Skip to main content
Science Progress logoLink to Science Progress
. 2011 Mar 1;94(1):97–107. doi: 10.3184/003685011X12979697342151

Nanoparticles and modulation of immune responses

Igor Pantic 1
PMCID: PMC10365343  PMID: 21548529

Abstract

The exact role of engineered nanomaterials in immune system modulation remains unclear. The aim of this concise review is to give a comprehensive insight into recent published scientific data concerning the modulation of innate and adaptive immune responses by engineered nanoparticles, and to provide a basis for future experimental work related to designing safer, and more efficient biomaterials.

Keywords: nanoparticle, immune, innate, adaptive, opsonization, phagocytosis, dendritic, PEGylation, vaccine, immonotoxicity

Full Text

The Full Text of this article is available as a PDF (213.2 KB).

References

  • 1.Pantic I. (2010) Magnetic nanoparticles in cancer diagnosis and treatment: novel approaches. Rev. Adv. Mater. Sci., 26, 14–34. [Google Scholar]
  • 2.Powell A.C., Paciotti G.F., and Libutti S.K. (2010) Colloidal gold: a novel nanoparticle for targeted cancer therapeutics. Methods Mol. Biol., 624, 375–384. [DOI] [PubMed] [Google Scholar]
  • 3.Zolnik B.S., and Sadrieh N. (2009) Regulatory perspective on the importance of ADME assessment of nanoscale material containing drugs. Adv. Drug Deliv. Rev., 61, 422–427. [DOI] [PubMed] [Google Scholar]
  • 4.Petrelli F., Borgonovo K., and Barni S. (2010) Targeted delivery for breast cancer therapy: the history of nanoparticle-albumin-bound paclitaxel. Expert Opin. Pharmacother., 11, 1413–1432. [DOI] [PubMed] [Google Scholar]
  • 5.Dobrovolskaia M.A., and McNeil S.E. (2007) Immunological properties of engineered nanomaterials. Nature Nanotechnology, 2, 469–478. [DOI] [PubMed] [Google Scholar]
  • 6.Stolnik S., Illum L., and Davis S.S. (1995) Long circulating microparticulate drug carriers. Adv. Drug Deliv. Rev., 16, 195. [Google Scholar]
  • 7.Shan X., Liu C., Yuan Y., Xu F., Tao X., Sheng Y., and Zhou H. (2009) In vitro macrophage uptake and in vivo biodistribution of long-circulation nanoparticles with poly(ethylene-glycol)-modified PLA (BAB type) triblock copolymer. Colloids Surf. B. Biointerfaces, 72, 303–311. [DOI] [PubMed] [Google Scholar]
  • 8.Ryan S.M., Mantovani G., Wang X., Haddleton D.M., and Brayden D.J. (2008) Advances in PEGylation of important biotech molecules: delivery aspects. Expert Opin. Drug Deliv., 5, 371–383. [DOI] [PubMed] [Google Scholar]
  • 9.Owens D.E. 3rd, and Peppas N.A. (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm., 307, 93–102. [DOI] [PubMed] [Google Scholar]
  • 10.Gonçalves C., Torrado E., Martins T., Pereira P., Pedrosa J., and Gama M. (2010) Dextrin nanoparticles: studies on the interaction with murine macrophages and blood clearance. Colloids Surf. B. Biointerfaces, 75(2), 483–489. [DOI] [PubMed] [Google Scholar]
  • 11.Zhang Y., Kohler N., and Zhang M. (2002) Surface modification of super-paramagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials, 23, 1553–1561. [DOI] [PubMed] [Google Scholar]
  • 12.Zhang Z., Jia J., Lai Y., Ma Y., Weng J., and Sun L. (2010) Conjugating folic acid to gold nanoparticles through glutathione for targeting and detecting cancer cells. Bioorg. Med. Chem., 18, 5528–5534. [DOI] [PubMed] [Google Scholar]
  • 13.Pan J., and Feng S.S. (2009) Targeting and imaging cancer cells by folatedecorated, quantum dots (QDs)–loaded nanoparticles of biodegradable polymers. Biomaterials, 30, 1176–1183. [DOI] [PubMed] [Google Scholar]
  • 14.Zheng Y., Cai Z., Song X., Chen Q., Bi Y., Li Y., and Hou S. (2009) Preparation and characterization of folate conjugated N-trimethyl chitosan nanoparticles as protein carrier targeting folate receptor: in vitro studies. J. Drug Target, 17, 294–303. [DOI] [PubMed] [Google Scholar]
  • 15.Santra S., Liesenfeld B., Dutta D., Chatel D., Batich C.D., Tan W., Moudgil B.M., and Mericle R.A. (2005) Folate conjugated fluorescent silica nanoparticles for labeling neoplastic cells. J. Nanosci. Nanotechnol., 5, 899–904. [DOI] [PubMed] [Google Scholar]
  • 16.Plotkin S.A. (2009) Vaccines: the fourth century. Clin. Vaccine Immunol., 16, 1709–1719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Singh M., and Srivastava I. (2003) Advances in vaccine adjuvants for infectious diseases. Curr. HIV Res., 1, 309–320. [DOI] [PubMed] [Google Scholar]
  • 18.Peek L.J., Middaugh C.R., and Berkland C. (2008) Nanotechnology in vaccine delivery. Adv. Drug Deliv. Rev., 60, 915–928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Adair B.M. (2009) Nanoparticle vaccines against respiratory viruses. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 1, 405–414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Singh M., Chakrapani A., and O'Hagan D. (2007) Nanoparticles and micro-particles as vaccine-delivery systems. Expert Rev. Vaccines, 6, 797–808. [DOI] [PubMed] [Google Scholar]
  • 21.Podda A., Del Giudice G., and O'Hagan D.T. (2006) MF59: a safe and potent adjuvant for human use. In: Schijns V.E.J.C., and O'Hagan D.T. (eds.), Immunopotentiators in modern vaccines, pp. 149–159. Academic Press, Burlington, MA. [Google Scholar]
  • 22.Drane D., and Pearse M.J. (2006) The ISCOMATRIXTM adjuvant. In: Schijns V.E.J.C., and O'Hagan D.T. (eds.), Immunopotentiators in modern vaccines, pp. 191–215. Academic Press, Burlington, MA. [Google Scholar]
  • 23.Kabanov A.V., and Vinogradov S.V. (2009) Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew. Chem. Int. Ed. Engl., 48, 5418–5429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Oishi M., and Nagasaki Y. (2010) Stimuli-responsive smart nanogels for cancer diagnostics and therapy. Nanomedicine (Lond.), 5, 451–468. [DOI] [PubMed] [Google Scholar]
  • 25.Kitano S., Kageyama S., Nagata Y., Miyahara Y., Hiasa A., Naota H., Okumura S., Imai H., Shiraishi T., Masuya M., Nishikawa M., Sunamoto J., Akiyoshi K., Kanematsu T., Scott A.M., Murphy R., Hoffman E.W., Old L.J., and Shiku H. (2006) HER2-specific T-cell immune responses in patients vaccinated with truncated HER2 protein complexed with nanogels of cholesteryl pullulan. Clin. Cancer Res., 12, 7397–7405. [DOI] [PubMed] [Google Scholar]
  • 26.Kageyama S., Kitano S., Hirayama M., Nagata Y., Imai H., Shiraishi T., Akiyoshi K., Scott A.M., Murphy R., Hoffman E.W., Old L.J., Katayama N., and Shiku H. (2008) Humoral immune responses in patients vaccinated with 1-146 HER2 protein complexed with cholesteryl pullulan nanogel. Cancer Sci., 99, 601–607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Aoki M., Ueda S., Nishikawa H., Kitano S., Hirayama M., Ikeda H., Toyoda H., Tanaka K., Kanai M., Takabayashi A., Imai H., Shiraishi T., Sato E., Wada H., Nakayama E., Takei Y., Katayama N., Shiku H., and Kageyama S. (2009) Antibody responses against NY-ESO-1 and HER2 antigens in patients vaccinated with combinations of cholesteryl pullulan (CHP)-NY-ESO-1 and CHP-HER2 with OK-432. Vaccine, 27, 6854–6861. [DOI] [PubMed] [Google Scholar]
  • 28.Kawabata R., Wada H., Isobe M., Saika T., Sato S., Uenaka A., Miyata H., Yasuda T., Doki Y., Noguchi Y., Kumon H., Tsuji K., Iwatsuki K., Shiku H., Ritter G., Murphy R., Hoffman E., Old L.J., Monden M., and Nakayama E. (2007) Antibody response against NY-ESO-1 in CHP-NY-ESO-1 vaccinated patients. Int. J. Cancer, 120, 2178–2184. [DOI] [PubMed] [Google Scholar]
  • 29.Yoshikawa T., Okada N., Oda A., Matsuo K., Matsuo K., Mukai Y., Yoshioka Y., Akagi T., Akashi M., and Nakagawa S. (2008) Development of amphiphilic gamma-PGA-nanoparticle based tumor vaccine: potential of the nanoparticulate cytosolic protein delivery carrier. Biochem. Biophys. Res. Commun., 366(2), 408–413. [DOI] [PubMed] [Google Scholar]
  • 30.Yamaguchi S., Tatsumi T., Takehara T., Sasakawa A., Yamamoto M., Kohga K., Miyagi T., Kanto T., Hiramastu N., Akagi T., Akashi M., and Hayashi N. (2010) EphA2-derived peptide vaccine with amphiphilic poly(gamma-glutamic acid) nanoparticles elicits an anti-tumor effect against mouse liver tumor. Cancer Immunol Immunother., 59(5), 759–767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Nakagawa S. (2008) Efficacy and safety of poly (gamma-glutamic acid) based nanoparticles (gamma-PGA NPs) as vaccine carrier. Yakugaku Zasshi., 128(11), 1559–1565. [DOI] [PubMed] [Google Scholar]
  • 32.Broos S., Lundberg K., Akagi T., Kadowaki K., Akashi M., Greiff L., Borrebaeck C.A., and Lindstedt M. (2010) Immunomodulatory nanoparticles as adjuvants and allergen-delivery system to human dendritic cells: Implications for specific immunotherapy. Vaccine, 28(31), 5075–5085. [DOI] [PubMed] [Google Scholar]
  • 33.Vallhov H., Qin J., Johansson S.M., Ahlborg N., Muhammed M.A., Scheynius A., and Gabrielsson S. (2006) The importance of an endotoxin-free environment during the production of nanoparticles used in medical applications. Nano Lett., 6(8), 1682–1686. [DOI] [PubMed] [Google Scholar]
  • 34.Jones C.F., and Grainger D.W. (2009) In vitro assessments of nanomaterial toxicity. Adv. Drug Deliv. Rev., 61(6), 438–456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Gordon E.M., Levy J.P., Reed R.A., Petchpud W.N., Liu L., Wendler C.B., and Hall F.L. (2008) Targeting metastatic cancer from the inside: a new generation of targeted gene delivery vectors enables personalized cancer vaccination in situ. Int. J. Oncol., 33, 665–675. [PubMed] [Google Scholar]
  • 36.Chakravarthy K.V., Bonoiu A.C., Davis W.G., Ranjan P., Ding H., Hu R., Bowzard J.B., Bergey E.J., Katz J.M., Knight P.R., Sambhara S., and Prasad P.N. (2010) Gold nanorod delivery of an ssRNA immune activator inhibits pandemic H1N1 influenza viral replication. Proc. Natl. Acad. Sci. USA, 107, 10172–10177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Nguyen D.N., Chen S.C., Lu J., Goldberg M., Kim P., Sprague A., Novobrantseva T., Sherman J., Shulga-Morskaya S., de Fougerolles A., Chen J., Langer R., and Anderson D.G. (2009) Drug delivery-mediated control of RNA immunostimulation. Mol. Ther., 17, 1555–1562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Subramanya S., Kim S.S., Abraham S., Yao J., Kumar M., Kumar P., Haridas V., Lee S.K., Shultz L.D., Greiner D.N.M., and Shankar P. (2010) Targeted delivery of small interfering RNA to human dendritic cells to suppress dengue virus infection and associated proinflammatory cytokine production. J. Virol., 84, 2490–2501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Dobrovolskaia M.A., Germolec D.R., and Weaver J.L. (2009) Evaluation of nanoparticle immunotoxicity. Nature Nanotechnol., 4, 411–414. [DOI] [PubMed] [Google Scholar]
  • 40.Ladics G.S. (2007) Primary immune response to sheep red blood cells (SRBC) as the conventional T-cell dependent antibody response (TDAR) test. J. Immunotoxicol., 4, 149–52. [DOI] [PubMed] [Google Scholar]
  • 41.Turjacanin D., Pantic I., and Ristic S. (2009) Effects of prolonged administration of lysine-acetylsalicylate on humoral immune response in guinea-pigs. Second congress of physiological sciences of Serbia with international participation, p. 147. Kragujevac, Serbia, Abstract Book. [Google Scholar]
  • 42.Kedmi R., Ben-Arie N., and Peer D. (2010) The systemic toxicity of positively charged lipid nanoparticles and the role of Toll-like receptor 4 in immune activation. Biomaterials, 31, 6867–6875. [DOI] [PubMed] [Google Scholar]
  • 43.Schanen B.C., Karakoti A.S., Seal S., Drake D.R. 3rd, Warren W.L., and Self W.T. (2009) Exposure to titanium dioxide nanomaterials provokes inflammation of an in vitro human immune construct. ACS Nano, 3, 2523–2532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Ainslie K.M., Tao S.L., Popat K.C., Daniels H., Hardev V., Grimes C.A., and Desai T.A. (2009) In vitro inflammatory response of nanostructured titania, silicon oxide, and polycaprolactone. J. Biomed. Mater. Res. A, 91, 647–655. [DOI] [PubMed] [Google Scholar]

Articles from Science Progress are provided here courtesy of SAGE Publications

RESOURCES