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Abstract
Conventional cancer therapies such as chemotherapy are non-selective and induce immune system anergy, which lead to 
serious side effects and tumor relapse. It is a challenge to prime the body’s immune system in the cancer-bearing subject 
to produce cancer antigen-targeting antibodies, as most tumor-associated antigens are expressed abundantly in cancer cells 
and some of normal cells. This study illustrates how hapten-based pre-immunization (for anti-hapten antibodies production) 
combined with cancer receptor labeling with hapten antigen constructs can elicit antibody-dependent cellular phagocytosis 
(ADCP). Thus, the hapten antigen 2,4-dinitrophenol (DNP) was covalently combined with a cancer receptor-binding dipep-
tide (IYIY) to form a dipeptide-hapten construct (IYIY-DNP, MW = 1322.33) that targets the tropomyosin receptor kinase 
C (TrkC)-expressed on the surface of metastatic cancer cells. IYIY-DNP facilitated selective association of RAW264.7 mac-
rophages to the TrkC expressing 4T1 cancer cells in vitro, forming cell aggregates in the presence of anti-DNP antibodies, 
suggesting initiation of anti-DNP antibody-dependent cancer cell recognition of macrophages by the IYIY-DNP. In in vivo, 
IYIY-DNP at 10 mg/kg suppressed growth of 4T1 tumors in DNP-immunized BALB/c mice by 45% (p < 0.05), when com-
paring the area under the tumor growth curve to that of the saline-treated DNP-immunized mice. Meanwhile, IYIY-DNP 
at 10 mg/kg had no effect on TrkC-negative 67NR tumor-bearing mice immunized with DNP. Tumor growth suppression 
activity of IYIY-DNP in DNP-immunized mice was associated with an increase in the anti-DNP IgG (7.3 ×  106 ± 1.6 U/mL) 
and IgM (0.9 ×  106 ± 0.07 U/mL) antibodies after five cycles of DNP treatment, demonstrated potential for hapten-based 
pre-immunization then treatment with IYIY-DNP to elicit ADCP for improved immunotherapy of TrkC expressing cancers.
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Introduction

Chemotherapy has been associated with immune cell 
anergy and immune editing of the tumor microenviron-
ment [1]. Suppression of the body’s immune system 
against residual tumor tissue post-chemotherapy impedes 
the therapeutic outcomes and increases relapse risk. 
Elicitation of antibody-dependent cellular phagocytosis 
(ADCP) and antibody-dependent cellular cytotoxicity 
(ADCC) against tumor tissue may complement chemo-
therapy to give better treatment outcomes. ADCP is a phe-
nomenon whereby the body’s humoral immune system is 
induced to produce antibodies that target selective tumor-
associated antigens on the cancer cell surface; binding of 
these antibodies to the cell surface antigens via their Fab 
subsequently attracts the association of macrophages to the 
cancer cells (via the interaction of the Fc gamma receptor), 
followed by the internalization and degradation of the can-
cer cells through phagosome acidification [2–5]. ADCC 
is a mechanism whereby effector immune cells kill the 
antibody-bounded target cells expressing tumor antigen.

Use of ADCP and ADCC has given positive outcomes 
in cancer models [6], but priming the body’s humoral 
immune system to produce substantial antibodies titers 
that selectively target the tumor tissue remains challeng-
ing. This may be because many of the targetable receptors 
and tumor-associated antigens are ubiquitously expressed 
on cancer- and normal-cell surfaces. We postulated that 
ADCP and ADCC may be efficiently induced in tumor-
bearing subjects by immunizing them against specific 
hapten antigen, thereafter exposing the immunized sub-
jects to hapten antigens conjugated with a cancer cell 
receptor-targeting small molecule ligand. Such cancer 
cell-targeting hapten antigen is anticipated to selectively 
bind the cancer cells and occupy its surface with hapten 
antigen. Hapten is a conventional agent in cancer immu-
notherapy by triggering the production of anti-hapten 
antibodies from B cells against hapten protein. In clinical 
setting, the hapten-based vaccination has been studied in 
melanoma patients and revealed the development of an 
inflammatory response in metastatic sites post-hapten-
vaccination [7], with high infiltration of T lymphocytes 
into tumor microenvironment [8]. Recently, few studies 
have used the hapten-based tumor targeted conjugates to 
increase the tumor clearance, as studied in uPAR receptor 
[9] and VEGF receptor [10] expressing cancer, through 
ADCP mechanism. This approach is different from the 
monoclonal antibodies based immunotherapy that act as 
checkpoint. Monoclonal antibodies bind to the checkpoint 
protein to prevent anergy of activated T lymphocytes in 
tumor microenvironment, without stimulating antibody 
production from B cells.

Hence in the present work, we conjugate a tropomyo-
sin receptor kinase C (TrkC) receptor-binding dipeptide 
(IYIY) to the hapten antigen 2, 4-dinitrophenol (DNP) to 
explore such a possibility. The receptor featured in this 
work is one of the tropomyosin receptor kinase (Trk) 
neurotrophin receptors, TrkC. TrkC is highly expressed 
in breast cancer [11], neuroblastoma [12], medulloblas-
toma [13] and colorectal cancers [14] and is associated 
with cancer cell proliferation and metastasis. Previously, 
a TrkC receptor-binding dipeptide (IYIY) synthesized 
by our group [15] was conjugated with photosensitizers 
for targeted-anticancer photodynamic therapy [16–18]. 
The role of antibodies to trigger ADCP, ADCC and other 
complement-dependent cytotoxicity is notable. In the 
study described here, the 2,4-dinitrophenol (DNP) hapten 
molecule was conjugated to the IYIY to form a conjugate 
(IYIY-DNP) intended to target TrkC receptors to study one 
of the antibodies-mediated function, macrophage-based 
anticancer ADCP (Fig. 1).

Experimental materials and methods

Synthesis of conjugates IYIY‑DNP and YIYI‑DNP

All reactions were carried out under an argon atmosphere. 
Reagents were purchased at a high commercial quality 
(typically 97% or higher) and used without further purifi-
cation, unless otherwise stated. DNP-PEG2-acid (Catalog# 
BP-20563) was purchased from BroadPharm (San Diego, 
CA, USA). High-field NMR spectra were recorded with 
Bruker Avance at 500 MHz for 1H and 125 MHz for 13C, 
and were calibrated using residual non-deuterated solvent 
as an internal reference  (CDCl3: 1H NMR = 7.24, 13C 
NMR = 77.0, MeOD: 1H NMR = 3.30, 13C NMR = 49.0, 
DMSO-d6: 1H NMR = 2.50, 13C NMR = 39.5). The follow-
ing abbreviations were used to explain the multiplicities: 
s = singlet, d = doublet, t = triplet, q = quartet, quint = quin-
tet, dd = double doublet, dt = double triplet, dq = double 
quartet, m = multiplet, br = broad. Electrospray ionization 
mass spectrometry (ESI–MS) data were collected on tri-
ple-stage quadrupole instrument in a positive mode. Flash 
chromatography was performed using silica gel (230–400 
mesh). LC–MS analyses were collected from Agilent 
1260 Infinity Quaternary LC and Agilent 6120 Quadru-
pole LC/MS modules using Poroshell 120 EC-C18 2.7 µM 
(4.6 × 50 mm) column in 5–95%  CH3CN/water gradient 
with 0.1% formic acid over 10 min. Prep HPLC was per-
formed on Agilent 1260 Infinity in 50–90  CH3CN/water 
gradient with 0.1% TFA over 20 min.
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Conjugates and cell lines

Conjugates IYIY-DNP and YIYI-DNP were synthesized as 
described [19]. Murine breast cancer 4T1 cell line and mac-
rophage RAW264.7 cell line were purchased from American 
Type Culture Collection (ATCC) (Manassas, VA, USA), and 
breast carcinoma cell line 67NR was obtained from Barbara 
Ann Karmanos Cancer Institute (Detroit, MI, USA). Both 
4T1 and 67NR cell lines were cultured in RPMI medium, 
whereas RAW246.7 macrophage cell line was cultured in 
DMEM, supplemented with 10% of fetal bovine serum 
(FBS) and 1% penicillin- streptomycin solution. All cell 
lines were maintained at 37 °C in a 5%  CO2 incubator.

In vitro cytotoxicity assay

4T1, 67NR and RAW246.7 cell lines were, respectively, 
cultured in 96 wells plate at a density of 5000 cells per well 
for 24 h. Conjugates IYIY-DNP and YIYI-DNP were dis-
solved in DMSO. Each cell line was incubated with either 

conjugate at concentrations ranging from 0.3 to 30 µM, 
for 2 and 24 h. The media was removed from the wells; 
then, 10 µl of 5 mg/ml MTT solution was added into each 
well and incubated for 4 h in 37 °C. The medium was then 
removed from the wells, and 100 µl of DMSO was added to 
solubilize the formazan crystals. The viability of cells was 
determined by using SpectraMax® M4 Multi-Mode Micro-
plate Reader (Molecular Devices, Sunnyvale, CA, USA) at 
570 nm absorbance [16]. The percentage of viability of each 
treatment group in different cell lines was calculated as (OD 
treated/OD control) × 100%.

In vitro antibody‑dependent cellular phagocytosis 
(ADCP) assay

RAW 246.7 macrophage cell line has been employed for 
ADCP assay [20, 21]. Suspended RAW246.7 cells treated 
with 200 U/ml IFN-γ (Cell Signaling Technology, Dan-
vers, MA, USA) [22] were stained with 10 µl of DiO dye 
(Abs: 484 nm; Em: 501 nm) for 45 min at 37 °C. 4T1 and 

Fig. 1  Schematic showing the 
IYIY-DNP structure, and the 
way it is intended to initiate 
antibody-dependent cellular 
phagocytosis (ADCP) mecha-
nism against TrkC expressing 
cancer cells
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67NR cancer cells were stained with 10 µl of DiD dye (Abs: 
644 nm; Em: 665 nm) for 45 min at 37 °C. The stained cells 
were then centrifuged at 1500 rpm for 5 min. ADCP assay 
was performed by suspending cancer cells (4T1, 67NR) at a 
density of 2.5 ×  104 in phenol-red free RPMI media contain-
ing cross species antibodies [9, 23, 24] of 100 nM anti-DNP 
antibodies (rabbit polyclonal KLH IgG, Invitrogen #A6430) 
and 10 µM of IYIY-DNP or YIYI-DNP conjugates, followed 
by 1 ×  105 of RAW 246.7 macrophage cells. The mixture 
then incubated at 37 °C for 2 h. The cells interaction and 
phagocytosis were observed using a confocal microscope 
(Leica Tcs Sp5 Ii, Wetzlar, Germany).

Animal model

Female 6–8 weeks old wild-type Balb/c mice were pur-
chased from Animal Experimental Unit (AEU), University 
of Malaya, Malaysia, for in vivo studies. These mice were 
kept at the animal facility of the Management and Science 
University, Shah Alam, Malaysia. All animal experiments 
were performed according to protocols approved by The 
University of Malaya Faculty of Medicine Institutional Ani-
mal Care and Use Committee (Approval ID: AUP2019/335) 
and Management & Science University Ethics Committee 
(Approval ID: MSU-RMC-02/FR01/08/L3/019).

In vivo acute toxicity

Mice (n = 2) were injected intravenously with IYIY-DNP 
and YIYI-DNP at doses up to 30  mg/kg. Toxicity was 
observed based on the Berlin test of typical symptoms such 
as apathy, horrent fur, behavior changes, and weight loss for 
two weeks [16].

In vivo 2,4‑dinitrophenol‑keyhole limpet hemocyanin 
(DNP‑KLH) immunization and IgG and IgM 
quantification

Healthy Balb/c mice were immunized with 1 mg/ml DNP-
Keyhole Limpet Hemocyanin (DNP-KLH) (Sigma-Aldrich, 
St. Louis, MO, USA) in PBS with complete Freund’s adju-
vant at the ratio of 1:1. After a week, the immunized mice 
were then boosted with the same dose of DNP-KLH sus-
pended in PBS-incomplete Freund’s adjuvant at the same 
ratio. A week after administering the booster dose, the mice 
were bled retro-orbitally for blood collection and the anti-
DNP IgG and anti-DNP IgM antibody level were quantified 
using ELISA (Mouse Anti-DNP IgG ELISA, Mouse Anti-
DNP IgM ELISA, Life Diagnostics, West Goshen, PA, USA) 
following the manufacturer guidelines.

Tumor cell inoculation and treatment in mice

DNP-KLH immunized mice were randomly divided into 
four groups (IYIY-DNP, YIYI-DNP, DNP and control 
saline), and orthotopically injected with either 4T1 or 67NR 
breast carcinoma cell lines into the mammary fat pad at a 
density of 5 ×  105 tumor cells in 0.1 ml of media. Conjugates 
IYIY-DNP, YIYI-DNP and DNP were dissolved in a cock-
tail of 2.5% ethanol and 2.5% Cremophore EL, then resus-
pended using saline to a volume of 0.2 ml. The immunized 
mice bearing 4T1 or 67NR tumor with the volume of 60–80 
 mm3 were intravenously injected with either 10 mg/kg IYIY-
DNP, 10 mg/kg YIYI-DNP, or 1.4 mg/kg DNP (equiva-
lent to 10 mg/kg IYIY-DNP) (n = 6 for each group) every 
alternate day for 5 cycles. For control groups, DNP-KLH 
immunized mice and non-immunized mice were treated with 
saline. The tumor dimension was measured every two days 
using a caliper (TESA Technology, Renens, Switzerland). 
The tumor volume,  mm3, was calculated using the formula 
[(L ×  W2)/2], where L is the longest dimension and W is 
the shortest dimension. The blood was drawn retro-orbitally 
from the mice at the next day of five cycles of treatment (day 
10) to quantify the level of anti-DNP IgG and IgM antibody 
using ELISA.

Statistical analysis

All data were analyzed statistically using SPSS, nonpara-
metric Mann–Whitney U-Test to compare between groups 
in the case of violation of normality assumption. One-way 
ANOVA with Tukey’s Multiple Comparisons were used to 
compare means among the two groups of samples. Student’s 
t test was used to analyze between two groups. Mean differ-
ences were considered statistically significant when the p 
value was less than 0.05.

Results

Synthesis of conjugates IYIY‑DNP and YIYI‑DNP

A modified route was used to synthesize IY-IY targeting 
group S1 (IY-IY-NH2) and YI-YI non-targeting control S4 
(YI-YI-NH2) on a large scale as previously reported [25]. 
The reactive groups on S1 and S2 (DNP-PEG2-acid) were 
protected with Boc and t-butyl groups to inhibit cross-reac-
tivity during the synthesis. Compound S1 and S2 contained 
a reactive amine handle that allowed easy conjugation with 
the activated form of PEG2-DNP-carboxylic acid (S3). 
The protected groups were cleaved at the last step in acidic 
conditions to give the desired compound, IYIY-DNP and 
YIYI-DNP that were purified by Prep HPLC. The synthesis 
scheme and characterization are described in Fig S1.
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In vitro cytotoxicity assay

First, the toxicity of the conjugates and the parent DNP was 
tested in short (2 h) and long (24 h) incubation times against 
TrkC expressing 4T1 breast carcinoma cells, non-TrkC 
expressing 67NR cells and RAW264.7 macrophage cells. 
Based on the result obtained, 2 h incubation with conjugates 
or DNP did not induce toxicity against the cell lines up to 
30 µM. However, the conjugates induced a dose-dependent 
reduction in cell viability when incubated for 24 h, and 
yielded significantly reduced cell viability at the concen-
tration of 30 µM for 67NR and RAW264.7 cells (Fig. 2). 
Hence, 10 µM was chosen as the concentration for subse-
quent ADCP assay with 2 h of incubation.

In Vitro antibody‑dependent cellular phagocytosis 
(ADCP)

IYIY-DNP was designed to trigger phagocytes to phago-
cytose TrkC + tumor cells bound with IYIY-DNP and anti-
DNP antibody. This assay was performed by co-culturing 
TrkC + 4T1 or TrkC- 67NR cells with RAW264.7 mac-
rophage cells, together with IYIY-DNP or YIYI-DNP in 
the presence of anti-DNP antibodies. As shown in Fig. 3a, 
TrkC + 4T1 and RAW264.7 cells interacted to form clusters 
in the presence of IYIY-DNP and anti-DNP antibody, but not 
for the scrambled control YIYI-DNP (Fig. 3b). TrkC- 67NR 
cell was used to confirm the ability of IYIY-DNP in inducing 

Fig. 2  Percentage cell viabilities 
for a TrkC expressing 4T1 
cells, b non-TrkC expressing 
67NR cells and c RAW264.7 
macrophage cells after 2 h and 
24 h incubation with different 
concentrations of IYIY-DNP, 
YIYI-DNP and DNP. Data 
represent mean ± SEM from 
three independent experiments 
(n = 3). *p < 0.05, IYIY-DNP 
and YIYI-DNP vs DNP using 
one-way ANOVA (Tukey’s test)

Fig. 3  In vitro antibody-dependent cellular phagocytosis in the pres-
ence of 0.1% of anti-DNP antibodies. RAW264.7 macrophages were 
labelled with green dye whereas cancer cells (4T1, 67NR) were 
labelled with red dye. a 4T1 with 10  µM IYIY-DNP, b 4T1 with 
10  µM YIYI-DNP, c 67NR with 10  µM IYIY-DNP, d 67NR with 
10  µM YIYI-DNP. Data shown are representative of at least five 
fields, three independent experiments (n = 3) with similar results
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interaction between macrophages and tumor cells. As shown 
in Fig. 3c, d, neither IYIY-DNP nor YIYI-DNP promoted 
cells interaction. This indicated that IYIY-DNP bound to 
TrkC + 4T1 cells, and the anti-DNP antibody recruited the 
RAW264.7 cells to target the former. In the absence of anti-
DNP antibodies, IYIY-DNP, YIYI-DNP-treated 4T1 and 
67NR existed as individual cells with no cell–cell interac-
tion or cluster formation (Fig S2, S3).

In Vivo acute toxicity test

IYIY-DNP, YIYI-DNP and parent DNP at doses of 10, 20 
and 30 mg/kg were administered intravenously for acute tox-
icity studies. Mice treated with IYIY-DNP at 30 mg/kg died 
after 1 min of administration, whereas mice treated with 
YIYI-DNP at 30 mg/kg were inactive and showed movement 
difficulties with horrent fur for about 40 min before becom-
ing normal again. The behavior of mice administered with 
20 mg/kg IYIY-DNP was the same as YIYI-DNP at 30 mg/
kg and became normal after 20 min. However, mice adminis-
tered with 10 mg/kg IYIY-DNP tolerated the conjugate well, 
and DNP at 4.2 mg/kg (equivalent to 30 mg/kg of conjugate) 
did not cause movement difficulties, or weight loss in the 
mice up to 14 days observation (Fig. 4).

In Vivo antitumor efficacy

For the antitumor efficacy study as planned in Fig. 5a, 
mice were first immunized with two doses (1 week apart) 
of 2,4-dinitrophenol-Keyhole Limpet Hemocyanin (DNP-
KLH), followed by tumor cell inoculation. Prior to evaluat-
ing the anti-tumor efficacy of the conjugates, the quantities 

of anti-DNP antibodies produced in the mice post-DNP-
KLH immunization were quantified. After immunization 
with DNP-KLH in complete and incomplete Freund’s adju-
vants, blood was drawn retro-orbitally from mice and both 
the anti-DNP IgG and anti-DNP IgM antibodies levels were 
quantified. Immunized mice had about 1.5–8.4 ×  106 U/mL 
of anti-DNP IgG antibody whereas no anti-DNP IgG anti-
body was found in non-immunized mice. Anti-DNP IgM 
antibody was positive for immunized mice, at 0.7 to 6 ×  106 
U/mL, and a lower amount of 0.2 to 0.4 ×  106 U/mL in non-
immunized mice (Fig S4a).

The DNP-KLH immunized mice bearing TrkC + 4T1 
tumor ranging from 60 to 80  mm3 volume were randomly 
divided into groups for treatment with the conjugate 10 mg/
kg of IYIY-DNP, 1.4 mg/kg of DNP (equivalent to 10 mg/
kg IYIY-DNP) and control saline. The mice were treated 
with IYIY-DNP, DNP or saline on alternate days for five 
cycles. The experiment was repeated in non-immunized 
4T1 tumor-bearing mice. As shown in Fig. 5b, IYIY-DNP-
treated mice significantly (p < 0.05) reduced tumor growth 
compared to immunized control mice at day 5 (69.6 ± 12.8 
 mm3 vs 164.1 ± 34.6  mm3, p = 0.018), day 7 (94.3 ± 16.6 
 mm3 vs 172.3 ± 30.8  mm3, p = 0.045) and day 9 (84.9 ± 18.6 
 mm3 vs 207.3 ± 32.6  mm3, p = 0.018) post-initial treatment. 
The tumor volume in the IYIY-DNP-treated mice was the 
lowest among all the groups up to day-20 of observation. 
Conversely, tumor volume of DNP-treated immunized and 
non-immunized mice had no significant differences com-
pared to control saline groups.

As IYIY-DNP showed the best antitumor activity in 4T1 
mice; hence, it was used to confirm the selective antitu-
mor efficacy in TrkC- 67NR model. As shown in Fig. 5c, 
IYIY-DNP-treated 67NR tumor-bearing mice had compa-
rable tumor volume with non-immunized mice. For ease 
of comparison, antitumor efficacies of IYIY-DNP in both 
TrkC + and TrkC- tumors are plotted in Fig. 5d. IYIY-DNP 
showed significant tumor regression in the TrkC + 4T1 
tumor, compared to IYIY-DNP 67NR-treated mice from 
day-5 onwards. Area under the curve (AUC) was calcu-
lated to compare the overall tumor volume among groups 
in 4T1 and 67NR. As shown in Fig. 5e, IYIY-DNP-treated 
group has 45% lower tumor volume compared to immunized 
control mice. This confirms the selectivity of IYIY-DNP 
in targeting TrkC, in agreement with the enhanced efficacy 
observed in TrkC expressing cancer.

Blood was drawn retro-orbitally from the mice at day-
10 (the day after completion of five treatment cycles) to 
quantify levels of anti-DNP IgG and IgM after five cycles 
of treatment. The results revealed that anti-DNP IgG had 
increased to levels higher than pre-treatment and the level 
of IgM (Fig S4). A graph analysis was plotted to com-
pare the anti-DNP IgG and IgM antibodies in pre- and 

Fig. 4  Bodyweight of the healthy Balb/c female mice administered 
intravenously with IYIY-DNP and YIYI-DNP and DNP at selected 
doses. Data represent the average body weight (g) of two mice per 
treatment group
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post-treatment, as shown in Fig. 6. IgG and IgM antibodies 
in pre-treatment samples averaged 3.0 ×  106 ± 0.4 U/mL 
and 2.7 ×  106 ± 0.2 U/mL, respectively. On average, there 
were 58% (p = 0.002) increments in the IgG antibody in the 
mice that received IYIY-DNP compared to pre-treatment. 
For controls, DNP-treated mouse showed 74% increase 
in the IgG, while the IgG in the saline-treated mice was 
78% (p = 0.003), both compared to pre-treatment. On the 
other hand, anti-DNP IgM antibodies were reduced in 
post-treatment among compared to pre-treatment; levels of 
IgM in IYIY-DNP, DNP and the saline-treated group were 
67% (p < 0.0001), 81% (p < 0.0001) and 79% (p < 0.0001), 
respectively.

Discussion

We report the first combined use of hapten-based pre-immu-
nization and targeted-labelling of cancer cells with TrkC-
binding-dipeptide-hapten antigen constructs (IYIY-DNP) 
for eliciting ADCP in a metastatic mammary cancer model. 
IYIY-DNP (MW = 1322.33), a small construct consist-
ing of 2, 4-dinitrophenol (DNP) chemically combined to a 
TrkC-binding dipeptide of facilitated selective association 
of RAW264.7 macrophages to the TrkC expressing 4T1 can-
cer cells in vitro, and suppressed growth of 4T1 tumor in 
IYIY-DNP-immunized BALB/c mice by 36.1% at 10 mg/
kg dose (p < 0.05, compared to that of the DNP-immunized 
saline control). The tumor growth suppression activity by 

Fig. 5  In vivo antitumor efficacy study with a schematic diagram on 
the workflow. Antitumor efficacy of IYIY-DNP conjugates and DNP 
in b TrkC + 4T1 and c TrkC- 67NR tumor-bearing mice. d Antitu-
mor efficacy of IYIY-DNP in 4T1 and 67NR tumor-bearing mice. e 
Percentage of tumor reduction based on area under the tumor growth 
curve of IYIY-DNP and DNP in 4T1 and 67NR tumor-bearing mice, 

compared to respective immunized control mice. Arrow indicated 
the treatment given. The graph showed the mean ± SEM of tumor 
volume, n = 6. *p < 0.05 for IYIY-DNP- vs DNP-treated immunized 
mice, # p < 0.05 for IYIY-DNP vs immunized control saline, using 
nonparametric Mann–Whitney U-test. †p < 0.05 for 4T1 IYIY-DNP 
vs 67NR IYIY-DNP, using nonparametric Mann–Whitney U-test
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the IYIY-DNP in DNP-immunized mice was associated with 
an increase in the anti-DNP IgG (7.3 ×  106 ± 1.6 U/mL) and 
IgM (0.9 ×  106 ± 0.07 U/mL) antibodies after five cycles of 
DNP treatment.

DNP hapten has been reported to be toxic; it apparently 
acts by decreasing the electrochemical gradients that are 
essential for oxidative phosphorylation across the mitochon-
drial membrane [26]. Hence, an in vitro toxicity tests were 
carried out to determine the safety threshold of DNP and its 
conjugate: up to 10 µM of the conjugates or DNP were non-
toxic to cell lines treated for 2 h and 24 h. However, toxicity 
occurred at 30 µM when incubated for 24 h for both conju-
gates, but not for DNP. Cytotoxicities of the conjugates at 
30 µM at 24 h were not dependent on the TrkC expression of 
the cells, as the RAW 264.7 macrophages and TrkC negative 
67NR cells had lower viability compared to TrkC expressing 
4T1, perhaps due to prolonged incubation time, triggering 
non-selective binding to cells. This observation is similar 
to our previous studies using a TrkC targeted photosensi-
tizer conjugate, whereby increased toxicity with increasing 
incubation time was observed regardless of the TrkC status 
[16]. Shorter incubation times can probe for selectivity in 
active targeting; hence, 2 h was used as the incubation time 
for the ADCP assay. For in vivo toxicity test, IYIY-DNP was 
neurotoxic to the mouse, indicated by the contraction of the 
limb muscle, jerking and seizure. The lethal dose (30 mg/
kg) and maximum tolerated dose (20 mg/kg) of the IYIY-
DNP in vivo were observed to be the same as our previous 
study using IYIY-I2-BODIPY [16]. This indicated that the 
observed toxicity is due to the IYIY-ligand, which is postu-
lated to bind the conjugate to TrkC of the neuronal cells and 
induces neuronal excitatory and necrosis [27]. 

Antibody levels are crucial for ADCP and directly deter-
mine the antitumor efficacy of the conjugate. There was an 
increase in anti-DNP IgG antibodies in IYIY-DNP, YIYI-
DNP and DNP-treated mice compared to the pre-treatment. 
This phenomenon has been observed before in conjugates 
containing antigenic DNP conjugates; these prime more 
memory B cells to produce anti-DNP IgG for defense [28]. 
Levels of IgM antibodies appeared higher in pre-treatment 
and decreased after five cycles of conjugates or DNP admin-
istration, accompanied by increased IgG. IgM is the first 
line defense antibody in acute exposure, and IgM becomes 
less prevalent than IgG following antigen exposure [29, 30]. 
High IgG in the saline-treated group is a common phenom-
enon of IgG production post-immunization, where the anti-
bodies levels may increase [31]. Among the three groups, 
IYIY-DNP-treated mice have on average lower anti-DNP 
IgG antibodies in the blood and we postulated that this might 
be due to their infiltration to the tumor microenvironment 
post-IYIY-DNP treatment. Conversely, there was no selec-
tivity against TrkC + tumor cells in non-targeted YIYI-DNP, 
DNP and saline-treated groups; hence, the antibodies in 
these groups remained high.

Tumor growth in the IYIY-DNP-treated group was 
delayed throughout the first five cycles, but the tumors grew 
rapidly once the treatment was stopped. The reasons for this 
contrast might be depletion of antigenic DNP in the body, 
which reduced the priming of B cells to produce anti-DNP 
IgG, as well as the possibility of IgG depletion from binding 
to IYIY-DNP-cancer cell complex. Thus, continuous admin-
istration of the conjugates might stabilize the disease from 
progressing. When conducted in non-immunized mice, both 
IYIY-DNP and DNP did not induce tumor ablation in both 
4T1 and 67NR bearing mice, suggesting that IYIY-DNP is 
selective against TrkC + cells in hapten DNP-immunized 
mice. In comparison, non-immunized monoclonal antibody-
based targeted therapy such as trastuzumab [32], alemtu-
zumab [33], rituximab [34] directly target surface molecules 
HER2, CD52 and CD20, respectively, on cancer cells. These 
mAb not only induce targeted cell death by blocking ligand-
receptor interaction that are essential for survival, but are 
also reported to mediate ADCP, ADCC and complement-
dependent cytotoxicity (CDC) [35]. We postulate that 
ADCC and CDC might also be triggered in our therapeutic 
approach due to the abundance of the targeted receptors, 
which could produce antibodies against the targeted antigen. 
Further in-depth studies on the ADCC and CDC of IYIY-
DNP are warranted.

In conclusion, this study demonstrates macrophage-
dependent ADCP may be induced in tumor-bearing subjects 
through the combined use of hapten-based pre-immunization 
and targeted-labelling of cancer cells by tumor cell-bind-
ing-dipeptide-hapten antigen constructs. IYIY-DNP targets 
TrkC + metastatic mammary tumors, probably through the 

Fig. 6  Average number of anti-DNP IgG and IgM antibodies calcu-
lated based on individual mouse in pre-treatment and post-treatment. 
The graph represents mean ± SEM of (n = 18) in pre-treatment, IYIY-
DNP, DNP, and saline-treated mice. Values represent percentages 
of increased (IgG) and decreased (IgM) compared to pre-treatment. 
**p < 0.005 for post-treatment IYIY-DNP, DNP and control saline vs 
pre-treatment, ***p < 0.0001 for post-treatment IYIY-DNP, DNP and 
control saline vs pre-treatment, using independent T test
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induction of ADCP. Looking ahead, immune profiling of T 
cells and B cells post-treatment with the IYIY-DNP may be 
warranted to understand mechanisms of ADCP facilitation.
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