Skip to main content
. 2022 Jan 21;1:777030. doi: 10.3389/fradi.2021.777030

Algorithm 1.

Federated Genotype-Expression-Image Data Integration Model.

  Input: Data pairs of the I institutions, (X1, y1), …, (Xi, yi), …, (XI, yI) and the sample numbers of each group, (N1(1),N1(2),N1(3)), ..., (Ni(1),Ni(2),Ni(3)), ..., (NI(1),NI(2),NI(3))
  Output: p-value of the studying Genotype-Expression-Image trio
  Initialize: w(1), w(2), w(3), w(C) = 0
    1:  for g = {1, 2, 3, C} do
    2:    while convergence and maximum number of iterations are not reached do
    3:        Get an image patch xi from X.
    4:        Each institution computes the gradient: Si(g)(w(g))=[Xi(g)]T(Xi(g)w(g)yig(g)).
    5:        Global center computes and sends global gradient to each institution: S(g)(w(g))=i=1ISi(g)(w(g)).
    6:        Each institution updates the coefficient with the global gradient: w(g)w(g) − η∇S(g) (w(g)).
    7:       end while
    8:       Each institution calculates the sum of squared residual: Si(g)(w(g);Xi(g),yi(g)).
    9:       Global center gathers the global sum of squared residual: S(g)=i=1ISi(g).
    10:       Global center gathers the global sample numbers: N(g)=i=1INi(g).
    11:  end for
    12:  Global center calculates F value with equation (1) and then computes and sends p-value to all institutions.