Skip to main content
. 2022 Mar 10;2:837191. doi: 10.3389/fradi.2022.837191

Table 4.

Results of the automatic segmentation of selected brain structures.

Dice score (%)
Structure ceT1 hrT2 ceT1 + hrT2
VS 93.9 ± 4.0 90.7 ± 5.4 94.1 ± 4.1
Pons 97.6 ± 0.8 96.7 ± 0.9 97.6 ± 0.8
Brainstem 96.3 ± 1.3 94.4 ± 1.3 96.3 ± 1.2
Cerebellar vermal lobules I-V 93.2 ± 2.3 89.3 ± 2.3 93.2 ± 2.3
Cerebellar vermal lobules VI-VII 87.8 ± 5.1 84.0 ± 5.1 87.8 ± 5.1
Cerebellar vermal lobules VIII-X 93.1 ± 2.3 89.3 ± 2.3 93.1 ± 2.3
Right cerebellum 95.8 ± 1.4 93.9 ± 1.5 95.8 ± 1.4
Left cerebellum 95.8 ± 1.5 93.8 ± 1.6 95.8 ± 1.5

The segmentation model trained with nnU-Net was compared to the ground truth segmentations. Inputs are contrast-enhanced T1-weighted (ceT1) images, high-resolution T2-weighted (hrT2) images, or a combination of both (ceT1 + hrT2). The error ranges correspond to the standard deviation of the mean Dice score of all test cases.