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Abstract

Lytic polysaccharide monooxygenases have received significant attention as catalytic 

convertors of biomass to biofuel. Recent studies suggest that its peroxygenase 

activity (i.e., using H2O2 as an oxidant) is more important than its monooxygenase 

functionality. Here, we describe new insights into peroxygenase activity, with a copper(I) 

complex reacting with H2O2 leading to site-specific ligand–substrate C−H hydroxylation. 

CuI TMG3tren +(1) (TMG3tren = 1, 1, 1 − Tris 2 − [N2 − (1, 1, 3, 3 − tetramethylguanidino ]ethyl amine) 

and a dry source of hydrogen peroxide, o − Tol3P = O ⋅ H2O2 2 react in the stoichiometry, 

CuI TMG3tren + + H2O2 CuI TMG3tren‐OH + + H2O, wherein a ligand N-methyl group 

undergoes hydroxylation giving TMG3tren‐OH. Furthermore, Fenton-type chemistry 

(CuI + H2O2 CuII − OH + ⋅ OH) is displayed, in which (i) a Cu(II) − OH, ( ⋅ OH) complex could 

be detected during the reaction and it could be separately isolated and characterized 

crystallographically and (ii) hydroxyl radical (⋅OH) scavengers either quenched the ligand 

hydroxylation reaction and/or (iii) captured the ⋅OH produced.

Graphical Abstract

INTRODUCTION

Oxidative degradation of biomass such as chitin and cellulose is known1 to be carried out 

by bacterial and fungal lytic polysaccharide monooxygenases (LPMOs) which comprise 

a component of the carbohydrate active enzymes (CAZy) family.2,3 These mononuclear 

copper enzymes enable active-site chemistry in the oxidation of recalcitrant polysaccharide 

C1 and/or C4 C−H bonds (see the diagram in the SI4) possessing bond dissociation energies 

of ~101−104 kcal/mol.5 Thus, there is considerable potential to generate biofuels in a 

sustainable manner, by utilizing LPMOs to break down plentiful biomass materials.1c,2c

Earlier studies revealed a classical monooxygenase activity for LPMOs (Scheme 1a)1c,2a,6 

which possess a mononuclear Cu active site with a tridentate T-shaped coordination, 

having protein-derived ligation from 2 His residue imidazole N’s plus a primary amine 
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−NH2  derived from the N-terminal His; the latter comprises a chelate, referred to as the 

“His brace”.1b,3b,7 In a monooxygenase reaction cycle,8 a cupric-superoxide CuII O2
⋅ −

species could form via initial O2-interaction with a copper(I) center.2b,8b,9 This could 

directly do HAA or, following electron and/or proton transfers would lead to a CuII-
(hydro)peroxide entity that is further transformed into the key species which would affect 

the difficult hydrogen-atom abstraction (HAA) reaction (e.g., a copper(II)-oxyl CuII − O ⋅

species).1d,3a,8b,10

However, in fact, recent biochemical−biophysical studies10i,11 detail that LPMOs also 

are widely functional as peroxygenases and that H2O2 is faster reacting with reduced 

copper(I) LPMOs than is molecular oxygen. The peroxygenase biochemistry (Scheme 1b) 

is found to lead to observable protein damage resulting in lower product yields and loss 

of reaction selectivity in comparison to the O2-mediated monooxygenase reactivity. Also, 

computational studies support the viability of LPMO peroxygenase activity.10h,12 Scheme 

1c provides mechanistic pathways which have been proposed or can be considered, for 

the enzyme ligand−copper(I) ion/H2O2 chemistry leading to substrate hydroxylation. The 

likely reactive species capable of HAA for these difficult substrates are (i) a hydroxyl 

radical (⋅OH) produced by copper Fenton chemistry, CuI + H2O2 CuII − OH + ⋅ OH  (and 

see below),13 (ii) a CuII − O ⋅ · species which may be directly generated from a CuI + H2O2

reaction with release of H2O2; a related route, that has been suggested, could be if the ⋅OH
moiety produced in the Fenton-like reaction, abstracts an H-atom from the CuII-hydroxide 

moiety, CuII − OH + ⋅ OH CuII − O ⋅ + H2O (Scheme 1c)8b,12,14 and (iii) a high-valent 

Cu(III) species,15 possibly a CuIII(OH)2 complex (not shown in Scheme 1) derived from 

direct homolytic cleavage of H2O2 in its interaction with CuI. The reactive species CuIII(OH)2

would affect substrate C−H bond HAA, with one hydroxide bound to copper accepting the 

proton and then producing H2O, leaving behind a CuII-hydroxide species and the substrate 

carbon radical (R⋅); rebound,16 CuII − OH + R ⋅ CuI + R − OH, would complete a catalytic 

cycle.

Several recent biochemical studies10i,17 on the CuI/H2O2 enzyme reaction reveal generation 

of protein radicals, via one-electron oxidation of a Tyr and Trp residue near the active 

site. Solomon and co-workers10i could demonstrate direct CuII hydroxide formation 

concomitant with protein radical formation, potentially derived from the ⋅OH generated and 

subsequent reactivity. These observations suggest that scenarios (i) or (ii) (see above) may 

apply, wherein a copper-mediated Fenton reaction initially occurs in LPMOs. Supporting 

computational results have been published.10h,12

In the Fenton reaction (with FeII or CuI),13a–c,18 the particular situation present (e.g., pH in 

aqueous media, ligand identity) dictates whether ⋅OH or a high-valent metal-oxo complex 

forms (e.g., FeIV = O);19 under physiological conditions, carbonate radical anion (CO3 ⋅ − ) 

is present, rather than ⋅OH.13a–c It is well known that iron- or copper ion-mediated Fenton 

chemistry effect biological substrate metal‐ion/H2O2 oxidative damage to peptides or nucleic 
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acids, where ⋅OH may be generated and react in a site-specific (or localized) manner,20 

including possibly in LPMOs.12 Hydrogen peroxide (or −OOH) can reduce copper(II) 

complexes,10d,21,22 yielding cuprous ions left to react with any excess H2O2 present, leading 

to Fenton chemistry. Furthermore, a recent report indicates conditions where H2O2 reduction 

of copper(II) coordination complexes is observed; this can occur in situations where the 

ligand which is binding to the metal ion strongly favors copper(I) (e.g., 2,9-dimethyl-1,10-

phenanthroline vs 1,10-phenanthroline), and ⋅OH is formed if water is present.23

More broadly, it has been recently suggested that nature may control metal-ion active site 

oxidative chemistries by utilizing the Fenton reaction in a “constructive manner”.24 It should 

also be noted that the hydroxyl radical may be generated by photolysis of water at metal/

alloy surfaces (or even at the water−gas surface of water microdroplet)25 and in a controlled 

manner be utilized for organic oxidations including conversion of methane to methanol,26 

removal of contaminants in water purification,27 and chemistry applied to bleaching;28 it 

may even be applied to cancer therapies.29

Here, we illuminate details concerning a chemical system involving a copper-coordination 

complex, where an LPMO-type peroxygenase reaction is found to occur. Complex 

CuI TMG3tren +(1) reacts with “dry” H2O2,30 according to Scheme 2, where stoichiometric 

hydroxylation (i.e., formal insertion of an ‘O’-atom) of one of the twelve (12) outer ligand 

methyl groups occurs:

CuI TMG3tren + + H2O2

CuI TMG3tren‐OH + + H2O

This is a peroxygenase reaction; as CuI is left as a final product, a potentially catalytic 

system is established. As described in this report, our conclusion is that this peroxygenase 

reaction proceeds via Fenton-type chemistry with copper. Among the experimental 

observations supporting our supposition, are that a CuII-hydroxide intermediate could be 

detected (see below) and that an ⋅OH reactive species (or an equivalent) could be quenched 

and/or captured.

RESULTS AND DISCUSSION

CuI TMG3tren +(1) (Scheme 2) possesses a tripodal tetradentate N4 ligand with strong 

(highly basic) alkylamine donor groups, thus having some similarity to the nitrogenous 

ligand environment found at the LPMO Cu-active sites. Complex 1 is known to reversibly 

bind molecular oxygen giving CuII TMG3tren O2
⋅ − +

,31 and it was previously observed that 

under specific oxidizing conditions, an alkoxide−copper(II) complex CuII TMG3trenO− +(2)

could be isolated and structurally (X-ray) characterized (Figure 1a);32 this observation 

suggested that a ligand methyl group had undergone hydroxylation.
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The experimental observations in that study led to our suggestions that the 

most likely reactive species which effected the ligand hydroxylation was a 

CuII-hydroperoxide, generated (i) directly from CuII TMG3tren 2 + + H2O2(aq) + base, or 

(ii) by 1-hydroxy-2,2,6,6-tetramethyl-piperidine (TEMPO‐H) reductive protonation of the 

superoxide complex CuII TMG3tren O2
⋅ − +

, or (iii) by reduction of CuII TMG3tren 2 +

and/or CuII TMG3tren O2
⋅ − +

 effected by phenols which were added. We also speculated 

that a CuII( − OOH) could undergo O−O cleavage leading to product, via a CuII − O ⋅
species, since the reaction of (1) with PhIO also yielded the hydroxylated ligand alkoxide 

CuII TMG3trenO− +
. However, as discussed and referenced above (Introduction), ligand-

copper(II) complexes can be reduced with hydrogen peroxide, and we have ourselves 

observed such reactivity which appeared to lead to CuI/H2O2 Fenton chemistry.10d Could 

reduction of copper(II) to copper(I) in the presence of hydrogen peroxide be involved in that 

2008 study?

Thus, we thought to take advantage of this chemical system and explore new chemistry 

with 1 where we employ Fenton chemistry conditions that might relate to the peroxygenase 

chemistry in LPMOs, as described in the Introduction. Would addition of hydrogen peroxide 

to the cuprous complex lead to ligand methyl group hydroxylation and if so, could 

mechanistic aspects be investigated?

Here, in testing CuI/H2O2 reactivity, the alkoxide-copper(II) complex 2 was indeed formed 

in the reaction of 1 with three equiv dry H2O2 (via use of 1.5 equiv o − Tol3P = O ⋅ H2O2 2)
33 

in 2-methyltetrahydrofuran (MeTHF) at −70 °C (Scheme 3). A dry solid material source 

of H2O2 allows for careful stoichometric additions as well as use of organic solvents and 

cryogenic reaction conditions. Observed in the 1/H2O2 reaction was a change from colorless 

to the green compound 2 λmax ε, M−1cm−1 :420(500), 875(270)nm  (Figure 1b). A frozen 

solution EPR spectrum of the reaction solution (Figure 1c) showed, as previously observed, 

for CuII TMG3trenO− +(2),34 a reverse axial signal typical of Cu(II) in a trigonal bipyramidal 

environment. As was determined previously using ESI-MS,32 we here also confirmed the 

formation of alkoxide complex CuII TMG3trenO− +(2) employing cold spray ionization 

mass spectrometry (CSI‐MS); 2 is characterized by a peak at m/z 5 18 . 3 (calcd m/z 5 18 . 3; 

Figure 1d).

Time resolution of the reaction was achieved by quickly injecting o−Tol3PO ⋅ H2O2 2 into a 

−70 °C solution of 1 into the prechilled CSI‐MS instrument.4 The mass spectra clearly show 

peaks due to CuII TMG3tren (OH) +
 (m/z = 520 . 3) at 10 and 54 s. This diminishes as an 

increasing amount of CuII TMG3trenO− +
 (m/z = 518 . 3) forms; the final product alkoxide 

builds up as the CuII-hydroxide intermediate disappears. Since we have not quantitatively 

determined instrument response factors for the hydroxide vs alkoxide complexes, strictly 

speaking we can only say that the hydroxide complex (3) forms first. At 120 s, the CSI‐MS
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signal is essentially pure CuII-alkoxide 2; the m/z 520 peak is exactly the intensity expected 

and observed for authentic 2,4 possessing a normal isotope distribution pattern (the effect 

of 63Cu/65Cu isotope abundance). In fact, we show stronger and clearer evidence for initial 

formation of CuII TMG3tren − (OH) +
 (3) in other experiments, see below.

At this stage of experiments, the above results suggest:

CuI TMG3tren +(1) + H2O2

CuII TMG3tren (OH) +(3) + ⋅ OH
(1)

one of the reaction sequences described above and indicated in Scheme 1, essentially 

the classical Fenton reaction (with copper(I)). Independently, we could generate copper(II)

−hydroxo complex CuII TMG3tren (OH) +(3)4 and characterize experimentally its structure 

via single-crystal X-ray crystallography (Figure 2).4 Unlike the alkoxide complex 

CuII TMG3trenO− +(2), no prominent charge-transfer band is apparent for 3;4 however, it 

does display a reverse-axial EPR spectrum (g⊥ = 2 . 22 (A⊥ = 70 G) and g∥ = 1 . 99 (A∥ = 85 G)) 

and a prominent parent ion peak at m/z of 520.3 in CSI‐MS.4

If the reaction in eq 1 occurs, or even if the products of 1 + H2O2 are CuII − O ⋅ + H2O  or 

CuIII(OH)2 (see above), the ⋅OH (formally) would attack one of the ligand methyl groups 

in order to proceed to the alkoxide product, 2. We now present experiments whose results 

suggest that this is likely the case. When excess CuI TMG3tren +(1) is reacted with the H2O2

reagent, CuI TMG3tren +(1)/H2O2 = 5:1 (via use of 0.1 equiv o − Tol3P = O ⋅ H2O2 2), we see 

from Figure 3a that these reaction conditions do not lead to the observation of the 420 nm 

UV − vis band associated with alkoxide CuII TMG3trenO− +(2) (i.e., that shown in Figure 

1b). This reaction of excess 1 with H2O2, conditions such that only one (1) equiv H2O2 would 

react with one molecule of 1, reveals that essentially no Cu II  is produced; we observe 

only ~5% of expected EPR signal intensity which would be due to the presence of a full 

equivalent of Cu II  complex (Figure 3b).35

Thus, these results, for reaction conditions where CuI TMG3tren +(1)/H2O2 = 5:1, reveal that:

5 CuI TMG3tren + + 1 H2O2

4 CuI TMG3tren + + 1 CuI TMG3tren − OH +

+1 H2O

i.e., the oxygenation (by H2O2) of the CuI-bound TMG3tren ligand in CuI TMG3tren +(1), to 

give hydroxylated ligand TMG3tren‐OH as a copper(I) complex (following rebound; see also, 

below), occurs via a peroxygenase stoichiometry, the reaction described in Scheme 2.
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However, to further confirm these conclusions, it is required that we show that ligand 

hydroxylation has occurred, i.e., CuI TMG3tren‐OH +
 is a product. This is, in fact, the case. 

For the CuI TMG3tren +(1)/H2O2 = 5:1 reaction, the product mixture was quenched at −70 

°C with 2,6-dimethyl phenyl isocyanide (DIMPI, as a strong copper(I) specific ligand), the 

solvent was removed, and the reaction mixture was warmed to RT and then extracted with 

KCN/CD3NO2.4 MALDI‐TOF MS analysis shows that the most intense peak present is due 

to unreacted ligand TMG3tren (Figure 3c: m/z 441 . 3, TMG3tren + H+  (calcd m/z 441 . 3)) 

which was present in excess. The other major product is one where the methyl group of 

one ligand has been converted to a −CH2OH TMG3tren‐OH) functionality and in amounts 

closely correlating with the quantity of H2O2 added, m/z 479 . 2, TMG3tren‐OH + Na+

(calcd m/z 479.3; Figure 3c). The TMG3tren‐OH peak has very close to 1/4 of the intensity 

as the peak due to unhydroxylated ligand, TMG3tren. Thus the reaction yields are very high, 

appearing to be nearly quantitative since with the limited amount of H2O2 present, only one 

out of 5 mole-equiv of CuI TMG3tren +(1) can undergo conversion to TMG3tren‐OH.

Additional CSI‐MS based experiments with these reaction conditions where 

CuI TMG3tren +(1)/H2O2 = 5:1 provide very strong evidence for the Scheme 2 sequence 

of reactions, i.e., that CuII TMG3tren (OH) +(3) is the initially formed species (as an 

intermediate). By contrast to the reaction conditions with excess hydrogen peroxide, i.e., 

the data shown in Figure 1, here CuII TMG3tren (OH) +(3) (m/z = 520 . 3) is formed in a 

highly persistent manner (Figure 3d), lasting for many minutes prior to the start to observing 

alkoxide CuII TMG3trenO− +(2) formation (m/z = 518 . 3; Figure 3d, from 7 min after sample 

injection, on). It should be emphasized that formation of hydroxide complex 3 implies that 

the hydroxyl radical must be forming concomitantly (also see Scheme 2).

Experimental observations that further support our characterization of this peroxygenase 

system (Scheme 2) are:

1. The TMG3tren ligand has been hydroxylated prior to formation of the final 

CuII-alkoxide complex, supporting the reaction as given by eq 1 (vide 

supra). When the CuI TMG3tren +(1)/H2O2 = 1:3 is quenched prior to alkoxide 

CuII TMG3trenO− +(2) formation (based on following UV−vis changes up to 

where the 420 nm absorption just starts to be observable), a similar workup and 

analysis of organics reveal that high yields (>95%) of TMG3tren‐OH are obtained. 

The prominent ion peak at m/z of 457.2 is assigned to TMG3tren‐OH + H+

(calcd m/z 457 . 3; Figure 4a). Only a trace peak for the starting initial 

unhydroxylated ligand, TMG3tren (m/z 441 . 3), is observed in the MALDI‐TOF MS
spectrum (Figure 4a).
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2. With the excess dry H2O2 added, we observed additional products of ligand 

oxygenation, including the overoxidized aldehyde product. Following workup 

of the reaction mixture containing CuII TMG3trenO− +(2) and utilizing the 

DIMPI procedure to remove copper ions (vide supra), mass spectrometric 

analysis of the organics present reveals that together with a small amount 

of un-oxidized/oxygenated TMG3tren, several ligand oxidized types are 

present (Figure 4). They are (i) the ligand hydroxylated alcohol L‐OH
TMG3tren − CH3 N − CH2OH + Na+  (m/z 479 . 2, calcd m/z 479 . 3; Figure 4b), 

(ii) the N−H species arising from TMG3tren‐ CH3 N − CH2OH N-dealkylation, 

L‐NH, TMG3tren − CH3 N − H + K+  (m/z 465 . 2, calcd m/z 465 . 3; Figure 4b), 

(released formaldehyde is observed),4 and (iii) a small amount of overoxidized 

aldehyde species L‐CHO TMG3tren‐ CH3 N − C O H + K+  (m/z 493.2, calcd 

m/z 493 . 3; Figure 4b).

To provide still further evidence for this Fenton-like chemistry, we sought to identify 

the presence of ⋅OH (or its equivalent) by employing trapping reagents and/or external 

substrates which have C−H/O − H bonds (Scheme 4). Inclusion of ten (10) equiv 2,4,6-tri-

t-butylphenoxyl radical (TtBuArO ⋅ ) with solutions of CuI TMG3tren +(1) prior to addition of 

H2O2 1/H2O2 = 5:1  quells the peroxygenase type ligand hydroxylation chemistry (Scheme 2); 

little or no alkoxide complex 2 is formed (UV−vis criterion). We deduce that ⋅OH produced 

by the 1/H2O2 reaction reacts with excess TtBuArO ⋅ present, and elimination of isobutylene 

(formed in 59% yield) as well as additional documented phenolic chemistry36 gives 2,6,-di-

t-butyl-1,4-hydroquinone (as explained in the SI), which is detected in GC−MS as 2,6-ditert-
butyl-1,4-benzoquinone formed in 20% yield based on copper (so effectively ~100%).4 This 

implies capture of “⋅OH” in near quantitative yields. However, addition of only two equiv. 

TtBuArO ⋅ gave only an ~25% yield of the benzoquinone; the efficiency of trapping goes up 

as the quantity of added trapping agent is increased. Related experiments with excess H2O2

and monitored by EPR spectroscopy are also consistent with our conclusions (Figure S5).4

For an experiment where 10 equiv trityl radical were added (as Gomberg’s dimer) (Scheme 

4), again no alkoxide complex 2 formed (UV−vis criterion). Here, the ⋅OH released from 

the copper complex (1)/H2O2 reaction would be trapped by the trityl radical to directly 

form triphenylcarbinol; this was generated in 18% yield. As was mentioned above, due to 

the stoichiometry of this reaction, this 18% yield is very high, as 20% is the theoretical 

maximum. Again, when only a limited amount of added Gomberg’s dimer is used (2 equiv), 

the trapping efficiency is only 3% based on the amount of copper and the stoichiometry of 

reaction employed 1/H2O2 = 5:1 . Excess amounts of added 2,6-di-t-butyl-4-methoxyphenol 

or xanthene were also observed to “capture” the ⋅OH generated in reactions of 1 with 

H2O2 (Scheme 4), through HAA to produce 2,6-di-t-butyl-4-methoxy phenoxyl radical 

and xanthone, respectively.4 See Table S3 for details/yields for the trapping/quenching 

experiments.
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It is interesting to survey a number of recently published LPMO biomimetic studies.22,37 

In those reports involving ligand−copper(II) complex reactions with added hydrogen 

peroxide and an oxidizable substrate, Simaan and Hitomi,37a Kaizer,22 Itoh,37b Castillo,37c,d 

Cowan,37e and their co-workers have utilized mono- or poly-nuclear CuII-complexes, some 

with a His-Brace like ligand. Added H2O2 (aq) likely leads to CuII‐OOH moiety and to 

oxidation of ligands (e.g., ACC oxidase substrate analogs) or exogenous glucose derivatives 

(e.g., as polysaccharides or surrogates). However, neither a specific O2 reduced-derivative 

(e.g., ⋅OH) nor a metal-based strong oxidant (e.g., a CuII‐oxyl) has been yet identified. 

It is notable, however, that Simaan and Hitomi,37a and Kaizer22 provide evidence that 

excess H2O2 at some stage effects cupric ion reduction (via Cu−O heterolytic cleavage of 

the presumed CuII − OOH moiety)10c,10,21b and the real oxidant species is something like 

“CuI − OOH.” This latter hypothesis points to Fenton-like reactivity.

Based on these experimental results, we can establish plausible reaction pathways for 

the CuI TMG3tren +(1) and dry H2O2 reaction which leads to C−H activation in an 

overall peroxygenase reaction, shown in Scheme 5 for the differing stoichiometries tested 

experimentally. The most likely initial reaction is formation of a CuII-hydroxide complex (3) 

plus a ⋅OH species. The latter reactive entity performs HAA from a ligand methyl group, 

producing water and a ligand carbon radical; subsequent rebound from the CuII-hydroxide 

gives CuI TMG3tren‐OH .38 This reaction mechanism was evaluated and is further supported, 

by density functional theory (DFT) calculations on the full complex and its reaction with 

H2O2.

Figure 5 shows the calculated reaction coordinate based on the proposed mechanism in 

Scheme 5, top (see the SI for computational details). In the initial structure (Figure 5, 

0), the H2O2 associates with the complex through van der Waals interactions but does not 

bind directly to the Cu (Cu−O distance: 3.27 Å). The reaction proceeds through homolytic 

cleavage of the H2O2 forming a CuII − OH and ⋅OH that is 14.9 kcal/mol downhill in ΔG
(Figure 5, 2) through a low barrier of ΔG‡ = 3 . 0 kcal/mol (Figure 5, 1). Immediately after 

homolytic cleavage, the resulting ⋅OH (Figure 5, 2a) is not properly oriented to abstract an 

H atom from the ligand methyl group and must reorient to the proper conformation (Figure 

5, 2b) to perform HAA from the C−H bond. This rearrangement involves a small increase 

in the O⋯O distance (2.25 Å in 2a to 2.56 Å in 2b) and a rotation of the ⋅OH fragment; 

this proceeds through a low barrier of 0.9 kcal/mol (Figure 5, 2a–2b). From 2b, the ⋅OH
performs HAA from the ligand methyl C−H bond with almost no barrier, ΔG‡ = 0 . 35kcal/mol
(Figure 5, 3), producing a water molecule and the ligand methyl radical. This HAA step is 

further downhill by 23.1 kcal/ mol in ΔG (Figure 5, 4). Finally, the methyl radical rebound 

occurs with the highest barrier in this process, ΔG† = 7 . 0kcal/mol (Figure 5, 5), due to 

the significant steric reorganization of the complex to reach this transition state. The CuI

hydroxylated ligand complex product 6 (i.e., CuI TMG3tren‐OH)) is 28.1 kcal/mol downhill 

from the previous step and 66.5 kcal/mol downhill from the starting structure. Each step 

in the proposed mechanism is thermodynamically favorable, with very low barriers for 
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O−O cleavage and HAA, and a reasonable, limiting barrier for the rebound hydroxylation. 

Furthermore, the ⋅OH reorientation to a conformation conducive to HAA from the ligand 

would result in a finite lifetime for the CuII − OH and ⋅OH, consistent with the observation of 

species 3 by ESI‐MS (Figures 2 and 3) and the radical trapping results. Thus, the calculations 

in Figure 5 show that the proposed mechanism in Scheme 5 is thermodynamically and 

kinetically feasible, and consistent with the experimental results presented above.

Scheme 2 and the upper part of Scheme 5 represent a first round of a peroxygenase catalytic 

cycle, as Cu(I) is regenerated and can accept a new substrate (here, a new unhydroxylated 

ligand). However, when excess H2O2 is present (Scheme 5, bottom), CuI TMG3tren‐OH +

is oxidized by hydrogen peroxide to a cupric form, subsequently leading to TMG3tren‐OH

deprotonation and formation of alkoxide CuII TMG3trenO− +(2). N-Dealkylation can 

otherwise occur (vide supra), producing formaldehyde plus a CuII TMG3tren‐ CH3 N − H
species, as we observe experimentally.

CONCLUSIONS

In this study, we have provided considerable new insights into site-specific Fenton-

type peroxygenase chemistry, quite likely relevant to LPMOs39 and perhaps also to 

copper-dependent p-methane monooxygenases (pMMOs).24,40 Using a synthetic analog 

CuI TMG3tren +(1), CuI/H2O2 reactions occur. Our experimental results indicate that this 

leads to a cupric-hydroxide plus hydroxyl radical as suggested in the study on a 

LPMO by Solomon and co-workers;10i subsequent N-methyl group hydroxylation occurs 

leaving behind CuI. The generation of a ⋅OH intermediate (or possibly a CuIII(OH)2 or 

CuII − O ⋅ species) was demonstrated via capture or quenching with radical scavengers 

or external substrates. The proposed reaction mechanism is further determined to be 

thermodynamically and kinetically feasible by DFT reaction coordinate calculations. The 

overall reaction, CuI TMG3tren + + H2O2 CuI TMG3tren‐OH +
 +H2O , is consistent with 

LPMO peroxygenase catalytic behavior. This study provides a fresh perspective on Fenton-

like copper chemistry and previously proposed mechanisms and nature of key intermediates 

in peroxygenase reactivity, including LPMOs.
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Figure 1. 

(a) ChemDraw representation of CuII TMG3trenO− +(2) based on its crystallographic 

determination.32 (b) UV−vis spectral changes (over 1 h) when CuI TMG3tren +(1) reacts 

with three equiv H2O2 in MeTHF at −70 °C. (c) X-band EPR spectrum (red) {g⊥ = 2 . 27
(A ⊥ = 82 G) and g = 1 . 99 (A = 82 G)} and simulation (black) of complex 2 in frozen 

MeTHF at 20 K. (d) Time-resolution of CSI‐MS spectrum for the formation of 2 upon 

addition of 3 equiv H2O2 to a solution of 1 at −70 °C, 10 s (red) after injection, then at 54 s 

(green), and finally at 120 s (black), which is identified as pure alkoxide complex 2.
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Figure 2. 
Displacement ellipsoid plot (30% probability level) of one of the two crystallographically 

independent CuII TMG3tren (OH) +
 cations (3) at 110(2) K. Hydrogen atoms and lattice 

solvent molecules are omitted for clarity except for a hydrogen atom on the hydroxo ligand. 

The hydroxo O-atom is H-bonded to two partially occupied crystal lattice water molecules 

(not shown); O1A⋯O1W (H-bonding) = 2.771 Å (gray, C; white, H; blue, N; red, O; green, 

Cu).
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Figure 3. 
(a) UV−vis spectral changes of 1 with 0.2 equiv H2O2 in MeTHF at −70 °C. (b) X-band 

EPR spectrum of authentic complex 2 (red) and the product solution obtained with 0.2 

equiv H2O2 added to 1 (blue) in frozen MeTHF at 20 K. (c) Matrix-assisted laser desorption/

ionization-time-of-flight mass spectrometry (MALDI-TOF MS) spectrum; the reaction of 

excess 1 and H2O2 after metal ions were removed by treatment with DIMPI and KCN/CD3CN. 

(d) CSI-MS spectra for the reaction of 1 and 0.2 equiv H2O2 in MeTHF at −70 °C. The times 

indicated in the various panels indicate the number of seconds or minutes following sample 

injection. Also, see the text.
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Figure 4. 
MALDI‐TOF MS spectrum; metal ions removed by treatment with DIMPI and KCN/CD3CN. 

(a) Prior to, or (b) after, the formation of CuII-alkoxide species with excess of H2O2 added to 

1. (c) Oxidized products in the reaction of 1 and excess of H2O2.
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Figure 5. 
DFT-calculated reaction coordinate for homolytic H2O2 cleavage, subsequent HAA and 

rebound ligand hydroxylation by CuI TMG3tren +
. Optimized structures and singlet energies 

are shown for each species. Thermodynamics are calculated at −70 °C.
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Scheme 1. 
LPMO Reaction Scheme (a) Monooxygenase and (b) Peroxygenase Reaction Pathway; (c) 

Proposed Mechanisms Relevant to the LPMOs Cu-Site, Processing H2O2
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Scheme 3. 

Reaction of Complex CuI TMG3tren +(1) with 3 equiv H2O2 Leads to CuII-Alkoxide 

Complex (2)
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Scheme 4. 

Capture/Trapping of a Hydroxyl Radical (⋅OH) Derived from CuI TMG3tren +(1) Reactivity 

with Hydrogen Peroxidea

a Partial or nearly full inhibition of the peroxygenase chemistry where 1 is converted to 

alkoxide CuII TMG3trenO− +(2) occurs. Also, see the text.
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Scheme 5. 

Proposed Courses of Reaction of CuI TMG3tren +(1) with Varying Amounts of H2O2
a

a (Upper): 1/H2O2 = 5:1 and the chemistry shown is for that one complex which reacts with 

H2O2 in a stoichiometric manner. (Lower): excess H2O2 relative to complex (1) produces the 

same hydroxylated ligand complex CuI TMG3tren‐OH ; however the excess oxidant present 

leads to further chemistry (far right).
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Scheme 2. 

Complex CuI TMG3tren +(1) Reacts with Dry H2O2 to Afford CuI Complex Product Where 

a Ligand Methyl Group Has Been Hydroxylated, in Accordance with the Peroxygenase 

Pathway Postulated in LPMOs; See Text for Further Explanation
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