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Abstract
Summary: The 10x Genomics Chromium single-cell RNA sequencing technology is a powerful gene expression profiling platform, which is
capable of profiling expression of thousands of genes in tens of thousands of cells simultaneously. This platform can produce hundreds of million
reads in a single experiment, making it a very challenging task to quantify expression of genes in individual cells due to the massive data volume.
Here, we present cellCounts, a new tool for efficient and accurate quantification of Chromium data. cellCounts employs the seed-and-vote
strategy to align reads to a reference genome, collapses reads to Unique Molecular Identifiers (UMIs) and then assigns UMIs to genes based on
the featureCounts program. Using both simulation and real datasets for evaluation, cellCounts was found to compare favourably to cellRanger
and STARsolo. cellCounts is implemented in R, making it easily integrated with other R programs for analysing Chromium data.

Availability and implementation: cellCounts was implemented as a function in R package Rsubread that can be downloaded from http://bio
conductor.org/packages/release/bioc/html/Rsubread.html. Data and analysis code used in this study can be freely accessed via La Trobe
University’s Institutional Repository at https://doi.org/10.26181/21588276.

1 Introduction

The advent of single-cell RNA sequencing (scRNA-seq) technol-
ogies has fundamentally transformed biomedical research
landscape. scRNA-seq data need to be quantified before down-
stream analyses can be performed, such as cell clustering, cell
type identification, and differential gene expression analysis.
Quantifying scRNA-seq data are more complex than quantify-
ing bulk RNA-seq data because in addition to determining the
origin of sequence reads, quantification of scRNA-seq data also
requires identification of cells and Unique Molecular Identifiers
(UMIs). Furthermore, scRNA-seq quantification is more com-
puting intensive due to much larger number of reads generated
for a sample. The 10x Genomics Chromium scRNA-seq tech-
nology is currently the dominant scRNA-seq platform.

There are two main strategies developed for quantifying data
generated by this platform. The first strategy aligns reads to a
reference genome and then assigns reads and UMIs to genes in
each cell. Examples of methods adopting this strategy include
CellRanger (Zheng et al. 2017) and STARsolo (Kaminow et al.
2022). The second strategy uses an alignment-free approach to
find transcripts compatible with read/UMI sequences and then
assign UMIs to transcripts based on a probabilistic model.
Representative methods using this strategy include kallis-
tojbustools (Melsted et al. 2021) and alevin-fry (He et al. 2022).
In this study, we focus on the alignment-based strategy for quan-
tifying Chromium data.

We present a new Chromium quantification tool called
cellCounts. cellCounts was developed based on the seed-and-vote

read mapping paradigm (Liao et al. 2013, Liao et al. 2019) and
featureCounts read assignment algorithm (Liao et al. 2014, Liao
et al. 2019). cellCounts was implemented as an R function as part
of the Bioconductor/R package Rsubread, allowing Chromium
quantification to be carried out within the user-friendly R envi-
ronment. cellCounts can work seamlessly with many popular
Chromium data analysis R packages to create an R pipeline for a
complete analysis of a Chromium dataset. With cellCounts,
scRNA-seq quantification can be carried out with a single func-
tion call (after an index was generated for a reference genome
which is a one-off operation). Using both simulation data and
real datasets, we demonstrate that the speed and accuracy of
cellCounts are comparable to, or better than, those of cellRanger
and STARsolo, popular programs developed for quantifying
scRNA-seq data.

2 Methods
2.1 cellCounts design

cellCounts starts with processing raw reads generated by a se-
quencer and finishes with outputting UMI counts for each
gene in each cell. cellCounts is able to take both BCL and
FASTQ format reads as input. When input format is BCL,
cellCounts directly processes reads from the raw data files in-
stead of converting them into FASTQ reads before processing.
This avoids the costs of format conversion and disk opera-
tions involved in saving and retrieving FASTQ reads. This di-
rect processing of BCL reads could save >20% of
cellCounts’s running time. It also simplifies the analysis as
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users do not need to convert BCL reads to FASTQ reads
which is required by other tools such as CellRanger.

cellCounts adapted the seed-and-vote aligner Subread for
mapping Chromium reads. cellCounts performs more sensi-
tive read mapping than Subread, by using more seeds (15
seeds) to discover candidate mapping locations and by apply-
ing a more relaxed voting threshold for calling mapping loca-
tions (only requiring a minimum of one vote). This highly
sensitive read mapping enables more UMIs to be detected
from the scRNA-seq data. cellCounts considers both numbers
of matched bases and mismatched bases in each alignment to
find the best mapping location. This ensures a high mapping
accuracy is achieved. If a read maps to more than one loca-
tion, the location overlapping a known gene is preferred.

Mapped reads will be assigned to genes in each cell using
the featureCounts algorithm. Within each gene, assigned
reads that share the same UMI tag (allowing one base mis-
match) will be reduced to one UMI. If the same UMI appears
in more than one gene, it will be assigned to the gene that has
the highest number of reads carrying this UMI tag. cellCounts
supports barcode correction and whitelisting. It utilizes a bar-
code whitelist, which is a list of barcode sequences down-
loaded from 10x Genomics website that are used by
Chromium assay kit, to detect valid barcodes in a Chromium
dataset. When matching cell barcodes observed from the data
against the barcode whitelist, cellCounts allows for one base
mismatch to account for sequencing errors.

After obtaining UMI counts for each gene in each cell,
cellCounts will call valid cells using the same algorithm as imple-
mented in CellRanger (version 3.0). Briefly, this algorithm first
uses a bootstrap sampling procedure to determine a total-UMI-
count cut-off for calling high-confidence cell barcodes. It then
builds an expression profile for ambient RNAs based on expres-
sion levels of genes in those barcodes that have a very low total
UMI count. Lastly, CellRanger will rescue the cell barcodes that
fail to meet the total-UMI-count cut-off but have a gene expres-
sion profile significantly different from the ambient RNA profile.
cellCounts reports both high-confidence cells and rescued cells
in the UMI count matrix it generates.

2.2 Simulation

A simulation dataset was generated for this evaluation, based on
the CellRanger analysis results of a Chromium dataset including
human peripheral blood mononuclear cells (PBMCs) of a
healthy female donor. This PBMC dataset was generated by 10x
Genomics. The library was prepared using the Chromium Next
GEM v3.1 chemistry and sequencing was performed using an
Illumina NovaSeq 6000. We downloaded this dataset from 10x
Genomics website. We used the quantification statistics observed
from the CellRanger quantification results to generate the simu-
lation data. Expression of genes in 10, 000 cells was simulated.
Number of genes per cell was subject to a Gamma distribution
(k¼ 4.5, h¼ 550), with an average of 1,930 expressed genes in-
cluded in each cell. UMIs per gene and reads per UMI were sub-
ject to Gamma distribution with parameter settings of k¼ 1,
h¼6 and k¼2, h¼ 2, respectively. Approximately 50k reads
were generated for each cell on average. Each simulation read
includes a technical part and a biological part. The technical
part contains a sample index sequence, a cell barcode sequence
and a UMI sequence. We downloaded technical sequences from
10x Genomics website and used them for this simulation. The
biological part of a simulation read includes a genomic sequence
extracted from the 3’ end of a gene. This mimics the 3’ bias of

Chromium Single Cell 30 GEM library. This genomic sequence
is located 350 bases from the very end of the gene on average
with a standard deviation of 30 bases. Genomic variants and se-
quencing errors were introduced to reads using the same ap-
proach as described in Liao et al. (2019). Briefly, sequencing
quality data were obtained from a real Illumina sequencing data-
set. Quality scores included in the data were provided to both
technical and biological parts of simulation reads. Substitution
errors were then introduced to read bases based on quality
scores assigned to the bases. More errors were introduced to the
3’ end of simulation reads due to sequencing bias of Illumina
technology. Biological variants were only introduced to the bio-
logical part of simulation reads. These variants included single
nucleotide polymorphisms and short indels, which were intro-
duced at the rates of 0.0009 and 0.0001, respectively.

2.3 Software execution

CellRanger (version 6.0.1), STARsolo (version 2.7.10a) and
cellCounts (version 2.14.2) were executed on a supercom-
puter with 48 Intel Xeon 3.30 GHz CPU cores and 768 GB of
memory. Each program was specified to run with 10 CPU
threads. Note that the STARsolo program utilizes two inter-
nal threads to decompress read files and distribute reads to
other threads, resulting in a total of 12 threads used for quan-
tification. As both CellRanger and cellCounts output
location-sorted BAM files by default, we also instructed
STARsolo to output location-sorted BAM files unless other-
wise stated. The pre-built CellRanger reference package pro-
vided by 10x Genomics was used for running CellRanger.
Reference sequences and gene annotation included in the ref-
erence package were also provided to STARsolo and
cellCounts for their data quantification.

3 Results
3.1 Speed

We first assessed the speed of cellCounts, CellRanger and
STARsolo. Two in-house mouse datasets, including 245 and
379 million reads, respectively, and a public mouse melanoma
dataset including 505 million reads (Gene Expression Omnibus
database accession GSM4505965), were used in this evaluation.
The in-house datasets were generated using Chromium Next
GEM v3.1 chemistry. The smaller in-house dataset includes
CD45þ cells sorted from stomach, small intestine, caecum and
colon. The larger in-house dataset includes TCRbþCD8aþ and
TCRcdþCD8aþ cells sorted from colon. The public dataset
includes tumour-infiltrating leukocytes sorted from a melanoma
sample using Chromium Next GEM v2 chemistry.

Figure 1a shows that both cellCounts and STARsolo are
significantly faster than CellRanger. cellCounts is 1.7–3.3
times faster than CellRanger. cellCounts demonstrates com-
parable speed to STARsolo, while exhibiting better scalability
over large data size, as illustrated by the red line in Fig. 1a.
Similar comparison results were observed when the output of
BAM files is not needed.

3.2 Accuracy

We then compared the quantification accuracy of the three
quantification tools. We first generated a simulation dataset
for this evaluation, based on the CellRanger analysis results
of a PBMC dataset generated by using 10x Chromium Next
GEM v3.1 chemistry. Quantification statistics obtained from
CellRanger analysis results were used to set parameters for
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Gamma distributions used to draw number of genes per cell,
number of UMIs per gene and number of reads per UMI.
Simulation reads were extracted from 3’ end of each gene to
mimic the 3’ bias of Chromium Single Cell 30 GEM library.
Genomic variants and sequencing errors were also introduced
to read sequences. Details of generation of simulation data
can be found in Section 2.2.

A UMI count matrix including known expression levels
(UMI counts) generated for each gene in each cell in the simu-
lation, was used as the ground truth for assessing quantifica-
tion accuracy of CellRanger, STARsolo and cellCounts. The
‘Simulation’ column in Fig. 1b shows that cellCounts is more
accurate (smaller RMSE) than CellRanger and STARsolo.
cellCounts successfully recalled all the cells generated in the
simulation, whereas CellRanger and STARsolo failed to call
�2% of the cells. Cell calling is performed based on gene ex-
pression profiles in the cells. The better cell calling result from
cellCounts should be due to its read mapping and UMI as-
signment algorithm, which is the main difference between
cellCounts and the other two tools.

We then used two real 10x Chromium datasets, generated
by a recent multicentre scRNA-seq benchmarking study
(Chen et al. 2021), to compare the quantification accuracy of
the three methods. Each dataset contained data generated
from a breast cancer cell line sample (sample ‘A’), a normal B
lymphocyte cell line sample (sample ‘B’) and a mixture of the
two samples. The mix ratio is 95%A:5%B for dataset ‘NCI’
and 90%A:10%B for dataset ‘LLU’. The RMSE quantifica-
tion error was calculated by comparing expression levels of
genes in the mixture sample and sum of expression levels of
genes in sample ‘A’ and ‘B’, multiplied by their respective mix
ratio. In other words, we examined which quantification
method yielded better concordance of gene expression be-
tween the in silico mixture sample and the actual mixture
sample. Using known mix ratios as truth to assess gene ex-
pression accuracy has been demonstrated to be a successful
strategy for evaluating the performance of RNA-seq quantifi-
cation methods (SEQC/MAQC-III Consortium 2014). With
this strategy, we found that cellCounts generated more

concordant quantification results than CellRanger and
STARsolo (‘NCI’ and ‘LLU’ columns in Fig. 1b).

In summary, we have developed a new tool called
cellCounts, specifically designed for quantifying 10x
Chromium scRNA-seq data in this study. The performance of
cellCounts has been evaluated using both simulated and real
data, demonstrating its effectiveness. It allows users to per-
form quantification within the user-friendly R environment
and facilitates the creation of an R pipeline for analysing
Chromium data, starting from raw reads and leading to final
results.
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