posturing 

between Dlx-CKO animals and control littermates (Fig 4B; p = 0.733). Following the failure 

to visually discern any presence of overt dystonia, we turned again to DLC using increased 

FPS and resolution in hopes of increasing sensitivity. However, once again, clustering based 

on the average relative distance between left and right hindlimbs vs. distance between right 

hind limb and the tail-base showed only a 52.63% agreement between k-means predicted 

genotypes and true genotypes (Fig 3D). Again, the shuffle test of agreement with randomly 

assigned labels “Dlx-CKO” and “Control” to k-means cluster points shows no significance 

in this agreement to predict genotype (Fig S1B; p=1.0). This contradicts the reported overt 

dystonia in the Dlx-CKO mice [41,69,70]. Following the tail suspension test, an open field 

analysis was performed. In agreement with the highly significant hyperactivity previously 

observed in the model [41], the Dlx-CKO mice were observed to have significantly 
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increased total distance traveled (p = 0.0493), increased total movement time (p = 0.0427), 

and decreased total rest time (p = 0.0401), indicative of hyperactivity in open field testing 

(Table 1). Because previous work in the model observed a significant reduction in grid hang 

testing, we also measured the grip strength in the Dlx-CKO mice. Forelimb grip strength 

was significantly reduced in agreement with previous work on the model (Fig 4A; p = 

0.0028).

3.3. Significant reduction in ChAT and VAChT

The Dlx-CKO mice show significant reductions in LCI number and associated cholinergic 

markers [41]. To check the integrity of the cholinergic system following torsinA knockout, 

we performed Western blot analysis on choline acetyltransferase (ChAT) and vesicular 

acetylcholine transporter (VAChT) in striatum harvested from 12 mice at 4 months. Dlx-

CKO mice were found to have a significant reduction in striatal ChAT [ChAT/GAPDH; CT: 

0.36 ± 0.03; Dlx-CKO: 0.22 ± 0.03; p = 0.0037, Fig 5A, n=6 each] as well as VAChT 

[VAChT /GAPDH; CT: 0.17 ± 0.01; Dlx-CKO: 0.12 ± 0.02; p = 0.0149, Fig 5B, n=6 each], 

ultimately in agreement with previous work in the model.

4. Discussion

In this study, we set out to determine the practicality of using machine vision for high 

throughput preclinical drug screening and whether conditional knockout affecting both 

cortex and striatum would lead to overt dystonia through the use of Dlx-CKO mice, 

previously characterized by the Dauer group and observed to have overt dystonia. However, 

we failed to observe overt dystonia in our Dlx-CKO mice at four and eight months. Like 

most of the targeted DYT1 dystonia mouse models, motor deficits developed at an older age 

and are observable in the motor tests we performed at 8 months.

We did not observe overt dystonia or dystonic-like movements in the Dlx-CKO mice. We 

turned to the use of DeepLabCut marker-less pose estimation. Machine vision with deep 

learning on user-marked body parts offers the potential to reveal differences in posture 

between our control and Dlx-CKO mice with higher sensitivity than could otherwise be 

achieved. Ultimately no differences were found. At the 8-month time point following 

scoring by investigators blinded to genotype, no differences in the duration of abnormal 

movements were observed despite the development of other motor deficits, nor was DLC 

able to detect any overt dystonia. This rendered our initial goal of developing a method 

of high throughput preclinical drug screening based on machine vision pose analysis 

impossible in the absence of pose differences during the tail suspension.

Several differences in our Dlx-CKO mice compared to those produced by the Dauer lab 

could potentially impact the manifestation of overt dystonia. One difference between our 

Dlx-CKO mice and the earlier Dlx-CKO mice generated by the Dauer lab is the location of 

the loxP sites in the Tor1a gene. Cre-mediated recombination removes the 3rd and 4th exons 

in our line, whereas the 3rd to 5th exons are removed in the other line. Additionally, there 

could be differences in the microbiomes of the animals, leading to behavioral differences. 

It has been well established that microbial colonization affects host physiology and can 

lead to differences in motor performance tests [71–74]. Mouse colony maintenance in 
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two different facilities can lead to changes in the animal microbiome that, in turn, affect 

neuronal circuitry and motor performance. Administration of acidified drinking water for 

Pseudomonas control can differentially change a mouse’s microbiome and profoundly affect 

behavioral performance [72,75]. In that same vein, the University of Texas Southwestern 

animal care facility uses chlorinated reverse osmosis (RO) water to control for a biofilm 

in the system that could potentially lead to differences in microbiomes between mice we 

produced given non-chlorinated RO water. It is perhaps a result of these differences in model 

design and animal care that lead to differences in the presence of overt dystonia, as well 

as the presence of seizures in a subset of the Dauer group mice [68], something we do not 

observe in the current study. Additionally, the mice used in this study were of C57BL/6 

background, and while the Dauer group did not specify the background of mice used, it 

has been previously reported that strain specific genetic modifiers can have an effect on 

behavioral phenotype [76]. It is also possible that greater exploration and understanding of 

the differences in the results reported here and those reported by the Dauer group yield 

insight into the mechanisms of penetrance in human DYT1 dystonia.

Dlx-CKO mice performed worse on accelerated rotarod and beam-walking tests, measures 

of fine motor coordination and balance, as is consistently observed in other targeted DYT1 

mouse models [26–28,77–80]. Rotarod and beam walking have been consistently shown 

to be reliable tests of rodent motor coordination [81–83]. They test the animals in slightly 

different ways, one of the more obvious differences being accelerated rotarod tests all 

four limbs while beam walking analysis assays only hindlimb slips. However, it has been 

established in previous studies that a mere 30% receptor occupancy of GABA-A receptors 

by benzodiazepine agonists is sufficient to elicit motor performance deficit in beam walking, 

whereas 70% occupancy was needed in order to observe deficit in accelerated rotarod 

[84]. Beam walking has also been shown to be one of the most appropriate measures of 

preclinical drug effect on dystonia in previous studies [54,85]. This supports the use of beam 

walking as a highly sensitive test for detecting motor deficits in mice.

In addition to beam walking and accelerated rotarod deficits, Dlx-CKO mice also performed 

worse on forelimb grip strength tests at 8 months, consistent with previous work that showed 

an inability to hang from a wire grid, a different measure of grip strength. Additionally, 

mice were observed to be hyperactive in open field analysis, once again in agreement with 

previous findings. These mice were also previously observed to have degeneration of dorsal 

striatal LCIs and reduction of associated cholinergic markers. Western blot analysis of our 

line also finds significantly decreased striatal ChAT and VAChT expression. This implies a 

conserved cholinergic impairment in both Dlx-CKO models coinciding with the observed 

motor deficits, supporting a central role of striatal LCIs in the pathogenesis of DYT1 

dystonia [17,32–45]. However, our Western blot analysis was conducted at four months of 

age before the onset of the motor deficits, suggesting factors other than striatal cholinergic 

impairment might be involved in the development of motor deficits at 8 months we reported 

here.

Finally, we found Dlx-CKO mice in our hand did not display overt dystonia observable 

by the naked eye or visible with a machine learning aid. Instead, they have age-dependent 

motor deficits consistent with other targeted DYT1 models that are observable through 
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motor coordination tests that likely remain the most appropriate test in preclinical drug 

screening for DYT1 dystonia in mouse models that lack overt dystonia, but are more 

labor-intensive.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

1. Lack of overt dystonia and seizure in Dlx-CKO mice made from another 

floxed line.

2. Negative finding of DeepLabCuts markerless pose estimation applied to Dlx-

CKO mice

3. Age-dependent deficit in beam walking, rotarod, grip strength and open field 

tests

4. Impaired striatal cholinergic system in Dlx-CKO mice like earlier findings.

5. Affirms beam walking for preclinical screening in the absence of overt 

dystonia.
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Fig. 1. 
Breeding design and torsinA protein measurement. (A) Schematic diagram of the generation 

of Dlx-CKO mice. Dlx-Cre+/− Tor1a+/− crossed with Tor1aflx/flx, with four possible 

offspring genotypes: Dlx-Cre+/− Tor1aflx/− (Dlx-CKO), Dlx-Cre+/− Tor1aflx/+ (CreC), 

Tor1aflx/− (FloxC), and Tor1aflx/+ (WT- not used). (B) Western blot of CreC (lanes 1 and 

4), FloxC (lanes 2 and 5), and Dlx-CKO (lanes 3 and 6) demonstrating successful striatal 

torsinA knockout at 4-month-old mice.
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Fig. 2. 
Paired 4-month and 8-month behavioral tests. (A) The accelerated rotarod test showed no 

difference between Dlx-CKO mice and control mice at 4 months, but latency to fall was 

significantly decreased in Dlx-CKO mice compared to control at 8 months. The 4-month 

cohort had 31 mice (14 CKO, 17 Control); 8-month cohort had 34 mice (17 CKO, 17 

Control). (B) There were not enough slips among all experimental mice to determine the 

difference in slip number across all beams at 4 months. However, Dlx-CKO mice showed 

a significant increase in slip number across all beams at 8 months. (C) No difference was 

found between Dlx-CKO and control mouse slip number at 4 months on the small round and 

small square beams. However, at 8 months, Dlx-CKO mice showed a significantly increased 

number of slips. Bars represent mean ± standard error. *p<0.05, **p<0.01.
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Fig. 3. 
DeepLabCut application to determine motor phenotype. Application of body markers to 

major hindlimb joints (A - control left, Dlx-CKO right) and corresponding trajectory maps 

of markers throughout the video (B - control left, Dlx-CKO right). (C) 4-month and (D) 

8-month K-means cluster analysis (bottom) and true genotypes of animals (top) plotted 

according to average relative distance in pixels between right hind paw vs. left hind paw 

(x-axis) and average relative distance in pixels between right hind paw and tail-base (y-axis). 

52% agreement at 4 months and 53% agreement at 8 months were observed. 4-month cohort 

had 31 mice (14 CKO, 17 Control); 8-month cohort had 34 mice (17 CKO, 17 Control).
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Fig. 4. 
Grip Strength and Tail Suspension at 8 months - 34 mice (17 CKO, 17 Control). (A) No 

difference was found between the control and Dlx-CKO total grip strength; however, Dlx-

CKO mice were found to have significantly reduced forelimb grip strength. (B) Duration 

of abnormal postures was scored through tail suspension recordings by two investigators 

blinded to genotype. No significant difference between Dlx-CKO mice and the control was 

observed. Bars represent mean ± standard error. *p<0.05.
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Fig. 5. 
Representative images of Western blots of ChAT and VAChT and GAPDH controls. The 

quantified protein bands were standardized to GAPDH intensity. Significant reductions in 

ChAT (A) and VAChT(B) protein levels were found in Dlx-CKO 4-month-old mice. Bars 

represent mean ± standard error. *p<0.05.

Berryman et al. Page 22

Behav Brain Res. Author manuscript; available in PMC 2024 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Berryman et al. Page 23

Table 1.

Open field test of Dlx-CKO mice

Open Field Parameter Control Dlx-CKO p value

Total Distance (cm) 2117.11±232.36 2805.85±309.72 0.0493*

Horizonal Activity 4513.31±361.86 504.33±407.73 0.3276

Number of Movements 246.33±18.63 268.49±20.53 0.3844

Movement Time (s) 227.21±21.65 292.17±27.86 0.0427*

Rest Time (s) 1569.53±28.59 1493.85±27.41 0.0401*

Vertical Activity 219.89±35.29 217.34±36.07 0.9563

Number of Vertical Movements 87.76±12.48 91.81±13.50 0.8111

Vertical Time (s) 79.826±13.86 71.22±12.59 0.6163

Sterotypy Counts 2235.58±210.64 2500.30±239.26 0.3667

Number of Sterotypy 240.58±8.92 245.45±9.17 0.6815

Sterotypy Time (s) 265.77±20.05 269.50±19.36 0.8937

Clockwise Revolutions 6.65±1.27 8.86±1.63 0.2367

Counterclockwise Revolutions 7.44±1.02 9.13±1.20 0.2288

Center Distance (cm) 507.48±97.37 704.39±137.61 0.1908

Center Time (s) 185.53±31.76 239.56±44.10 0.2635

Rearing Activity 218.66±35.03 216.82±35.90 0.9683

Number of Rearing Movements 87.86±12.50 91.89±13.52 0.8120

Rearing time (s) 79.62±13.81 71.08±12.56 0.6179
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