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Purrosk. There is great promise in use of machine learning (ML) for the diagnosis, prog-
nosis, and treatment of various medical conditions in ophthalmology and beyond. Appli-
cations of ML for ocular neoplasms are in early development and this review synthesizes
the current state of ML in ocular oncology.

MerHops. We queried PubMed and Web of Science and evaluated 804 publications,
excluding nonhuman studies. Metrics on ML algorithm performance were collected and
the Prediction model study Risk Of Bias ASsessment Tool was used to evaluate bias. We
report the results of 63 unique studies.

Resurs. Research regarding ML applications to intraocular cancers has leveraged multi-
ple algorithms and data sources. Convolutional neural networks (CNNs) were one of the
most commonly used ML algorithms and most work has focused on uveal melanoma
and retinoblastoma. The majority of ML models discussed here were developed for diag-
nosis and prognosis. Algorithms for diagnosis primarily leveraged imaging (e.g., optical
coherence tomography) as inputs, whereas those for prognosis leveraged combinations
of gene expression, tumor characteristics, and patient demographics.

Concrusions. ML has the potential to improve the management of intraocular cancers.
Published ML models perform well, but were occasionally limited by small sample
sizes owing to the low prevalence of intraocular cancers. This could be overcome with
synthetic data enhancement and low-shot ML techniques. CNNs can be integrated into
existing diagnostic workflows, while non-neural networks perform well in determining
prognosis.

Keywords: ocular oncology, machine learning, artificial intelligence, uveal melanoma,
retinoblastoma

ultiple malignancy types can affect the eyes or peri-

orbita. In adults, the most common primary intraocu-
lar cancer is uveal melanoma (UM), whereas retinoblastoma
(Rb) is the most common in children. Intraocular cancers are
particularly insidious, because they can be asymptomatic in
the early phases and, if not treated aggressively, can threaten
vision and life.! Mortality can reach 60% in some instances,*>
with significant risk for metastatic disease in UM."# Although
progress has been made on improving the management of
some of these cancers such as Rb, there has been little
improvement in the treatment and prognoses of others such
as UM}

There is a continuing need to improve the accuracy and
usability of tools used for the diagnosis, prognostication,
and treatment of intraocular cancers.®’ Machine learning
(ML) could play a key role in developing such technolo-
gies and can integrate into existing ophthalmologic work-
flow (e.g., imaging analysis and electronic medical records).
ML in health care is growing by 40% per year and could cut
more than $100B in annual health care costs over the next 5
years by assisting with administrative workflow, image anal-
ysis, treatment planning, and patient monitoring.® Ophthal-
mology has embraced the use of ML, particularly in the
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screening and diagnosis of diabetic retinopathy, AMD, and
glaucoma.’ To date, the US Food and Drug Administration
(FDA) has approved six ML-enabled devices for such appli-
cations.'® There is significant interest in applying ML to
improve outcomes in patients with ocular malignancies,!!
although validated tools in this area are lagging behind other
ophthalmic applications. The purpose of this review was to
analyze the current state of science and review the research
that has directly assessed the use of ML in the diagnosis,
prognosis, and treatment of ocular malignancies, as well as
to explore the overarching trends in ML approaches to ocular
oncologic conditions.

METHODS

A literature search was performed in June 2023 using
PubMed and Web of Science with the compound search
term and exclusion process seen in Supplemental Figure
S1. Two reviewers (ASC and TMH) independently assessed
inclusion criteria for all papers and two separate review-
ers (NKA and YES) confirmed inclusion. For each paper,
two reviewers (ASC and TMH) collected data including
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the type(s) of intraocular cancer studied, data source (e.g.,
human, database), number of data points, and data modal-
ity (e.g., eye images, tumor samples). Each study was clas-
sified based on stage of clinical workflow (e.g., diagnosis,
prognosis, treatment) to which its results applied. The stud-
ies were analyzed overall by data modalities, sample size,
and clinical condition studied. Timeline and citation analyses
were performed, using citation data gathered from Google
Scholar. Three reviewers (ASC, TMH, and CCC) assessed
risk of bias using the Prediction model study Risk Of Bias
ASsessment Tool (PROBAST), which is a validated system
for assessing risk of bias across the four domains of partici-
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pants, predictors, outcomes, and analysis. Citation data were
gathered from Google Scholar. Further subanalyses based on
primary clinical diagnosis studied were performed and are
reported by clinical focus, including UM, Rb, and combina-
tions of other ocular malignancies.

LITERATURE ANALYSIS

Of the 804 publications (published between 2002 and 2023),
63 met the inclusion and exclusion criteria with 629 studies
excluded based on review of abstracts and 112 based on

Cumulative frequency of publications by sample sizes
(studies that recruited human participants)
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Ficure 1.
had a sample size of less than 300.

Cumulative frequency of publications by study size. Seventy-two percent of studies that exclusively recruited human participants

Temporal analysis of publications applying ML to ocular oncology
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Ficure 2. Temporal analysis of publications. There has been an increase in publications related to ML in intraocular oncology starting in
2016. Publications related to cancer prognosis are the most popular. More work is needed related to treatment planning.



Investigative Ophthalmology & Visual Science

Machine Learning for Managing Intraocular Cancers

full article text review. The 63 studies included in this anal-
ysis had a wide range of sample sizes and relied on varied
data modalities (e.g., human recruitment, image databases).
Median sample size was 153 (interquartile range, 78-420).
The smallest studies, primarily focused on methods develop-
ment, had 1 participant,'*!? and the largest analyzed 52,982
images.'* For studies that recruited human participants (n
= 47 [75%)), 72% recruited between 1 and 300 participants
(Fig. 1. In total, 51% of papers studied UM, 25% Rb, and
24% other ocular cancers.

A timeline analysis revealed a slow increase in publica-
tions from 2000 to 2015, with a rapid increase since. Notably,
studies related to treatment appear to have plateaued
(Fig. 2). The studies analyzed here have been cited 1126
times with a median citation count of 4 (interquartile range,

1-19).

SuMMARY OF CLINICALLY IMPORTANT ML
TECHNIQUES

ML algorithms have three primary purposes: (1) learn from
data, (2) perform tasks given new data, and (3) improve with
experience.!> Numerous ML algorithms have been devel-
oped over the years and these algorithms can be categorized
broadly into neural networks (NNs) and non-NNs.

NNs consist of sequential layers of nodes that are inter-
connected with each other. This structure enables the discov-
ery of complex, nonlinear relationships between input vari-
ables that allows for many applications, including data clas-
sification. The clinical use of NN is varied and includes early
detection of liver fibrosis,'® analysis of complex electrocar-
diograms,!” monitoring of Parkinson disease,'® and diagnos-
ing glaucoma.”” Convolutional NNs (CNNs) are a specific
type of NN that are used for image analysis. Clinically, CNNs
have been used to classify lung cancer?® and differentiate
types of infectious keratitis.?!

Non-NN algorithms encompass a large number of ML
techniques that include logistic regression, decision trees,
and support vector machines (SVM). SVMs are commonly
used in medicine as they are capable of multidimensional
classification (i.e., binary classification with a large number
of input variables). SVMs accomplish this by using a kernel
function that maps original inputs to higher dimensional
space, creating a better separation between categories within
the data. SVMs have been used in ophthalmology to detect
subclinical keratoconus using topography data.?

Many ML algorithms were used in the papers analyzed
herein. Regardless of the specific algorithm or implementa-
tion, an important requirement for ML model development
is the performance of complex, nonlinear tasks to a level
that meets or exceeds human performance.

BiAs ASSESSMENT

A PROBAST analysis of the 63 papers analyzed here revealed
that all papers were either at low or medium risk of bias as
per the 21 PROBAST questions (Supplemental File 1). An
analysis of participant selection revealed a low risk of bias;
the vast majority of studies used appropriate data sources
and clearly defined inclusion and exclusion criteria. Risk of
bias in predictor variable selection was particularly low in
studies that leveraged CNNs, because there is minimal user
involvement in defining model inputs. The papers also had a
low to medium risk of bias in outcome definitions, because
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the majority of papers had clearly defined model end points
and systematic methods for evaluating these end points.
Potentials for risk of bias were most difficult to evaluate for
the analysis category, because many papers did not include
information regarding specific steps of data processing and
analysis. Additionally, some of the questions in the analysis
category (e.g., Do predictors and their assigned weights in
the final model correspond to the results from the reported
multivariable analysis?) do not necessarily apply to certain
ML algorithms such as CNNs. Regardless, there need to be
more standardized guidelines in the ML space regarding the
reporting of model development, data processing, and final
analysis.

ML Stupies INn UM

UM arises from melanocytes in the iris, ciliary body, or
choroid®® and is the most common primary intraocular
malignancy worldwide.? Current challenges in the manage-
ment of UM include improving accuracy of early diagnosis
and developing reliable markers for prognostication (e.g.,
metastatic risk).

Diagnosis

Diagnosing intraocular cancers can be challenging, with
some methods for diagnosing anterior segment tumors
having an error rate approaching 40%.2> Most ML models
developed to diagnose intraocular malignancies, including
UM, use ocular images (e.g., external eye pictures taken
with digital cameras, magnetic resonance imaging [MRI]) as
inputs.

Oyedotun et al.*° developed a CNN to detect iris nevi
from The Eye Cancer Foundation’s pictures, achieving an
accuracy of 94% in binary diagnosis (i.e., iris nevus present
or not) (Table 1). Other image-based diagnostic methods
using CNN, artificial neural networks, and radial basis func-
tion networks have achieved similar results.?”-?® Although
iris nevi are not cancerous, 8% can transform into melanoma
over 15 years,”” making proper diagnosis important. This
study highlights the usefulness of CNNs in augmenting the
confidence of visual diagnosis by ophthalmologists. Other
groups have taken a different approach and have not used
CNNs for image analysis. Su et al.>® found that multilayer
perceptron performed the best in diagnosing UM when
trained on a combination of features extracted from T2-
weighted and contrast-enhanced T1 weighted MRIs. Ultra-
sound images, which are commonly obtained when manag-
ing ocular cancers, combined with patient demographics
were also used to train a model that diagnosed UM with
an accuracy of 93%.3!

Song et al.*? developed a logistic regression model that
used serum biomarkers rather than ocular images for early
diagnosis of UM primary tumor and metastasis. The model
identified a two-marker panel of heat shock protein 27 and
osteopontin with an area under the receiver operator curve
(AUC) of 0.98 when differentiating between UM and control.
A single panel, including only melanoma inhibitory activ-
ity protein, had an AUC of 0.78 in differentiating between
disease-free survivors and those with metastases.’* Signifi-
cant research is being conducted to investigate the role of
serum biomarkers in the management of UM.* The clin-
ical utility of this work with respect to ML models could
be optimized further by integrating biomarkers with clinical
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imaging data, as Zabor et al.>* have shown with their model,
which is able to differentiate between UM and choroidal
nevus with an AUC of 0.86 using patient and tumor char-
acteristics.

Prognosis

Differential gene expression is important in the develop-
ment and evolution of many cancers, including UM. Genetic
data have been leveraged to understand the prognosis of this
cancer. Early work in this area was conducted by Harbour
et al.,¥> who used an SVM to differentiate high- and low-
risk UM, and found that NBS1 expression correlated with
survival. Further work by the Harbour group and affiliates
has focused on integrating their SVM model into point of
care genetic analysis assays that are currently being used as a
commercial assay to predict metastatic risk.>*~3 DNA methy-
lation and gene expression data have also identified genes
with prognostic value for UM for both overall survival?*-4
and metastatic risk.“-%® In addition, gene expression analy-
ses have shown that the presence of specific immune cells
(e.g., CD8' T cells) is associated with overall survival in
UM. Combining this immunologic information with clini-
cal (e.g., patient age) and pathological (e.g., tumor stage)
data achieved an AUC of approximately 0.8 in predicting
survival.® Other investigators have shown the promise of
assessing gene expression from CNN-based image process-
ing of cytopathologic slides.”®

Clinical data on patient demographics and tumor char-
acteristics have been effective in training ML models to
determine prognosis for intraocular cancers. NNs have been
the most common algorithm used for this purpose and
have leveraged demographic information such as patient
age and sex and various tumor features such as size, loca-
tion, mitotic rate, and chromosomal abnormalities. Damato
et al’! trained a NN using data from 2543 patients with
UM to predict time to metastatic death using clinical and
histopathologic features. The survival prediction error by
the NN was approximately 3.8 years compared with approx-
imately 4.3 years by a clinical expert.>! A study by Taktak
et al>? reported similar results. Pe’er et al.>® developed a
NN to estimate 5-year survival in patients with choroidal
melanoma, achieving an accuracy of 84% compared with
the less than 70% accuracy by achieved by clinicians. Prog-
nostic ML algorithms have been compared with Kaplan-
Meier analyses and found to have a similar performance,
although ML methods were superior in estimating survival
of older patients. In these models, tumor diameter along
with histological and cytogenetic features such as mono-
somy 3 were most important in predicting survival.>* Donizy
et al.>® built prognostication models and similarly found that
features such as BAP1 expression, nucleoli size, and mitotic
rate helped predict progression-free survival with an AUC
of 0.78.

ML models for determining prognosis have gone beyond
predicting survival. Serghiou et al’® developed multiple
ML models to predict visual outcomes after proton beam
radiotherapy for choroidal melanoma. Post-treatment visual
acuity was best predicted by factors including tumor thick-
ness, radiation received by the macula, and total radiation
received by the overall globe volume. Need for enucle-
ation was predicted with an AUC of 0.8 and tumor features
such as thickness and stage were the most important for
this prediction.”® Luo et al.>’ developed a similar model,
but for predicting metastasis and death after brachyther-
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apy and achieved a maximum AUC of 0.85. Many groups
have focused on predicting metastatic risk using pathology
images from enucleation and local resection samples. Zhang
et al.>® developed a CNN that used hematoxylin and eosin-
stained slides, without other specialized stains, to assess
nuclear BAP1 expression, which is a surrogate for metastatic
prognostic factors such as monosomy 3 and BAP1 muta-
tion. The CNN achieved an AUC of 0.93,°® which is espe-
cially impressive given that identifying nuclear BAP expres-
sion based solely on hematoxylin and eosin staining is diffi-
cult, even for experienced pathologists. In contrast, a CNN
developed by Sun et al.>® to assess BAP1 expression from
slides specifically stained for BAP1 achieved an AUC of 0.99.
Other investigators have developed CNN-based methods for
gene expression profiling and achieved an AUC of 0.94.%°
Vaquero-Garcia et al.°! used a non-image-based approach to
predict metastases, relying on tumor features such as loca-
tion and chromosomal copy number to train a model that
predicted 48-month metastatic risk with an accuracy of 85%.
Not all ML models developed to predict metastasis have been
successful. Kaiserman et al.®? developed a NN to predict
conversion of choroidal nevi to melanomas using features
such as nevus thickness, base diameter, and reflectivity, but
the model did not predict malignant transformation with
greater accuracy compared with existing metrics.

Treatment

Research applying ML to optimize UM treatment is in its
infancy. Bolis et al.®> used RNA sequencing data from The
Cancer Genome Atlas to predict tumor sensitivity to all-trans
retinoic acid and found that UM had the highest predicted
sensitivity. Because metastatic UM lacks many treatment
options, all-trans retinoic acid-based therapeutics could be
explored.®

ML StUuDIES IN RB

Rb is the most common primary intraocular cancer in chil-
dren and is lethal if untreated.®*% However, treatment
advances have led to near 100% survival in developed coun-
tries, with the possibility of eye salvage in many cases.®®
Current work in the management of Rb has focused on
developing vision-sparing treatments and novel diagnosis
techniques for use in resource-poor areas.

Diagnosis

The initial diagnosis of Rb is heralded commonly by leuko-
coria or white pupil reflex. In 2019, Munson et al.'* designed
the ComputeR-Assisted Detector of Leukocoria (CRADLE)
to assist parents in augmenting clinical leukocoria screen-
ing (Table 2). CRADLE is a CNN-based mobile applica-
tion that analyzes pictures stored on mobile devices and
provides alerts if leukocoria is detected. The CNN was tested
using 52,982 facial photographs of 40 different children
with unilateral Rb (z = 8), bilateral Rb (n = 7), Coat’s
disease, cataract, amblyopia, and hyperopia (7 = 5), or no
ocular disorder (2 = 20). The testing data comprised pictures
of children in everyday settings (e.g., eating dinner, play-
ing). CRADLE’s sensitivity was 90% for diagnosing children
2 years or younger and the algorithm enabled leukocoria
detection from photographs taken 1.3 years before clinical
diagnosis. Applications like this, especially if incorporated
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into everyday devices such as mobile phones, can enable
low-cost, widescale leukocoria screening and enable earlier
intervention and improved visual outcomes with this
cancer.'* Further validation of this concept was provided
by Bernard et al. whose CNN-based algorithm loaded onto
Android smartphones achieved an AUC of 0.93 in identifying
leukocoria in pediatric clinics in Ethiopia.®”

Other groups have used CNNs, SVMs, and NN to identify
leukocoria from facial images taken in nonclinical settings.
CNN outperformed the other two ML algorithms, achieving
an accuracy of 98.6% and sensitivity of 97.6%. However, the
CNN specificity of 63.8% was the lowest of all the algo-
rithms.®® To address low specificity, studies have designed
ensemble models that combine NNs with other algorithms
to achieve promising performance in leukocoria detection,
with a specificity of 89%.% Notably, all three of the aforemen-
tioned models use nonclinical digital images (e.g., image of
child at birthday party or playground) as their inputs. This
increases opportunities for early diagnosis in areas with-
out ophthalmic care, nonophthalmic clinical settings, and at
home. Further work, with higher quality eye images, has
been conducted and achieved a specificity of 85% with a
sensitivity of 99%.”° In contrast, some efforts have been
made to design support systems that assist physicians in
better diagnosing Rb in the clinical setting. Kumar et al.”!
created CNN-based models to MRI and computed tomogra-
phy scans that could identify Rb with an accuracy of 93.16%,
which is higher than many other models in the literature.

Prognosis

Gene expression analysis has been useful in determining
the prognosis of Rb. Alvarez-Suarez et al.”? leveraged super-
vised and unsupervised clustering to identify gene expres-
sion patterns associated with Rb, with some genes predicting
unilateral versus bilateral disease. Building off initial work
conducted by Berry et al.,”>7* Liu et al.”> analyzed metabolic
activity from aqueous humor samples to stage Rb, achieving
an AUC of 0.9 and accuracy of 80%. Similar methods could
be used to assess disease progression more quantitatively.
For example, logistic regression-based analysis of nucleic
acid content from aqueous humor samples has been used
to better quantify disease burden at diagnosis and during
treatment.”®

Treatment

Multiple treatment approaches exist for Rb, ranging from
focal therapy alone or in combination with systemic
chemotherapy, intra-arterial chemosurgery, and enucleation.
These approaches vary in their technical requirements and
costs, which affect their availability and use in the United
States and elsewhere in the world. ML approaches may be
helpful for remote diagnosis and tumor stratification for
treatment recommendation. Important for ML programs is
accurate tumor segmentation in imaging (e.g., MRI, ultra-
sound examination), because both tumor size and depth of
infiltration can impact treatment approach and complexity.
Ciller et al.”” developed a CNN that segments Rb tumors
using fundus images, thereby decreasing physician-to-
physician variability with manual segmentation and simpli-
fying long-term tracking of tumors. A combination random
forest and CNN model, also developed by Ciller et al.,’®
showed strong performance in segmenting Rb tumors when
using a new set of features that combined information about
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tumor shape and position. In 2021, Strijbis et al.”’ developed
a CNN to segment Rb from T1- and T2-weighted MRI. The
CNN had high correlation with expert manual segmentation
in assessing eye and tumor volume and tumor spatial loca-
tion.” Several similar models have been developed to assist
physicians with segmentation and treatment planning,'?!3
but these methods have yet to be tested with larger samples.

Finally, ML has been used to identify potential thera-
peutic targets for Rb. Han et al.®® used SVM to analyze
gene expression in 62 Rb samples from enucleated eyes
and demonstrated effective differentiation between Rb and
controls based on expression of seven genes. These genes
may warrant further investigation for targeting in Rb treat-
ment.?® Similar ML-based genetic analyses have revealed
mechanisms for chemotherapy resistance in Rb including
pathways related to retinoid metabolism and sphingolipid
synthesis.’!

ML StuDIES IN OTHER OCULAR CANCERS

There are other classes of ocular cancers that involve
the orbit and surrounding structures (e.g., conjunctival
melanoma, orbital teratoma).??83 These cancers can be espe-
cially difficult to diagnose and manage given their low
incidence. Therefore, ML-enabled clinical decision support
systems could assist physicians to improve patient outcomes.

Diagnosis

Developing ML models for rare diseases is challenging given
the relative lack of training and testing data (Table 3). One
solution is to use synthetic data augmentation. In 2021, Yoo
et al.® trained a CNN to diagnose conditions of the conjunc-
tiva (e.g., melanoma, pterygium), some of which have inci-
dences as low as 0.3 per 1,000,000. Given the small set
of images that existed to train the CNN, the group used
data augmentation to enhance the size and variety of the
training data. This augmentation involved image process-
ing techniques including changing image quality through
adding noise or flipping images about a vertical axis. More
advanced augmentation used generative NNs to synthe-
size new images with representative features from existing
images in the dataset. With this augmentation, the model
achieved an accuracy of 97% in the detection of conjunc-
tival melanoma.®* Other CNN-based algorithms have been
successful in diagnosing ocular adnexal lymphoma,® eyelid
basal cell,*® and general eyelid tumors.5”

Non-CNN algorithms have been applied successfully to
diagnose rarer classes of ocular cancers. Hou et al.®® found
that an SVM trained using MRI could differentiate between
ocular adnexal lymphoma and idiopathic orbital inflamma-
tion with an AUC of 0.8, a significant performance improve-
ment compared with a radiology resident. Finally, Habibal-
ahi et al® showed that k-nearest neighbor and SVM could
differentiate between normal tissue and ocular surface squa-
mous neoplasia using fluorescence biopsy histopathologic
images. The outputs from algorithms like this could be used
in the operating room to classify cancer margins better.

Treatment

There has been little work investigating use of ML in treat-
ing rarer classes of ocular cancers. Tan et al’® built a
decision tree-based model that assessed the complexity of
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reconstruction after periocular basal cell excision, achiev-
ing an AUC of 0.85 with only three predictive variables: (1)
preoperative assessment of complexity, (2) surgical delays
(e.g., <75 or >75 days), and tumor size (e.g., <14 mm
or >14 mm).

DISCUSSION

ML is a powerful tool and is rapidly increasing in popu-
larity for clinical applications. Ophthalmology lends itself
well to ML-based technologies, given the relative ease of
acquiring disease-related data and images (e.g., primary
fundus photographs, optical coherence tomography images,
and corneal topography). In fact, numerous ML algorithms
have already been applied to various subspecialties within
ophthalmology, but ocular oncology has been relatively
underexplored in this regard. This review highlights 63
publications demonstrating the current state of science in
using ML to assist in the diagnosis, prognosis, and treatment
of ocular cancers. Most studies focused on developing ML
algorithms for UM or Rb, but rarer forms of ocular cancers
are also represented. These ML algorithms have been trained
using a variety of data sources, including imaging (e.g., MRI,
ultrasound examination), gene expression arrays, and demo-
graphic data, which demonstrates the breadth of information
that can be leveraged to develop the models. Although NNs
were the most popular algorithm used, non-NN algorithms
have also been developed successfully for applications to
ocular malignancies.

Analyses of studies that recruited human participants
revealed that 72% had fewer than 300 participants. This is
important because training ML models is a data-intensive
process.’! In general, the more varied the data that are avail-
able to train an ML model, the more accurate and gener-
alizable its outputs will be.””> Smaller sample sizes could
also contribute to variation in algorithm-to-algorithm perfor-
mance. In ocular oncology, small sample sizes are related
to the low incidence and prevalence of the cancers being
studied, which can limit ML model performance. Methods
to work around this issue include leveraging synthetic data
enhancement with imaging data using techniques similar
to those seen in Santos-Bustos et al.?® and Olaniyi et al.,”’
collaborating with ocular oncology centers of excellence that
have large in-house data repositories, and adopting “low-
shot” ML algorithms that can be trained with relatively small
training datasets.”> Regardless of sample size, the studies
analyzed in this review demonstrated strong performance.

Bias in ML model design and development is important
to evaluate in assessing a model’s real-world applicability.
Analysis of the funding sources and author conflicts of inter-
est of the studies evaluated here revealed that most studies
were funded by nonprofit or government agencies. Although
some authors declared conflicts of interest with private artifi-
cial intelligence or pharmaceutical companies, none seemed
to interact directly with the authors’ works assessed herein.
Continued reporting of funding sources and conflicts of
interest will be crucial to maintain the independence of the
studies contributing to this growing field.

Core aspects of ML model development such as algo-
rithm selection (e.g., NN versus decision tree) and param-
eter identification (e.g., learning rates for gradient descent)
require significant trial and error”4’ In reality, multiple
ML algorithms could achieve acceptable performance on a
task given the same data.’®% However, certain ML algo-
rithms have specific advantages for applications in ophthal-
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mology. CNNs were commonly leveraged in the studies
presented here; they provide robust, deep learning without
the need for feature engineering since clinical images them-
selves (e.g., fundus photographs) are used as model inputs.
As stated elsewhere in this article, image data also enable
synthetic data enhancement to augment small datasets. One
disadvantage of CNNs is their black box nature, which can
make it difficult to understand how exactly the models
are making decisions. To increase end-user interpretability,
researchers could leverage explainability techniques, such as
saliency maps, which visually highlight key image features
that an algorithm used to make a decision.'” These saliency
maps also work to increase physician confidence in model
outputs. Non-NN algorithms often allow for more mecha-
nistic insight and interpretability and generally require less
training data compared with NNs. Common non-NN algo-
rithms discussed here include decision trees, that were used
by Jegelevicius et al.’! Serghiou et al.® and Tan et al.”
Although decision trees can be effective, they tend to over-
fit training data, thereby limiting their generalizability. In
those cases, groups can use techniques such as boosting or
bagging to decrease bias and variance, respectively. Bagged
decision trees can be particularly useful to mitigate overfit-
ting, which can result from analyzing small datasets.

Fifty of the 63 studies analyzed here were published after
2014. A breakdown of the publications by category revealed
that papers related to prognosis and diagnosis were the
primary drivers of this recent increase. There remains signif-
icant work to be done. More tools are needed to help predict
metastases, especially for UM. This goal can be accomplished
through developing monitoring blood assays or creating
tools that identify proteins or genetic expression associated
with metastatic spread. Metastatic UM is nearly universally
fatal 11192 5o predictive tools have great potential to improve
patient outcomes. There are also opportunities to better
leverage ML to identify therapeutic gene targets or genes
that predispose individuals to developing specific intraocu-
lar cancers.

The ultimate goal for integrating ML into day-to-day clin-
ical workflows is to develop FDA-approved solutions. There
is great opportunity to build on existing work to achieve this
goal. To date, the FDA has approved 521 ML-enabled devices,
with six for use in ophthalmology, mostly for the detection
of diabetic retinopathy.!'® With an increasing focus on ML
in health care, the FDA has created new protocols to better
assist researchers in developing ML solutions and navigating
the FDA approval process.'%> The plan published by the FDA
to improve evaluation of ML-enabled technologies includes
outlining good ML practices for researchers to follow, creat-
ing guidelines for algorithm transparency, supporting intra-
mural and extramural research on ML algorithm evaluation
and improvement, and establishing more robust guidelines
pertaining to real-world data collection and postapproval
monitoring.

CONCLUSIONS

There is great promise in developing ML approaches to
improve management of patients with intraocular cancers
across the workflow of diagnosis, prognosis, and treatment.
Further work is needed to continue validating accurate and
easy-to-use solutions that better integrate into existing clini-
cal workflows, with a specific focus on creating tools to help
diagnose and treat intraocular malignancies. Work toward
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this goal will hopefully improve future outcomes for patients
with intraocular cancers.
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