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Abstract

Alzheimer’s Disease (AZD) is a neurodegenerative disease for which there is now no known 

effective treatment. Mild cognitive impairment (MCI) is considered a precursor to AZD and 

affects cognitive abilities. Patients with MCI have the potential to recover cognitive health, 

can remain mildly cognitively impaired indefinitely or eventually progress to AZD. Identifying 

imaging-based predictive biomarkers for disease progression in patients presenting with evidence 

of very mild/questionable MCI (qMCI) can play an important role in triggering early dementia 

intervention. Dynamic functional network connectivity (dFNC) estimated from resting-state 

functional magnetic resonance imaging (rs-fMRI) has been increasingly studied in brain disorder 

diseases. In this work, employing a recent developed a time-attention long short-term memory 

(TA-LSTM) network to classify multivariate time series data. A gradient-based interpretation 

framework, transiently-realized event classifier activation map (TEAM) is introduced to localize 

the group-defining “activated” time intervals over the full time series and generate the class 

difference map. To test the trustworthiness of TEAM, we did a simulation study to validate the 

model interpretative power of TEAM. We then applied this simulation-validated framework to 

a well-trained TA-LSTM model which predicts the progression or recovery from questionable/

mild cognitive impairment (qMCI) subjects after three years from windowless wavelet-based 

dFNC (WWdFNC). The FNC class difference map points to potentially important predictive 

dynamic biomarkers. Moreover, the more highly time-solved dFNC (WWdFNC) achieves better 

performance in both TA-LSTM and a multivariate CNN model than dFNC based on windowed 
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correlations between timeseries, suggesting that better temporally resolved measures can enhance 

the model’s performance.

Keywords

rs-fMRI; dynamic functional network connectivity; LSTM; explainable AI; mild cognitive 
impairment

1. INTRODUCTION

Alzheimer’s Disease (AZD) is an age-related leading cause of dementia and is listed as 

the fifth cause of death in elderly Americans [1]. People with AZD experience different 

levels of difficulties in cognitive skills, including memory, language, and problem-solving. 

To date, there is no effective treatment for curing or stopping the progression of dementia 

due to AZD. Mild cognitive impairment (MCI) is a precursor stage of AZD. An individual 

with MCI has experienced a faster cognitive decline than normal aging. Unlike AZD, MCI 

is reversible, and people with MCI have a chance to recover their normal cognitive ability 

[2]. Therefore, predicting how MCI progresses and investigating the biomarkers related 

to cognitive decline are strongly needed for early dementia intervention, such as lifestyle 

changes [3] and cognitive training [4] to prevent progression in patients with strong risk 

indicators.

Blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) 

continuously measures the changes of blood flow as a proxy for localized neuronal brain 

activation. Resting-state fMRI (rs-fMRI) measures the activity under the task-free paradigm, 

representing the default brain signal. Resting state fMRI has been widely used for studying 

the evolving brain configuration related to mental disorders, such as MCI [5, 6], AZD [7], 

and schizophrenia [8]. The high-dimensionality and complexity of rs-fMRI has created a 

rich environment of transformations to study in connection with function and disease. One 

multi-stage transformation of the fMRI signal that has been of increasing interest to fMRI 

researchers is dynamic functional network connectivity (dFNC) [9], which represents the 

dynamic coupling between functional brain networks by computing the Pearson correlation 

on successive sliding windows through the scan (SWCdFNC) [10]. Windowless wavelet-

based dFNC (WWdFNC) [11] computes the connectivity at each scan timepoint using 

time-varying frequency domain information from the continuous wavelet transform. The 

coupling measured in this way has higher temporal and spectral resolution than sliding 

window correlations, which functions as a low-pass filter on the dynamics and blurs the base 

of information [11].

Deep learning has made significant advances using neuroimaging data for classification [12, 

13] and prediction [14] tasks. A number of previous studies have applied machine learning, 

e.g. support vector machines (SVMs) [14] or deep learning methods to identify MCI patients 

who will develop AZD based on neuroimaging data, including rs-fMRI. In one previous 

study, a deep learning network with random forest feature selection was built to perform 

a four-class classification: healthy control (HC), MCI patients who remain diagnosed with 

MCI (MCI-stable), MCI patients who develop AZD (MCI-converters) and patients who 
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start the study with AZD and remain with that diagnosis (AZD) [15]. Multimodal fusion 

deep learning models have also used to predict the MCI conversion to AZD using magnetic 

resonance imaging (MRI) and positron emission tomography (PET) data [16, 17]. However, 

there is much less research attention on the group of patients exhibiting milder cognitive 

deficits falling into the questionable/ mild MCI category (qMCI) who recover healthy 

cognitive function (qMCI-R). That MCI patients can recover is confirmed in several research 

studies; the recovery rate is 8% in clinical studies and 25% in population studies [18]. The 

existing research investigates the qMCI-R predictors mainly in lifestyle activity [3], and 

other diseases’ affect [19, 20], but is very limited in neuroimaging. To fill the research gap, 

it is worth more attention to develop classification/ prediction methods involving qMCI-R 

group.

The problem of understanding “why deep learning models predict what they predict” 

has been attracting more attention recently, with an increased emphasis being placed 

on building interpretable and reliable models [21]. Explainable AI (XAI) allows us to 

explain the model’s result by highlighting the most contributed input features. We can 

evaluate the XAI’s interpretive power by comparing with prior knowledge. In turn, the 

reliable XAI method can help us to uncover unknown class-defining features. In the 

neuroimaging domain, deploying a comprehensive meta-analysis regarding the biomarkers 

related to brain disorders, such as functional or structural biomarkers, is not easy and 

sometimes not consistent because of the individual differentiation in complex brain 

systems, the limited size of the analyzed dataset, and the diversified analytical approaches. 

Reliable XAI is particularly important in domains of such as this, where the science 

is still poorly understood, and can broaden our understanding of class-relevant features. 

Numerous interpretability methods have been developed, including gradient-based [22, 23], 

perturbation-based [24, 25] and SHAP [26]. The saliency map approach [22] is a gradient-

based black-box decoding approach that allows visualization of each input’s contribution. 

The perturbation-based method recursively eliminates or substitutes the input to generate 

feature importance maps based on the change in the predicted score. Perturbation can 

produce out-of-distribution samples and also requires substantial computational power. 

These and other XAI approaches help provide explanations of prediction scores based 

on input features and can be visualized as intensity maps on the input space. However, 

model interpretation for multivariate time series data remains challenging because of the 

conflation between time and features [27]. Temporal Saliency Rescaling (TSR) [27], a 

similar approach to our work, calculates the time and feature relevance scores separately. 

But TSR is evaluated each at each timepoint via perturbation, which does not consider the 

time-dependency of time series data.

Another critical concern impacting the practical utility of interpretation methods centers 

on the trustworthiness and human interpretability of the resulting model explanations. We 

argue that the model’s interpretive trustworthiness is built on the ability to identify at 

least a subset [28] of ground-truth class-defining predictors. Deep learning architectures are 

often underspecified [28, 29] and can achieve equivalent performance focusing on different 

features under random reinitialization. Understandable mappings of predictor importance 

allows humans using these models to learn critical relationships between predictors and 

predictive targets that can inform subsequent domain modeling, and also makes it easier 
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for human domain experts to gauge model trustworthiness. A good interpretation should 

provide a qualitative representation of the relationship between the input and the model 

prediction [29] and be displayed in low-level dimensionality. For example, while image 

classification models use a tensor representation per pixel in each color channel to make the 

final prediction, a good interpretation result may be one channel map showing each pixel’s 

contribution. Likewise, for time series classification, the interpretation needs to translate the 

tensor representation of time-dependency and cell status used by the model into a qualitative 

representation with each time point.

Our contributions

To tackle the challenges outlined above, we introduce a gradient-based interpretation 

framework, Transiently-realized Event Classifier Activation Map (TEAM). This framework 

is capable of interpreting transiently-realized class-defining features of multivariate time 

series from time-attention LSTM (TA-LSTM) classifier. We systematically evaluated 

TEAM’s interpretation power in simulation studies to test the trustworthiness, which is 

a rare practice in other XAI studies. The results demonstrated that the TA-LSTM with 

TEAM efficiently learned from the multivariate time series data and was able to interpret the 

class-defining pattern occurrences (TPO) and class difference features with at least moderate 

correlation when compared to the ground truth, and it achieved 100% sensitivity and 

98.13% mean specificity in interpreting the class difference features. The interpretive power-

validated TEAM was then applied to a real neuroimaging dataset, the latest release in the 

Open Access Series of Imaging Studies (OASIS-3). Our objective was to train and interpret 

the classifier to predict the deterioration or recovery of the qMCI subjects. Furthermore, we 

studied the recovery qMCI groups, which has not been extensively explored in neuroimaging 

studies. The TEAM CDM interpretation results expanded our knowledge of potential 

biomarkers for predicting qMCI progression. Moreover, we find that our models are more 

accurate when trained on higher temporal resolution WWdFNCs vs. the more slowly varying 

SWCdFNCs: accuracy was 79.3% with TA-LSTM and 72.6% with multivariate CNN (refer 

to M-CNN below) trained with WWdFNCs in contrast with accuracies of 72.9% with 

TA-LSTM and 70.2% with M-CNN trained on SWCdFNCs suggests that better temporally 

resolved measures of dynamic brain connectivity can enhance the model’s performance. 

Furthermore, the TA-LSTM model outperformed the baseline model M-CNN on training 

with two types of dFNCs.

2. MATERIALS AND METHODS

2.1. Overall procedure

In the initial phase of this study, six simulation studies were conducted to evaluate 

the interpretive capabilities of the TEAM framework. Multivariate time series data with 

predetermined class-defining features for each group were generated and evaluated using a 

train-test split approach. The TEAM interpretation framework was utilized to analyze the 

temporal pattern occurrences (TPO) and class difference map (CDM) of the class-defining 

features, which were then compared to the synthetic data’s ground truth to assess the 

TEAM’s trustworthiness. Upon validating the TEAM’s efficacy, the same methodology 

was applied to a neuroimaging study to predict the qMCI group’s progression or recovery 
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in the next three-year timeframe after fMRI scanning. The rs-fMRI data underwent 

preprocessing and GICA decomposition to generate fifty-three independent components’ 

time courses in seven domains, as detailed in section 2.2.3. The time courses were 

transformed into Windowless wavelet-based dFNC (WWdFNC), as depicted in Fig. 1, and 

conventional successive sliding windows through the scan (SWCdFNC) was also generated 

for comparison purposes. TA-LSTM was employed to train and evaluate the dFNCs in a ten-

fold cross-validation manner, and the multivariate CNN (M-CNN) model was also trained 

and evaluated using the same procedure for comparison. Finally, the trained models were 

interpreted using the simulation-validated TEAM to generate CDM. The overall procedure is 

depicted in Fig. 1.

2.2 Materials and Data Processing

2.2.1. Synthetic data—To assess the trustworthiness of the interpretation results 

obtained from TEAM, we generated synthetic data, train it using a TA-LSTM model. 

We then interpreted the classifier using TEAM, and assessed the interpretation results. We 

simulated samples of multivariate time series data where each class is defined by transiently-

realized feature patterns. Through TEAM, time points where these class-defining features 

occur should at least partially be identified as important, and those features are expected 

to be at least partially identified and displayed in the class difference map. We created 

six synthetic experiments. Each experiment consists of n( = 26) multivariate time series 

samples. Each sample An ∈ RT x K is a K( = 20)-dimensional time series of length T ( = 30)
timepoints. In the synthetic experiments, every class contains 0 ∼ 2 class-defining features. 

Each class-defining pattern consists of two selected features occur in randomly selected five 

consecutive time points; and it follows the normal distribution with specified mean.

To be specific, we simulated the multivariate time series data following the base distribution, 

which is a Gaussian distribution with μ0 = 0.5 and σ0 = 0.1 except the class-defining feature 

patterns. Each class-defining feature pattern consists of two contiguous features ks, ks + 1 that 

occur at non-repeating five consecutive time points following a distribution with a mean 

of μ. To avoid the repetition of time block selection, we chose the start time point for 

the “random” time block sequentially from the first time point to T − 5 (or reversely). 

A simplified example is shown in Fig. 2, which contains five samples in the positive 

class of S-A. Two features (shown in red and green) act as class-defining features for the 

positive class of S-A, following a distribution with a mean of μ1 that is higher than the base 

distribution and lasts in random five consecutive time points. Once the TA-LSTM model 

finished training on the synthetic data, we expect that TEAM interprets the time blocks 

with class-defining feature patterns occurrences, which are the time points highlighted in 

the light grey blocks in Fig. 2, as well as the class-defining features represented by red and 

green lines. To investigate if TEAM is merely enhancing the global-wise attributes of class 

difference, in S-C, we balanced out the selected features by assigning value in non-selecting 

time points with a determined mean (as shown in the second black box in the Fig. 3 S-C). As 

a result, no feature demonstrates a class-level difference in the average statistics of full-time 

series between classes. More distinct feature patterns were simulated in S-D, S-E, and S-F in 

one or both classes. Table 1 displays all the parameters for the statistics of the synthetic data, 
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while a comprehensive synthetic data set can be seen in Fig. 3. In each simulation within the 

figure, each block represents a multivariate data sample, with only one sample visualized for 

the null (negative) class, and the first four and the last sample visualized for the class with 

predefined class-sharing pattern(s). The color bar for each simulation is shown on the left 

side, and the predefined feature patterns for each non-null class are circled in small black 

boxes in the first displayed sample.

2.2.2. Resting-state fMRI Data—We used data from OASIS-3 [30] which is a 

longitudinal dataset of participants at various stages of cognitive decline related to 

Alzheimer’s Disease collected in Washington University Knight Alzheimer Disease 

Research Center with Institutional Review Board approval. The clinical dementia rating 

(CDR) scale score distinguish a questionable dementia/ mild cognitive impairment (CDR 

0.5) with cognitively health (CDR 0) and dementia (CDR > = 1). We use the CDR scale 

score at and three years after the MR imaging acquired session to identify the progression 

direction of qMCI patients. The qMCI recovery (qMCI-R) subjects had a CDR of 0.5 prior 

to the final scan, and returned to 0 within three years. The qMCI progression (qMCI-P) 

subjects had a CDR of 0.5 at the scan time and progressed to a CDR of greater than 0.5 in 

the three-year timeframe. We used one rs-fMRI session per participant in our final sample 

dataset, and the final dataset consists of 94 rs-fMRI scans (50 qMCI-R, 44 qMCI-P) with 

age and gender-balanced. The demographic information is summarized in Table 2.

We excluded the qMCI subjects with a CDR of 0.5 at and three years after the MR 

session. Based on the available longitudinal clinical demographic records, the stable qMCI 

participants have the potential to recover or to progress within the 3 year timeframe of the 

study. Subjects who neither recover nor progress within this timeframe, so-called “stable 

qMCI” subject, are on indeterminate future paths, with prospective intermediate-horizon 

futures ranging from recovery of normal to persistent qMCI to development of AZD. In 

this group will be a mix of features that relate to disparate unmeasured future outcomes, 

including possible recovery or progression, so the “stable qMCI” cohort cannot be treated as 

the disjoint third class.

2.2.3. Data Preprocessing and dFNC Feature Representation—We preprocessed 

the rs-fMRI using statistical parametric mapping (SPM12, http://www.fil.ion.ucl.ac.uk/spm/) 

by removing first five time points and performing the rigid body motion correction and 

slice timing correction. We used an echo-planar imaging (EPI) template to fit the rs-fMRI 

data into standard Montreal Neurological Institute (MNI) space and resampled to 3 × 3 × 

3 mm3 voxels. The data were smoothed using a Gaussian kernel (FWHM = 5mm), and 

were normalized to finalize the preprocessing. Next, we decomposed the preprocessed rs-

fMRI with group independent component analysis (GICA) to the independent components 

(ICs) and the corresponding timecourses (TCs) by adopting the NeuroMark pipeline [32]. 

Fifty-three pairs of ICs and TCs were selected and arranged into seven functional domains 

based on the spatial location, and seven domains include subcortical (SC), auditory (AU), 

sensorimotor (SM), visual (VI), cognitive control (CC), default mode (DM), and cerebellar 

(CB). The fifty-three independent component network labels and peak coordinates are 

shown in Table 3. In this work, we use z-scored TCs in the analysis.
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We used a windowless wavelet-based functional network connectivity measure as detailed 

in [11] to investigate time-varying connectivity between brain networks. The coupling status 

of networks at each timepoint t ∈ 1,2, …, T} is represented using WWdFNC, a wavelet-

based measure. The WWdFNC starts by performing a continuous wavelet transform of 

each univariate network timeseries sk(t) using the complex Morlet wavelet at J = 20 evenly 

spaced frequencies. For each univariate network timeseries, this results in a complex-valued 

multivariate time-frequency domain timeseries (mTFTs), Sk(t) ∈ CJ. Assuming we have N 

samples and k TCs for each sample as input S = s1, s2, …, sk , we decompose k – tℎ network’s 

time-courses sk into Pk ∈ CJ × T  and let Pk
j, t ∈ C denote the wavelet coefficient that represents 

the power and phase at frequency j in network k at time t. The network connectivity was 

then calculated by taking both power and phase synchrony into account. Power-weighted 

phase synchrony is used to compute the WWdFNC between k – tℎ and l – tℎ at t:

Connk, l
t = ∑

j = 1

20 pk
t + pl

t

2 cos θk
t − θl

t
(1)

where pk
t  and θk

t  are the power and phase coefficient for network k at time t, respectively. The 

pipeline of construction of WWdFNC is shown in Fig. 1.

Another dFNC representation used in this work for evaluation and comparison is computed 

as a set of network-pair correlations on the successive sliding windows through the scan 

(SWCdFNC) [10]. SWCdFNC was computed from the rs-fMRI and underwent the same 

data preprocessing and GICA decomposition NeuroMark pipeline. The preprocessed TCs 

were segmented by a tapered window generated by convolving a rectangle (window size = 

20, TR = 44s) with a Gaussian (σ = 3). The window was slid in the step of 1TR resulting in 

139 windows in total.

2.3. Methodology

2.3.1. Long Short-term Memory (LSTM)—In this work, we used the LSTM-based 

model, TA-LSTM, which features a model architecture starting with three LSTM layers. 

Long short-term memory was initially proposed in [33], and has proved its performance 

in multiple domains while dealing with sequential data. Compared to recurrent neural 

networks, the LSTM architecture can more effectively manage and preserve the long-term 

dependencies. The repeating module, known as unit or cell, is the fundamental building 

block of the LSTM layer. Each unit includes three computation gates, namely forget ft, input 

it, and output ot. These gates work together to regulate the flow of information into, storage 

within, and output from each memory unit. The forget, input and output gate have a sigmoid 

layer σ to regulate the new information xt, previous hidden state ℎt − 1 and long-term memory 

Ct − 1, and the input and output gate have the elementwise multiplication followed after the 

sigmoid function to produce the cell state candidate Ct and cell output ℎt. The new cell state, 

Ct is updated by the previous cell status Ct − 1, Ct, it, and ft. The gates computation and the 

calculation of the corresponding state formula are shown in equation (2) - (7), in which W 
and b are model parameters optimized during the training process.
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it = σ W i ℎt − 1, xt + bi (2)

Ct = tanh W c ℎt − 1, xt + bc (3)

ft = σ W f ℎt − 1, xt + bf (4)

ot = σ W o ℎt − 1, xt + bo (5)

ℎt = ot*tanh Ct (6)

Ct = ft*Ct − 1 + it*Ct (7)

2.3.2. Time Attention Layer—The attention mechanism proposed in [34] represents a 

state-of-art approach that offers more accurate and efficient performance when compared to 

conventional convolutional and recurrent models. Furthermore, [35] highlights the attention 

mechanism’s capability to resolve the vanishing gradient issue while on the interpretation 

work with an additive attention mechanism, as demonstrated in [36]. In this work, we 

incorporated a scaled dot-product layer after LSTM layers, integrating the self-attention 

key, query, and value mechanisms. To map the output of the attention layer to the class 

probabilities for the classification task, a common approach involves applying global 

pooling. Global pooling reduces the dimensionality and summarizes the features in one-cut 

at each hidden neuron level when applied in the LSTM-based model. Considering the 

context of time series data where the “event” occur at unknown and random time, such as 

rs-fMRI data, we have designed the time summarization approach that better extracts the 

high-level feature and represent them in the time representation vector. The time attention 

layer comprises a scaled dot-product and time summarization mechanism. The attention-

weighted output ct calculated from time attention layer is computed by:

ct = 1
∥ ej ∥ ∑

j = 1

j
αtt × vtj and αtt = σ qtj × etj

⊤

∥ ej ∥ (8)

where the query qtj, key etj, and value vtj is the feature representation learned from the last 

LSTM layer. It is to be noted that query qtj is generated by half random dropout to avoid 

overfitting. The scaled dot-product allow each time position connect to all of the position 

to compute the attention score first, then the attention output is computed by attention score 

weighted sum of the value vtj. The attention output further be reduced to the dimensionality 

of one element at one time through the time pooling layer. After the time attention layer, a 

fully connected layer is connected to produce the class probability output. The overview of 

TA-LSTM architecture is shown in Fig. 4.
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2.3.3. Transiently-realized Event Classifier Activation Map (TEAM)—XAI 

mechanisms have been proposed to provide an explanation for how the model arrives at 

its predictions [37], enhancing its trustworthiness and transparency. Additionally, when the 

interpretation mechanism is effective in explaining the data, it can be utilized to expand 

our understanding of data that is not yet fully understood. In this study, we first trained 

the TA-LSTM model, as described in previous sections, in this section, we introduced 

an interpretation framework called Transiently-realized Event classifier Activation Map 

(TEAM), to understand the reasoning, to be specific, the transiently-realized class-defining 

patterns, behind the predictions made by TA-LSTM model. TEAM framework is first tested 

on the simulation data, the interpretation power is evaluated by comparing the results 

to ground truth of synthetic data. Then we applied TEAM framework to understand the 

neuroimaging data, which in this study, was transformed rs-fMRI data used to predict the 

deterioration or recovery of qMCI subjects.

The proposed TEAM framework aims to capture transient time intervals that correspond 

to the occurrence of class-defining patterns, with the purpose of localizing short time 

intervals across the entire time period; and analyze the selected time intervals from input 

between classes to identify class difference features. To accomplish this, the saliency 

map approach [22] is employed to obtain the contribution of each input from the trained 

model. It computes the gradients of the predicted class score with respect to the input by 

finding the derivative via the backpropagation. The saliency map for input An ∈ R{T × K}

is Sn ∈ R{T × K}. The values are averaged across all K features to obtain the temporal 

pattern occurrences (TPO), which shows the contribution of time points with class-defining 

patterns occurrences, as shown in Fig. 5A. Subsequently, we apply the statistical test to the 

original time series input corresponding to the positioning of highly contributing intervals 

acquired from TPO map. To select the highly contributing intervals, time points with value 

in TPO greater than 0.9 percentile threshold T1 and lower than 0.1 percentile threshold T2 in 

each class are extracted, as shown in Fig. 5B, as the red blocks and blue blocks represent 

the upper and lower salient time points, respectively. The T1 and T2 are separately mapped 

the corresponding position to the original input for each class, and four multivariate time 

series lists are acquired: TP1, TP2, TN1, and TN2. (TP1 is a collection of multivariate time 

series that includes the positions of the positive class corresponding to T1, TN2 represents the 

set where T2 maps to the negative class, and so forth.) The statistics t-test (p < 0.05) with 

false discovery rate (FDR) correction (q < 0.05) is performed on each pair of salient time 

intervals and the class difference results are shown in Fig. 5D. The sign between two maps 

were unified by taking the sign of the maximum class-defining difference at each feature 

location to have the CDM, as shown in Fig. 5E.

2.4. Evaluation

2.4.1. Model Training and Performance Evaluation—The simulation data is tested 

in the train-test split evaluation manner, in which 70% of the randomly selected simulation 

data is used for training and the remaining 30% hold-out dataset for testing. Considering the 

low dimensionality and small sample size in the simulation data, the TA-LSTM consists of 
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one LSTM layer with 16 hidden units, the time attention layer, one fully connected layer, 

and one SoftMax output layer to produce the class probabilities. The optimizer is Adam.

As for the model used to predict the recovery vs. progression from qMCI, the TA-LSTM 

consists of three LSTM layers with 64 hidden units in each layer, followed by the time 

attention, fully connected, and output layers. The multivariate CNN model trained as the 

baseline consists of three convolutional layers with 32 filters in each layer (filter length = 

3), one fully connected layer and one SoftMax output layer. Adam optimizer (lr = 1e-4) is 

used for training the models. We tested the model in a ten-fold cross-validation manner. The 

ninety-four data were divided into 90% for training and 10% for testing in each fold. The 

cross-validation evaluation was repeated five times with different random shuffles. A total 

of fifty trials were averaged and used to report the model performance, and the evaluation 

metrics include area under the curve (ROC), accuracy, sensitivity, and specificity.

2.4.2. TEAM Interpretation Power Evaluation—MIP of TEAM is evaluated by 

comparing the interpreted results acquired from TEAM with the ground truth described in 

Table1 for synthetic data. We evaluated MIP from two aspects: recognition of the Temporal 

Pattern Occurrence (MIP-TPO) and class difference map (MIP-CDM). We adapt Pearson 

correlation coefficient r [38] to evaluate the MIP-TPO. The r calculates the similarity 

between the mean saliency map and the pre-defined (ground truth) time stamp of the 

patterns. We believe that the hard threshold extracts the top relevant time points but has 

limitations since the ratio of the pattern occurrences’ stamp at each direction may not be 

0.1. In this case, we measure the MIP-TPO to provide a global representation regardless 

of the duration of the event and the ratio of events over the entire time. The MIP-TPO 

includes Pearson correlation coefficient r (equation (9)) with p – value, in which p – value is 

for testing whether the correlation is significant.

rxy =
∑i = 1

n xi − x‾ yi − y‾
∑i = 1

n xi − x‾ 2 ∑i = 1
n yi − y‾ 2 (9)

The MIP-CDM evaluation metrics include sensitivity and specificity. The sensitivity 

measures the correctly interpreted features (with the correct direction) over the pre-defined 

manipulated features, and the ground truth can refer in Table 1 (parameter s). The 

specificity measures the percentage of correctly interpreted non-manipulated features over 

all nonmeaningful features.

3. RESULTS

3.1. TA-LSTM Model Performance on Synthetic data

The TA-LSTM model achieved 100% classification accuracy on evaluating the held-out 

dataset of Simulation A-F.
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3.2. TEAM MIP on Synthetic data

From the observation of simulation results shown in Fig. 6, the mean saliency maps 

generated from the interpretation framework show consistent activation with the ground 

truth. The MIP-TPO evaluation r assess the similarity, and are shown in Table 4. The S-A, 

S-B, S-C, S-D (negative class), and S-E achieve the at least moderate correlation based 

on the rubrics of Dancey & Reidy interpretation [39]. The S-F shows a weak correlation 

(r = 0.22),but we can observe the mean saliency map interpret the transient intervals in first 

half time period clear. We also conclude that the signs of values in mean saliency map are 

consistent with the designed features’ sign with the relationship of null initialization. The 

designed pattern for positive class in simulation A has a higher value than the mean of the 

base distribution, and the corresponding interpretation shows the positive activation. The 

same relationship can be observed in other results. The positive class in S-D is the only 

one that shows a negative correlation. Remind its ground truths: two different patterns are 

designed and assigned for each class. The activation map correctly identified the negative 

class’s pattern but missed the pattern in the positive class. For all simulations, the p-value 

was also evaluated. All acquired p -value is less than 1e−3, which suggests the mean saliency 

maps have a statistically significant correlation with the ground truth.

For the evaluation of MIP-CDM, the interpreted CDM obtained from t-test with FDR 

correction for S-A through S-F is shown in Fig. 7, and sensitivity and specificity metrics are 

shown in Table 4. The interpretation framework achieves 100% sensitivity in all simulation 

datasets, which means all designed features are correctly interpreted. At most one feature 

is incorrectly recognized across all non-relevant features. Two simulations achieved 94.4% 

specificity, and four simulations achieves 100% specificity.

3.3 Model Performance on prediction of Recovery vs. Progression from qMCI

We evaluated WWdFNC and SWCdFNC feature representations by training with TA-LSTM 

model and multivariate CNN in the ten-fold cross-validation manner. For every ten-fold 

cross-validation, each scan was tested once. We repeated ten-fold cross-validation five times 

with different shuffle parameters, resulting in 50 trials. We used the mean of 50 trials’ 

AUC (Area Under the Curve), accuracy, sensitivity, and specificity as the evaluation metrics. 

The performance is shown in Table 5. The WWdFNC trained by the TA-LSTM achieved 

0.789 of AUC and 79.3% accuracy, increasing an average of 0.06 on the AUC metric, and 

3.1% on accuracy compared to SWCdFNC. The TA-LSTM outperforms an average of 0.1 

in ROC metric than the multivariate CNN model in training both types of dFNC feature 

representations.

3.4 Analysis of class-defining connectivity patterns and discriminative FC biomarkers

We performed the statistical analysis on the cellwise properties on the “strongly-

contributing” time intervals. Based on the observations reported in the preceding section, 

we selected all the T1 and T2 greater than or equal to 3 since we aim to dive into the intervals 

instead of the single or very short time. The independent samples t-test with multiple 

comparison correction results shown in two middle plots of Fig. 8. We also performed an 

additional statistical analysis for validation tests by applying no thresholding. The global 

(no thresholding) cellwise plot shows few levels of significant difference; and no significant 

Gao et al. Page 11

Comput Biol Med. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cells after FDR correction. The validation tests elucidate that the model is not strengthening 

the global-wise attributes of class difference for feature learning and show the discriminative 

temporal patterns that extracted in the saliency maps. The final plot was constructed by 

unifying the middle two plots and shown in left most plot in Fig. 8.

A number of previous studies have investigated the neuroimaging biomarkers for the HC, 

MCI (qMCI), AZD groups. However, to our best knowledge, very few studies have been 

conducted on the recovery qMCI group and the related biomarkers, and there is limited 

comprehensive meta-analysis of qMCI-P. To better consolidate our result and expand the 

comparison to the existing research work, we compared some of our final elementwise 

group FC biomarkers of qMCI-P to the existing AZD-related biomarkers. We believe qMCI-

P should have a higher similarity to AZD than qMCI-R, and the same for qMCI-R, which 

should have a higher similarity to HC than qMCI-P. This kind of qMCI transition biomarkers 

between HC and AZD reflect activity brain networks also noted in [40].

In the left most plot in Fig. 8, we can observe that there is significant higher functional 

network connectivity (FNC) between the lingual gyrus and calcarine gyrus in the VI domain 

shown in qMCI-P compared with qMCI-R, which is consistent with the study that reported 

significant changes associated with AZD [41]. In addition, there are significant higher FNC 

between several occipital and temporal regions in the VI domain as well, which is consistent 

with the amplitude of low-frequency fluctuations (ALFF) study that reported the biomarkers 

related to the MCI group when compared with HC [42]. In the DMN, we found that qMCI-P 

group has significant lower FC between anterior cingulate cortex (ACC) and precuneus, as 

well as between anterior cingulate cortex and posterior cingulate cortex (PCC), which is 

consistent with findings in [40]. The PCC in qMCI-P group shows lower FNC with caudate 

and thalamus in the SC domain; frontal gyrus and frontal gyrus in the CC domain; and PCC 

shows an overall lower FNC with other networks. Our findings of PCC are consistent with 

[43] which states the decreased FNC is shown in MCI compared to HC as early cognition 

decline biomarkers, and [44] which concludes the lower FNC is shown in amnestic MCI and 

AD.

4. DISCUSSION AND CONCLUSION

In this work, we introduce TEAM to capture transiently-realized class-defining features by 

exploiting the TA-LSTM model. This framework is applicable in many domains involving 

time series data. The interpretation ability was evaluated on the aspects of a) performance 

of capturing the transient intervals and b) the performance of identification of class-

defining feature in highly contributing intervals, and achieves high model interpretation 

power on the synthetic data. The simulation-validated interpretation framework was 

applied on the WWdFNC and captured the transiently-realized connectivity biomarkers 

expands our knowledge of dynamic biomarkers for the future recovery or progression 

from the qMCI. Furthermore, the additional accuracy achieved by using “instantaneous” 

WWdFNCs in this model suggests that greater temporal resolution of the input data 

can be productively exploited by LSTMs for improved performance relative to coarser-

grained SWCdFNCs, highlighting the importance of continuing to refine our measures of 

time-varying connectivity. The accuracy achieved by training the two types of dFNC in 
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TA-LSTM model outperformed the baseline mode multivariate CNN suggests the sequence 

learning helps the feature learning compared with convolutional-based model.

4.1 qMCI-R group

Prior research has centered on predicting qMCI conversion using machine learning 

techniques. The linked biomarkers connected to qMCI-P have been evaluated using sMRI, 

PET, rs-fMRI, age, and cognition scores, among other data types. The stable qMCI class 

representing the subject’s continued presence in the qMCI stage across the investigation is 

mostly studied as the contrast class in the prediction task. As we discussed before, stable 

qMCI subjects who neither recover nor progress are on indeterminate future paths. This 

group will be a mix of features that relate to disparate unmeasured future outcomes, and 

cannot be treated as a disjoint class. The qMCI-R group, which recovers to a healthier 

cognitive stage within three years, is on the opposite and definitive path as the qMCI-P 

group, but has received little attention in the neuroimaging data. We worked on tasks on 

the qMCI subject to predict the recovery or progress after the initial diagnosis of qMCI and 

investigated the potentially important predictors of the transition to fill the knowledge gap. 

Due to the limited studies on the qMCI-R group and considering the progression stage of 

AZD, we compared our findings with studies involving qMCI-P, cognitive health, and AZD 

groups. Our findings agreed with previous qMCI-P studies. Furthermore, our results agreed 

that the connectivity biomarkers interpreted for the qMCI-R group are more consistent with 

the cognitive health group reported in other studies, whereas the qMCI-P group is more 

consistent with the AZD group reported in previous works.

4.2 Trustworthiness and human interpretability of TEAM

Building the trustworthiness of both model and interpretation is vital for humans to take 

advantage of machine learning tools. When using model to assist with critical societal 

functions, such as medical diagnosis, the model’s predictions cannot be implemented as part 

of a decision process without assessing their trustworthiness. Furthermore, we can study the 

important features/ predictors from the trustworthy model when domain knowledge is still 

weak. As a result, assessing trustworthiness is critical to convincing humans who are experts 

to trust the model and in getting humans who are not experts in such domains to learn 

the domain and potential predictors. As discussed, trustworthiness is built on the ability to 

interpret a subset of ground truth predictors. The reason for not requiring the entire set of 

predictors is based on the underspecification model [28], which states that the model with 

random parameter initialization may focus on different predictors that are sufficient for the 

model to converge. We argued that if the interpretation can learn a set of predictors can build 

trustworthiness. However, many domains lack feature/predictor importance ground truth to 

validate trustworthiness. In this study, we designed six simulation studies with pre-defined 

predictors that served as ground truth to quantify the trustworthiness of the interpretation 

framework TEAM. Two metrics are evaluated for the model interpretation power for 

multivariate time series data input. We observed the underspecification model scenario in 

the simulation D and F. In simulation D, where the TA-LSTM learned the pattern for the 

negative class, which is indicated by the symbol in the TPO map. And in the simulation F, 

the TPO map mainly concentrated and correctly marked the “activated” time intervals in the 

first half time period. And in other simulations, TEAM interprets the almost entire set of 
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ground truth predictors. Our simulation study results support that TEAM interprets at least 

a subset of ground truth predictors (and in more than half of the simulations, interprets the 

entire set of ground truth predictors) to confirm its trustworthiness. Considering the high 

dimensionality of multivariate time series data, the interpreted results must also be human 

interpretable. TEAM interprets the “activated” time intervals from the full-time axis first and 

class difference map in the selected time intervals. The interpretation result is shown in each 

dimension (time and feature); such low dimensional representation is human interpretable. 

Besides, two metrics, TPO and CDM, are proposed to quantify the model interpretation 

power on multivariate time series data input.

4.3. Why rs-fMRI and Recurrent-based model

To the best of our knowledge, no studies have compared qMCI-R and qMCI-P in a 

prediction task. We conducted a literature search on the most pertinent task, which is the 

prediction of progressive MCI from stable MCI. Some studies are use one or two types of 

neuroimaging data: sMRI and PET data with multimodal fusion and deep neural network 

models [16, 17], sMRI data with semi-supervised learning [45], and sMRI and rs-fMRI 

feature fusion with SVM [46]. Others combined the neuroimaging data with clinical ratings 

and age [45], age-adjusted [47], or cognitive function and longitudinal cerebrospinal fluid 

(CSF) [48] to make such prediction task. We found that characterization of the dynamics, 

which has been actively studied in other neurological diseases, attracted less attention 

in the existing qMCI studies. The average accuracy of mentioned studies’ predictions of 

progressive MCI against stable MCI is 0.836 with learning from images and 0.863 with 

learning from images, demographic data, and clinical scores combined. Despite our result 

of the average AUC 0.789 show slightly lower than the average of the mentioned previous 

studies 0.836 with only using the images, is not the most competitive. The TA-LSTM’s 

sequence learning and time attention unit both emphasizing the active intervals which are 

vital for the post-hoc TEAM interpretation. We believe that our study filled one of the small 

missing pieces of the qMCI study in both involving the recovery group as well as the brain 

dynamics perspective in rs-fMRI.

4.4 Limitation and Future works

We conducted studies on OASIS-3 to explore the prediction of qMCI progression and 

potential dynamic biomarkers related to patient deterioration or recovery from qMCI. Since 

at least three years of longitudinal information is required to recognize qMCI-R and qMCI-P 

subjects, we retrieved less than 100 subjects from OASIS-3. In addition to the present 

study, it is crucial to investigate the performance of the TA-LSTM and TEAM interpretation 

framework on larger and more diverse datasets in the future works. This would allow us to 

assess the scalability of the model and its adaptability to datasets that are more extensive 

and varied, such as ADNI or combinations of multiple public datasets. Additionally, it 

would be valuable to examine how the framework’s performance changes with variations in 

dataset size when presented a larger dataset. This would provide insights into the optimal 

dataset size required to achieve optimal results and identify any potential limitations that 

may arise when working with datasets of different sizes [49]. It is also essential to interpret 

the results on other datasets to identify reproducible biomarkers, including shared group 

dynamic biomarkers or biases in the interpretation process.
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The existing studies regarding qMCI-R mainly focused on the lifestyle activity factors but 

lacked support from the neuroimaging domain. In this work, we employ a purely data-driven 

methodology on the two transition groups that the subject diagnosis with qMCI would 

convert after three years. Unlike other studies that compare the qMCI-P to Stable qMCI, 

we built the model for the qMCI-R and qMCI-P class since the stable qMCI will be 

a combination of attributes related to two conversion outcomes as we discussed in II.B. 

We believed it is important to bring attention on the recover group in triggering early 

dementia intervention. The future works could be to study neuroimaging data and other 

diverse factors, such as lifestyle, eating habits, and clinical treatment, which could influence 

such longitudinal study outcomes. All future works as well as this work, can extend our 

understanding of the potentially predictors relates to the conversion outcome of qMCI 

patients and provide important risk indicators.
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Appendix A

Abbreviation Definition

AZD Alzheimer’s Disease

MCI/qMCI (questionable) mild cognitive impairment

dFNC dynamic functional network connectivity

TA-LSTM time-attention long short-term memory

WWdFNC windowless wavelet-based dFNC

SWCdFNC sliding window dFNC

MIP model interpretation power

TPO temporal pattern occurrence

CDM class difference map

M-CNN multivariate convolutional neural network

CDR clinical dementia rating

qMCI-R recovery questionable mild cognitive impairment

qMCI-P progressive questionable mild cognitive impairment
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Highlights

• Questionable mild cognitive impairment (qMCI) can be an early-stage of 

Alzheimer’s

• LSTM-based model is trained to predict qMCI recovery vs. deterioration.

• An interpretation framework is proposed to understand the model’s decision, 

and

• Explore transient-realized dynamic biomarkers for qMCI prognostic future.

• Interpretation framework’s trustworthiness is extensively validated in 

simulations.
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Fig. 1. 
The figure illustrates the overall procedure used in this study that uses a rigorous 

methodology involving simulation and validation to develop and apply TA-LSTM model 

and TEAM interpretation work for predicting the conversion of qMCI using rs-fMRI data. 

The upper diagram illustrates the steps for conducting a simulation study, which involves 

generating synthetic data, training and evaluating the deep learning model, and validating 

the interpretation power of the TEAM model. The lower diagram outlines the steps for 

predicting the conversion of qMCI using rs-fMRI data, including generating WWdFNC data, 

evaluating deep learning models (TA-LSTM, M-CNN) on WWdFNC and SWCdFNC data, 

and interpreting the results using the TEAM model.
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Fig. 2. 
This figure visualizes a subset of simulated multivariate time series from one class (S-A 

positive class) that contains five samples a1, a4, a10, a16, a26. All samples in this class have 

assigned the same class-defining feature set k2, k3  (as shown in the green and red time 

series), and the statistics followed the normal distribution with a different mean and lasted 

for five consecutive time points. We referred to two selected class-defining features that 

follow a different statistic and last for five consecutive time points, as a class-defining 

pattern. The temporal occurrences of class-defining pattern for various samples begin at 

random time points, and the ground truth of temporal pattern occurrences are highlighted in 

light grey blocks.

Gao et al. Page 21

Comput Biol Med. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
This visualization displays six groups of synthetic data, denoted as S-A to S-F. Each 

simulation is divided into two columns, with the left column representing the negative 

class and the right column representing the positive class. Each block within a simulation 

represents a multivariate data sample, with only one sample visualized for the null (negative) 

class. The x-axis in each block corresponds to the features, while the y-axis corresponds to 

time. The class-defining patterns for each class are highlighted in a small black box in the 

first displayed sample.
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Fig. 4. 
Time-Attention LSTM (TA-LSTM) model architecture includes LSTM layer(s) connected 

with time attention unit and fully connected layer. The hidden status of the n-th hidden units 

in the last layer of the model is represented by ℎ0, ℎ1, …, ℎn . Hn is a matrix that contains the 

hidden status of all the hidden units for each time point. The blue box on the left side of 

the diagram represents a single LSTM unit. The output of the LSTM layer(s), denoted as 

Hn, is then utilized as the input of the time attention unit. The detailed formulation of the 

time attention unit is presented in Section 2.3.2. FC block in the right side stands for fully 

connected layer.
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Fig. 5. 
The pipeline of Transiently-realized Event classifier Activation Map (TEAM) interpretation 

framework. The temporal pattern occurrences (TPO) that define the class were analyzed in 

the time saliency map generated from the trained TA-LSTM model, as depicted in Figure 

5A. Subsequently, the TPO saliency map was thresholded, and the time intervals that made 

a high contribution were extracted for calculating the class difference map (CDM). The 

negative and positive high-contributing time intervals were then separately evaluated using a 

t-test with false discovery rate (FDR) correction between the positive and negative classes, 

as shown in Figure 5D. The final interpretation result of the CDM was calculated by 

determining the sign of the maximum class difference between the two maps in Figure 5D. 

In the t-test with FDR (q < 0.05) correction plot, the red means the class average of positive 

class is significantly greater than the negative class (p < 0.05(FDR)); the index is 0-index, 

consistent with the index in Table 1. The sample data results shown in the figure is from S-A 

result.
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Fig. 6. 
The figure shows the results of TEAM interpreting the temporal pattern occurrence (TPO) 

and their corresponding expected (ground truth) for simulation S-A through S-F. The 

left and right plots represent the negative and positive classes, respectively, for each 

representation. The upper plots show the heatmap are the mean gradient of the saliency map 

representing the interpreted TPO. The x-axis represents time, and the y-axis corresponds 

to each sample. The lower plots display the expected TPO, where each highlighted row in 

the y-axis represents five consecutive time points. For the null class, the expected TPO is 
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null. It should be noted that the subject display sequence in y-axis is the sequence utilized 

for initializing simulation, and used for better visualization, the shuffled dataset is used for 

training, evaluation, and interpretation.
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Fig. 7. 
The figure shows the results of TEAM interpreting the class difference map (CDM) and 

their corresponding expected (ground truth) for simulation S-A through S-F. The top two 

plots are the statistical test result with FDR correction (p=0.05, and q=0.05) for T1- and T2- 

corresponded input, respectively. The sign of the maximum class difference was retained in 

the final CDM result. The bottom is the ground-truth feature difference plot. The red cell in 

feature k represent the average of positive class for k-th feature is significantly greater than 

negative class, blue cell represents the negative class is significantly greater than the positive 

class.
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Fig. 8. 
T-test for differences between qMCI-R and qMCI-P in mean cellwise WWdFNC 

connectivity: all samples (left-most); within intervals exceeding the 90% upper thresholding 

for saliency (second from the left); within intervals under the 10% lower saliency 

thresholding (second from the right). For the leftmost panel, we applied the no thresholding, 

for the second from the left plot, we used intervals of length at least 3 exceeding the 

90% upper saliency threshold, and for the second from the right, we used intervals of 

length at least 3 with saliency under the 10% bottom saliency threshold computed from 

all WWdFNC. We averaged the connectivity features within time intervals and performed 

the 2-sample T-test with multiple comparison correction (False Discovery Rate Correction 

q = 0.05). Red means the class-level average of qMCI-R is significantly greater than qMCI-P 

(p < 0.05(FDR)), blue means the class-level average of qMCI-P is significantly greater than 

qMCI-R p < 0.05 (FDR). The right most plot takes the sign of the maximum class level 

difference to unified the upper salient and lower salient class difference plot as the final 

interpretation result.
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Table 1

Table of statistical parameters defining classes in the synthetic data. The base multivariate time series follow a 

normal distribution where An ∼ N μ0, σ0 (μ0 = 0.5 and σ0 = 0.1). Each pair of μ and s shown in the table 

represents one feature pattern. For example, the positive class in simulation A, the feature ks1 and ks1 + 1 k2 and 

k3  follows the normal distribution with μ = μ1 and σ = σ0 in selected five consecutive time points. All other 

features except ks1 and ks1 + 1 in entire T as well as ks1 and ks1 + 1 in time points except selected five consecutive 

time points follow the base distribution if no other parameters specified. For better visualized evaluation, the 

selected five consecutive time points (refer as time blocks below) starts at T = 0 for A0, T = 1 for A1, and so on. 

Such pattern applied to all the simulations except the second pattern of positive class in simulation F, which 

the second pattern starts in reverse order (start at T = T − 5 for A0, T = T − 6 for A1, and so on). All index used 

in the table is 0-indexing.

Negative Class Positive Class

S-A - μ1 = 1, s1 = 2

S-B - μ2 = 0.2, s1 = 2

S-C -
μ1 = 1, s1 = 2
μbalance = 0.4, s1 = 2

S-D μ2 = 0.2, s1 = 2 μ2 = 0.8, s2 = 8

S-E μ1 = 1, s2 = 8 μ1 = 1, s1 = 2

S-F -
μ1 = 1, s1 = 2
μ1 = 1, s2 = 8

Base Distribution: μ0 = 0.5, σ0 = 0.1
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Table 2

Demographic and Clinical Information (Table reproduced from [31]) SD, Standard Deviation; qMCI, 

questionable Mild Cognitive Impairment; CDRYn, n-year after MR scan session;

Mean ± SD Recovery qMCI Progressive qMCI P value

Number 50 44 -

Age 73.81 ± 6.77 75.23 ± 7.15 0.33a

Gender (M/F) 27/23 27/17 0.47a

CDRY0 0.5 0.5 -

CDRY3 0 ± 0 1.13 ± 0.38 -

a
Two sampled T-test
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Table 3

Independent Component Network labels and peak coordinates

ICNs X Y Z

Subcortical (SC)

Caudate (69) 6.5 10.5 5.5

Subthalamus/hypothalamus (53) −2.5 −13.5 −1.5

Putamen (98) −26.5 1.5 −0.5

Caudate (99) 21.5 10.5 −3.5

Thalamus (45) −12.5 −18.5 11.5

Auditory (AU)

Superior temporal gyrus ([STG], 21) 62.5 −22.5 7.5

Middle temporal gyrus ([MTG], 56) −42.5 −6.5 10.5

Sensorimotor (SM)

Postcentral gyrus ([PoCG], 3) 56.5 −4.5 28.5

Left postcentral gyrus ([L PoCG], 9) −38.5 −22.5 56.5

Paracentral lobule ([ParaCL], 2) 0.5 −22.5 65.5

Right postcentral gyrus ([R PoCG], 11) 38.5 −19.5 55.5

Superior parietal lobule ([SPL], 27) −18.5 −43.5 65.5

Paracentral lobule ([ParaCL], 54) −18.5 −9.5 56.5

Precentral gyrus ([PreCG], 66) −42.5 −7.5 46.5

Superior parietal lobule ([SPL], 80) 20.5 −63.5 58.5

Postcentral gyrus ([PoCG], 72) −47.5 −27.5 43.5

Visual (VI)

Calcarine gyrus ([CalcarineG], 16) −12.5 −66.5 8.5

Middle occipital gyrus ([MOG], 5) −23.5 −93.5 −0.5

Middle temporal gyrus ([MTG], 62) 48.5 −60.5 10.5

Cuneus (15) 15.5 −91.5 22.5

Right middle occipital gyrus ([R MOG], 12) 38.5 −73.5 6.5

Fusiform gyrus (93) 29.5 −42.5 −12.5

Inferior occipital gyrus ([IOG], 20) −36.5 −76.5 −4.5

Lingual gyrus ([LingualG], 8) −8.5 −81.5 −4.5

Middle temporal gyrus ([MTG], 77) −44.5 −57.5 −7.5

Cognitive control (CC)

Inferior parietal lobule ([IPL], 68) 45.5 −61.5 43.5

Insula (33) −30.5 22.5 −3.5

Superior medial frontal gyrus ([SMFG], 43) −0.5 50.5 29.5

Inferior frontal gyrus ([IFG], 70) −48.5 34.5 −0.5

Right inferior frontal gyrus ([R IFG], 61) 53.5 22.5 13.5

Middle frontal gyrus ([MiFG], 55) −41.5 19.5 26.5

Inferior parietal lobule ([IPL], 63) −53.5 −49.5 43.5
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ICNs X Y Z

Left inferior parietal lobue ([R IPL], 79) 44.5 −34.5 46.5

Supplementary motor area ([SMA], 84) −6.5 13.5 64.5

Superior frontal gyrus ([SFG], 96) −24.5 26.5 49.5

Middle frontal gyrus ([MiFG], 88) 30.5 41.5 28.5

Hippocampus ([HiPP], 48) 23.5 −9.5 −16.5

Left inferior parietal lobue ([L IPL], 81) 45.5 −61.5 43.5

Middle cingulate cortex ([MCC], 37) −15.5 20.5 37.5

Inferior frontal gyrus ([IFG], 67) 39.5 44.5 −0.5

Middle frontal gyrus ([MiFG], 38) −26.5 47.5 5.5

Hippocampus ([HiPP], 83) −24.5 −36.5 1.5

Default mode (DM)

Precuneus (32) −8.5 −66.5 35.5

Precuneus (40) −12.5 −54.5 14.5

Anterior cingulate cortex ([ACC], 23) −2.5 35.5 2.5

Posterior cingulate cortex ([PCC], 71) −5.5 −28.5 26.5

Anterior cingulate cortex ([ACC], 17) −9.5 46.5 −10.5

Precuneus (51) −0.5 −48.5 49.5

Posterior cingulate cortex ([PCC], 94) −2.5 54.5 31.5

Cerebellar (CB)

Cerebellum ([CB], 13) −30.5 −54.5 −42.5

Cerebellum ([CB], 18) −32.5 −79.5 −37.5

Cerebellum ([CB], 4) 20.5 −48.5 −40.5

Cerebellum ([CB], 7) 30.5 −63.5 −40.5
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Table 4

Interpretation evaluation for Simulation A-F. The correlation score and p-value for calculating the MIP-TPO is 

Pearson correlation coefficient, the p value for all simulation is lower than 1e−3. MIP, model interpretation 

power; TPO, temporal pattern occurrences; CDM: class difference map.

Simulation No. MIP-TPO MIP-CDM

Negative Class Positive Class Sensitivity Specificity

S-A - 0.40* 100% 94.4%

S-B - 0.89* 100% 100%

S-C - 0.59* 100% 94.4%

S-D 0.53* −0.35* 100% 100%

S-E 0.57* 0.80* 100% 100%

S-F - 0.22* 100% 100%

*
p – value < 1e−3
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Table 5

Model performance of prediction of Recovery vs. Progression from qMCI

Accuracy AUC Sensitivity Specificity

SWCdFNC M-CNN 0.702 0.659 0.528 0.852

TA-LSTM 0.729 0.762 0.706 0.808

WWdFNC M-CNN 0.726 0.693 0.645 0.796

TA-LSTM 0.793 0.789 0.748 0.836

Comput Biol Med. Author manuscript; available in PMC 2024 July 01.


	Abstract
	Introduction
	Our contributions

	Materials and Methods
	Overall procedure
	Materials and Data Processing
	Synthetic data
	Resting-state fMRI Data
	Data Preprocessing and dFNC Feature Representation

	Methodology
	Long Short-term Memory LSTM
	Time Attention Layer
	Transiently-realized Event Classifier Activation Map TEAM

	Evaluation
	Model Training and Performance Evaluation
	TEAM Interpretation Power Evaluation


	Results
	TA-LSTM Model Performance on Synthetic data
	TEAM MIP on Synthetic data
	Model Performance on prediction of Recovery vs. Progression from qMCI
	Analysis of class-defining connectivity patterns and discriminative FC biomarkers

	Discussion and Conclusion
	qMCI-R group
	Trustworthiness and human interpretability of TEAM
	Why rs-fMRI and Recurrent-based model
	Limitation and Future works

	Appendix A
	Table T6
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Fig. 8.
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5

