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Summary
Background Tissues such as the liver lobule, kidney nephron, and intestinal gland exhibit intricate patterns of zonated
gene expression corresponding to distinct cell types and functions. To quantitatively understand zonation, it is
important to measure cellular or genetic features as a function of position along a zonal axis. While it is possible to
manually count, characterize, and locate features in relation to the zonal axis, it is labor-intensive and difficult to do
manually while maintaining precision and accuracy.

Methods We addressed this challenge by developing a deep-learning-based quantification method called the “Tissue
Positioning System” (TPS), which can automatically analyze zonation in the liver lobule as a model system.

Findings By using algorithms that identified vessels, classified vessels, and segmented zones based on the relative
position along the portal vein to central vein axis, TPS was able to spatially quantify gene expression in mice with zone
specific reporters.

Interpretation TPS could discern expression differences between zonal reporter strains, ages, and disease states. TPS
could also reveal the zonal distribution of cells previously thought to be positioned randomly. The design principles of
TPS could be generalized to other tissues to explore the biology of zonation.
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Introduction
Tissues such as the liver, kidney, and intestine carry out
diverse biological functions. An elegant division of labor
among cells within these tissues is spatially organized
into “zones” that express specialized genetic programs.1

For example, different zones in the liver carry out
distinct metabolic functions. Liver zonation is dynamic
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and can change during development, aging, and disease,
making it important to measure changes in zonal
boundaries and gene expression patterns under
different biological conditions. Necessary for this kind
of analysis is the quantification of important features
within a tissue and understanding how they are spatially
organized. For any given coordinate on an image, one
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Research in context

Evidence before this study
Currently, most approaches to distinguish tissue zonation in
the liver was primarily performed through qualitative
methods, relying on manual curation of histology images.
There were only a few studies attempted to develop
automatic tissue zonation segmentation tools. However,
these tools were not robustly evaluated (Suneetha et al.,
2021) and not able to support quantitative study of zonal
expression patterns (Budelmann et al., 2022).

Added value of this study
We developed the TPS, a deep learning algorithm specifically
designed to address the challenge of quantifying positional
information and zonation within tissues, using the liver as the
model system. We validated zonal expression patterns
predicted by TPS using 14 CreER mouse strains with zonated
reporter expression restricted to different zones in the liver.

Implications of all the available evidence
TPS offers a systematic and quantitative approach to measure
tissue features in relation to spatial position, while at the
same time addressing the limitations of qualitative methods
and inference-based techniques. It allows for a more
comprehensive understanding of zonation within tissues,
potentially uncovering new insights into specialized genetic
programs and their organization. Moreover, the successful
application of TPS to liver zonation suggests its potential to
be adapted for the analysis of zonated tissues in various
organs. This study underscores the need for computational
tools, like TPS, to enhance our understanding of tissue
organization and enable more rigorous quantitative analysis
in biological research.
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would like to know the position with respect to
anatomical landmarks that define the zonal axes. Once
this “location” is obtained, phenotypes and gene
expression at this position can be assessed as a function
of anatomical coordinates, or vice-versa. This kind of
analysis is ordinarily performed in a qualitative fashion
by visual inspection of histology images. However, it
would be preferable to obtain these data using the sys-
tematic and quantitative evaluation of images. Dedicated
computational tools to parse zonation in an automated
fashion have not been developed. The liver is the ideal
setting to establish an algorithm to measure tissue fea-
tures as a function of spatial position.

The lobule is the basic functional unit of liver tissue
that is shaped like a submarine in three dimensions,
hexagonal when cross-sectioned, and repeated
throughout the liver.1,2 Lobules are outlined by portal
veins (PVs) at the vertices and one central vein (CV) in
the center. Portal venous blood from the intestine in-
termixes with oxygenated arterial blood in the portal
region, then flows through the sinusoids and collects in
the CVs before returning to the heart. The notion of
liver zones was first described in 1954 by Rappaport,3

who assigned hepatocytes to three zones, periportal
(zone 1), midlobular (zone 2), and perivenous (zone 3),
based on their distance to the nearest CV or PV. Liver
zones are associated with specific functionality: lipid
β-oxidation and gluconeogenesis in zone 1 and lipo-
genesis, ketogenesis, and glycolysis in zone 3.1 In gen-
eral, these zonated functions have been characterized
with immunostaining of metabolic enzymes rather than
with functional testing. While individual genes were
previously known to be zonated, single cell sequencing
(scRNA-seq) technologies have expanded the molecular
understanding of how genes and cell types are orga-
nized into zones.4–6 To generate scRNA-seq data, cells
are enzymatically dissociated so their actual spatial po-
sition can only be inferred based on gene expression
landmarks. In addition, technical difficulties associated
with scRNA-seq such as doublets and dropouts make
these inference based methods in some ways less reli-
able than image-based methods. Some of these limita-
tions could be resolved with spatial transcriptomic
technologies, which would combine the geographic
integrity of immunostaining with the profiling depth of
scRNA-seq. With spatial approaches, there will be a
critical need to measure the position of cells, features, or
gene expression values with respect to zonal landmarks.
These technologies are not yet available.

Despite recent advances in computer vision and
deep learning, automated analysis of histology images
has not yet met the challenge of defining zonation. In
the liver, applications have focused on the segmenta-
tion of cell nuclei and the prediction of ploidy states.7,8

An unresolved problem is how to determine the po-
sition of any given modality (i.e. cell, clone, gene
expression value) on an image with respect to
important zonal landmarks. A key challenge is to be
able to properly identify or segment zonal landmarks
such as CVs or PVs, which appear as histologically
similar vessel lumens lined by thin endothelial cells.
Currently, most approaches to distinguish these en-
tities rely on manual annotation based on expression
of CV or PV-associated markers.9–11 Among the
studies that can automatically segmented liver zones,
one used geometric methods to curate histologic fea-
tures and built a support vector machine classifier to
differentiate CVs from PVs.12 However, the method-
ology was not described and was only tested on a
small number of images so the robustness remains
uncertain. A recent study used convolutional neural
networks to identify portal fields (PF) and CV,13
www.thelancet.com Vol 94 August, 2023
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however, this method could only report the presence
of PFs and CVs without their boundaries, limiting
additional downstream analysis. In addition, the per-
formance was only validated using GS expression and
thus its ability to detect zone 1 and zone 2 expression
patterns remains uncertain.

Here we developed and employed a deep learning
algorithm that we call the “Tissue Positioning System”

(TPS), to enable quantitation of positional information,
such as the zonation of liver lobules. The key rationale
of TPS is that cellular features such as gene expression,
proliferation, and damage, are anchored to key zonal
structures in the tissue, and identification of those key
structures allows for segmentation of tissue regions into
biologically relevant regions. We applied TPS to liver
zonation and found that it faithfully quantified the ex-
pected zonated expression patterns of the livers from 14
CreER mouse strains in an unbiased and reproducible
fashion. We believe that TPS will be particularly useful
for identifying tissue features that are organized into
zones. In principle, the ability of TPS to define zonation
around landmark structures can be adapted to any
zonated tissue.
Methods
Mouse strains, breeding, and slide preparation
Please refer to Wei et al. for mouse model generation
and experimental details involving histology, immuno-
histochemistry, and immunofluorescence.14 Briefly,
mice were euthanized and liver samples were fixed in
10% Neutral buffered formalin (NBF) for 48 h. After
fixation, a liver sample was dehydrated in 30% sucrose
in phosphate buffered saline (PBS) for cryosectioning.
For frozen sections, slides were cut to 16 μm thickness,
washed with PBS with Tween (PBST) 3x, and blocked in
5% bovine serum albumin (BSA) that contained 0.25%
Triton X-100. Glutamine Synthetase (GS) antibody
(Abcam ab49873) was diluted in the blocking buffer,
applied to slides, and incubated overnight. Slides were
imaged at 10x using an Axioscan (Zeiss) microscope and
processed using Zen 2.6 software. A subset of the tissue
sections and images analyzed in this paper were ob-
tained from prior experiments.14 Most of the images
analyzed by TPS were independently performed for this
paper. A total of 224 mice from 14 CreER strains were
used in this study (Supplementary Table S1).

Imaging data preparation and annotation for deep
learning model development
We developed an automated annotation pipeline work-
flow to 1) identify vessels from the images and 2) to
classify them as either CVs or PVs using information
from DAPI and GS channels.

The pipeline is based on a series of image morpho-
logical operations. The first step was to segment vessels
on the slide. Briefly, dark regions on the DAPI channels
www.thelancet.com Vol 94 August, 2023
(DAPI masks) were identified by thresholding on a very
small cutoff value (∼10% of maximum DAPI intensity).
Areas of each DAPI mask were calculated and the
smallest ones were discarded because they were not
likely to be major vascular structures (<1% of the total
image area). Lastly, because vessels were sectioned in
random orientations, i.e. cross-sectioned at different
angles, or even tangentially but not through the lumen,
some vessels could have been mistakenly removed us-
ing the vessel size cutoff. To mitigate this, we examined
the very small DAPI masks and added them back if their
associated GS intensity was above a GS cutoff, which
was determined by applying Otsu’s thresholding15 on
the GS channel. After these steps, the remaining DAPI
masks were classified as vessel masks.

The second step was to annotate segmented vessels
as CVs or PVs. We designed our pipeline based on the
following features of liver lobule organization: 1) each
liver lobule is centered around a CV, with surrounding
PVs located on the perimeter of the lobule; 2) vessel
lumens are devoid of nuclei that have high DAPI in-
tensity; 3) CVs are lined with hepatocytes that have high
GS intensity.

Specifically, intensity percentile values (lower
limit = 25, higher limit = 75, interval = 10) from the GS
channel were quantified for each vessel mask. Then, the
mask/feature data were transformed by PCA and the
masks were clustered into two groups using the KMeans
algorithm. Finally, the masks with higher median GS
intensity were labeled as CVs, and the others as PVs.

We applied the above heuristic imaging morpho-
logical pipeline to generate the masks and classified
each vessel in 114 high-quality images to develop a deep-
learning based segmentation model. The classes and
masks were further visually validated by pathologists.
We divided the 114 images into 61 for training, 24 for
validation and 29 for testing, respectively.

Segmentation of CVs and PVs using deep learning
A deep-learning based segmentation algorithm was
developed for CV and PV segmentation and classifica-
tion. The algorithm was built with the UNet framework
with the modifications described as follows. 1) We used
the MobileNet-v2 backbone pre-trained on ImageNet to
replace the standard CNN encoder in the original UNet.
In comparison to a straightforward CNN encoder,
MobileNet-v2 extracts more intricate high-level image
features, and employing a pre-trained backbone boosts
accuracy and lowers the risk of overfitting when the
sample size is small. 2) To marginally improve perfor-
mance, we swapped out the upsampling layer in the
decoder for an inverted residual block plus a convolu-
tion transpose layer. The model structure is illustrated
in Fig. 1b.

In the training process, instead of using cross-entropy
loss with pixel heatmap, soft-dice loss was used to auto-
matically balance pixel weights for different classes.
3
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Fig. 1: Overview of the TPS workflow. a. Overview of the major steps in TPS including vessel segmentation and zone identification. b.
Structure of the MobileNet-v2 + UNet deep learning model in TPS.
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Briefly, a large input whole slide image was cropped into
3500*1500 image patches. Each image patch was padded
into 4096*2048 images with the pixel information from
the original slide. With the above approaches, there were
298 pixels overlapping on width and 274 pixels
overlapping on height. This was to ensure that vessels
near the edge of the images were recognized properly.
Then, the vessel masks from all cropped images were
stitched together and vessel classification and expression
analysis were done on the full-size image using the
www.thelancet.com Vol 94 August, 2023
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stitched vessel masks. In order to prevent overfitting,
color intensity augmentation, random projective trans-
formations, as well as random horizontal/vertical flipping
and transposing were used. Specifically, the following
parameter ranges were used in this process: contrast
<0.1, brightness <0.1, HSV <0.1, rotation <30◦, offset <50
pixel, scale factor <0.2, height/width ratio <0.1, shearing
<10◦, perspective distortion <0.0003. The above aug-
mentations were performed with python package
skimage 0.19.1 and imgaug 0.4.0.

In the validation process, mIoUs (median intersection-
over-union) for CVs and PVs between ground truth and
prediction were documented. The model with highest
mIoU in the validation dataset was further evaluated on
the testing dataset and deployed for downstream analysis.

Defining position as a function of zonal landmarks
We reasoned that lobular zones were continuous in a
gradient fashion along the CV-PV axis, and thus we first
calculated a positional score for each pixel based on its
distance to the nearest CV or PV mask. This was per-
formed as follows for each pixel. First, the distances to
the nearest CV and PV were calculated. If the pixel’s
distance to the nearest CV or PV was larger than 25% of
the image patch size, it was excluded from further
analysis. Then, the ratio between the two distances were
calculated, which reflects the position of the pixel in the
context of a liver lobule. Lastly, the pixels were assigned
to equal-sized groups, named TPS layers, by discretizing
their distance ratios into quantile bins. We found this
partition technique made the most uniform, natural
looking zones within lobules compared to using raw
distance ratios or projection distance along the CV-PV
axis.

Zonal expression patterns in the tissue can be
examined by evaluating marker expression in each layer.
In this study, we used 24 equal-sized TPS layers so that
each TPS layer would contain roughly 4.16% of the
pixels in the image. For a typical image in this paper,
each TPS layer contains approximately 400–500 cells.
The selection of this number is arbitrary as the zonal
expression patterns derived are not sensitive to the
number of TPS layers.

Definition of Zmax and Z50
To quantitatively describe the location and selectivity of
a zonal expression pattern in the context of the classic 3-
zone system, we introduced two metrics, Zmax and Z50,
respectively. Zmax reflects the hepatocyte layer where a
marker is maximally expressed. It is defined as

Zmax = 3 ∗ (1 −Lmax

N
)

where Lmax is the layer number where a marker was
www.thelancet.com Vol 94 August, 2023
expressed at maximal level, and N is the total number of
TPS layers.

Z50 describes the selectivity of the distribution. It is
defined as the fraction of zones where a marker is
expressed below 50% of its maximal expression level
Lmax:

Z50 = 1
N

∑N
1

[Li < 0.5 ∗ Lmax]

where Li is the expression level of marker at TPS layer i.

Measurement of clone size
The zonal expression pattern of markers can be divided
into two broad categories: widely expressed in contig-
uous regions, or sparsely expressed in disparate regions.
For sparsely expressed reporter strains, we could mea-
sure the clone number and size. Size was calculated as
the marker expressing clone area or the number of
nuclei in each clone. The number of nuclei in each
clone was calculated using the watershed16,17 segmenta-
tion algorithm on the DAPI masks derived from Otsu15

thresholding.

Analyzing whole slide images
The TPS algorithm can also analyze whole liver section
images as inputs, and this was done by parallel pro-
cessing of cropped images from whole liver section
images. Briefly, a large input whole slide image was
cropped into 3500*1500 image patches. Each image
patch was padded into 4096*2048 images with the pixel
information from the original slide. With the above
approaches, there are 298 pixels overlapping on width
and 274 pixels overlapping on height. This ensured that
vessels near the edge of the images were recognized
properly. Then, the vessel masks from all cropped im-
ages were stitched together and vessel classification and
expression analysis were done on the full-size image
using the stitched vessel masks.

Lobule detection
We used the watershed algorithm to detect lobules in
the hepatocyte image. Briefly, distances from each pixel
to the closest CV mask were calculated. Then the local
maxima of the distances with each CV mask were
determined. Finally, the watershed transformation was
applied using the distances and local maxima to find the
boundaries that separated areas around CV masks into
different regions, which reflected the lobular structure
in the liver.

Statistics
A two-tailed Student’s t test was used to evaluate if the
percentage of reporter positive area of cells was different
between TPS layers. A value of p < 0.05 was considered
significant.
5
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Ethics
All mice were handled in accordance with the guidelines
of the Institutional Animal Care and Use Committee
(Ref Number: 2015-101118) at UT Southwestern.

Role of funding source
The funders had no role in the study design, data
collection, data analyses, interpretation, or writing of
report, and the decision of paper submission.
Results
Image-based quantification of tissue features as a
function of zonal location
“Tissue Positioning System” (TPS) is software that al-
lows automatic evaluation of tissue features as a func-
tion of zonal position within histology sections.
Examples of a “tissue feature” could be any phenotypic
measurement that can be assigned to a particular coor-
dinate: i.e. gene expression, proliferation, cell size, nu-
clear size, clone size, lipid droplets, inflammatory cells,
etc. TPS operates through two major components (see
the workflow in Fig. 1). The first component of TPS is a
deep learning model that uses the nucleus channel of an
image to segment CV and PV masks. In our experiment,
the model could accurately identify zonal position in the
29 test slides with 0.8117 mIoU for CV and 0.8908
mIoU for PV, respectively (see Supplementary
Table S2a for the segmentation performance on
training, validation, and testing datasets; see
Supplementary Table S2b for detection performance of
vessels in the 29 testing images). In the second
component of TPS, positional scores proportional to the
ratio between the distances of a pixel to its nearest CV
and PV masks were calculated, and then pixels
emanating from each concentric CV or PV were divided
into equidistant bins based on this score. These bins are
referred to as TPS layers. In this study, we tested the
performance of TPS in determining the zonation of
features such as reporter gene expression and cellular
clone size.

TPS extracts positional expression patterns from
zonal reporter mice
We first tested TPS on liver sections from fluorescent
reporter mice that express the Tomato fluorescent re-
porter in known zonal patterns. These mice (GS-CreER,
Cyp1a2-CreER, and Gls2-CreER) were previously char-
acterized in a qualitative fashion.14 The accurate
discernment of zone-specific reporter expression by TPS
would validate the algorithm’s ability to accurately
assign positional information to all pixels on an image.
Each CreER; Rosa-LSL-Tomato mouse was given tamox-
ifen to activate Tomato expression prior to liver
sectioning. The Tomato expression patterns for these
mice are highly specific to particular zones (Fig. 2a and
b). As mentioned previously, Tomato in GS-CreER mice
is expressed in a 1–3 hepatocyte thick ring around all
CVs. Tomato in Cyp1a2-CreER mice is expressed in all
zone 3 and about 50% of zone 2 hepatocytes emanating
from the CV. Tomato in Gls2-CreER mice is expressed
in all zone 1 hepatocytes emanating from the PV. TPS
identified CV and PV regions accurately without
mistaking smaller gaps between cells, likely represent-
ing sinusoids, as large vessels (Fig. 2c). To further
evaluate the accuracy of predicting CVs and PVs, we
predicted liver lobule boundaries associated with each
CV. The lobule boundaries were very close to the center
of PV masks (Fig. 2d), indicating that the segmented
CVs and PVs were reflective of true lobular structures.
These results showed that TPS was able to accurately
identify the landmark vessels that define liver zones in
an unsupervised manner, thus providing a strong
rationale for the downstream assessment of tissue
features.

After vessel segmentation, positional scores for all
pixels were calculated and used to divide each image
into 24 TPS layers reflecting zonal positions along PV-
CV axes. We chose 24 for this study because at this
level, zonal features of liver lobules can be adequately
resolved. Pixels that were too far from any CV or PV
were excluded because this likely meant that the actual
nearest CV or PV was not correctly located. Consistent
with lobular zonation patterns, TPS layers were orga-
nized into ring-shaped patterns around CVs and PVs
(Fig. 2e). TPS correctly showed that GS and CYP1A2
associated Tomato expression was limited to zone 3
(TPS layer 1–6), while GLS2 associated Tomato expres-
sion was highest in zone 1 (TPS layer 19–24), and
reduced in zone 2 (Fig. 2f). These results showed that
TPS was able to reliably identify vessels, define zonal
axes, and accurately quantify expression patterns in a
probabilistic fashion.

TPS discerns differences in the spatial expression
patterns of genes with high resolution
Next, we evaluated TPS’s performance on each of the
eleven CreER reporter mice generated by our group and
the three other CreER mice available to the community.
These fourteen zonal markers were separated into five
broad categories based on their expression patterns.
These include pan-zonal, all hepatocyte expressing
strains (Apoc4-CreER, Pklr-CreER), biliary-centric strains
(Krt19-CreER, Sox9-CreER), zone 1-centric strains (Gls2-
CreER, Arg1.1-CreER, Arg1.2-CreER), zone 3-centric
strains (Axin2-CreER, Oat-CreER, Cyp1a2-CreER, GS-
CreER), and sparsely expressing strains (Hamp2-CreER,
Tert-CreER, Mup3-CreER) (See schema in Fig. 3a). TPS
was able to accurately quantify the differences among all
of these expression patterns.

In addition, TPS allowed us to resolve expression
patterns between reporter mice that have different
expression patterns within the same zones. For
example, the expression patterns of the three zone 3-
www.thelancet.com Vol 94 August, 2023
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Fig. 2: TPS characterization of Tomato expression patterns within GS-CreER, Cyp1a2-CreER, and Gls2-CreER mice. a. Schema of expected
Tomato labeling in GS-CreER, Cyp1a2-CreER, and Gls2-CreER mice. b. Original three-channel immunofluorescence images of livers from CreER
lineage tracing mice. Frozen sections were stained with anti-GS antibody and then scanned by a ZEISS Axio Scan. Z1 using a 20X objective
(blue = DAPI, green = GS, red = Tomato). Scale bars, 100 μm. c. Segmented and classified CVs and PVs, shown in green and blue, respectively, for
this and below panels. DAPI stains were colored red in these images. d. Predicted liver lobule boundaries, shown with red lines. e. 24 TPS layers
predicted based on the pixel wise distance along the CV-PV axis. TPS layers are shown in red, and those closer to PVs are brighter. f. Line graphs
showing the percent Tomato positive area/total area in each TPS layer. TPS layers were organized from CV to PV going from left to right. Data
from one mouse is shown here.
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Fig. 3: TPS is able to discern differences between qualitatively similar zonal expression patterns. a. Five categories of zonal expression
patterns from different CreER lineage tracing mice are schematized here. All zones: Apoc4-CreER, Pklr-CreER. Zone 1 centric: Arg1.1-CreER, Arg1.2-
CreER, Gls2-CreER. Periportal: Krt19-CreER, Sox9-CreER. Zone 3 centric: Cyp1a2-CreER, Oat-CreER, GS-CreER, Axin2-CreER. Sparse or zone 2 centric:
Hamp2-CreER, Mup3-CreER, Tert-CreER. b. Line graphs showing the percentage of tomato positive area/total area in each TPS layer across the CV-
PV axis. Data were collected from CreER mice 1 week after tamoxifen treatment. The 95% confidence intervals for each TPS layer are shown as
shaded areas.
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centric strains (Cyp1a2-CreER, Oat-CreER, GS-CreER)
could be clearly distinguished from one another using
TPS (Fig. 3b). To quantitatively compare zonal reporters
within the same category, we introduced two metrics to
characterize zonal gene expression. The zone score,
Zmax, describes the zonal location of peak expression,
ranging from 1 to 3, corresponding to current 3-zone
classification. For example, Zmax of GS and GLS2 are
2.92 and 1.25, respectively. A second metric, Z50, de-
scribes the selectivity of the distribution, which mea-
sures the number of zones where a particular marker is
expressed below 50% of its maximal expression level.
Z50 values range from 0 to 1, where 0 indicates the
expression is uniform and 1 indicates the expression is
restricted only to one TPS layer. For example, Z50 of GS
is 0.96, while Z50 of Apoc4 is 0. Among all zone 3
centric markers, Z50 is highest for GS and lower for Oat
(0.54) and Cyp1a2 (0.46) (Table 1). These results showed
that TPS could faithfully report zonal expression pat-
terns and allows a more quantitative classification of
expression patterns.

TPS is able to define the spatial patterns of sparsely
expressed cells
If TPS was only able to quantitatively define the zonal
expression patterns of reporter mice with obvious zone-
specific expression patterns, then the algorithm would
not be very useful. It would be essential for TPS to be able
to determine if there is zonal specificity for features that
have less obvious patterns. For instance, TPS would be
useful for the characterization of reporter strains that
label cells in a sparse manner because visual discernment
www.thelancet.com Vol 94 August, 2023
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Marker Zmax Z50

APOC4 2.5 0

ARG1.1 1.5 0.125

ARG1.2 1.75 0.21

AXIN2 2.92 0.96

CYP1A2 2.92 0.46

GLS2 1.25 0.33

GS 2.92 0.96

HAMP2 2.08 0.21

KRT19 1 0.98

MUP3 1 0.78

OAT 2.92 0.54

PKLR 1.92 0.04

SOX9 1 0.96

Table 1: Zmax and Z50 for all zonal reporters.
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of their zonal distribution is nearly impossible. For
example, the spatial distribution of Tomato positive cells
in Hamp2-CreER mice cannot be assessed accurately by
eye because of two key reasons (Supplementary Fig. S1a).
First, the area occupied by the three zones is different,
and thus the total number of cells in each zone declines
significantly from the PV to CV. Without proper
normalization for this difference in cell numbers, a
perceived enrichment of labeled cells in zones that
occupy larger areas would arise. Second, manual mea-
surements are labor intensive and difficult to perform for
more than a few hundred cells. For markers that express
even more sparsely than HAMP2, such as MUP3 and
TERT (Supplementary Fig. S1b and c), collecting zonal
information from a few hundred cells would require
analyzing dozens of large liver sections.

The first problem was solved by TPS naturally as it
finds liver zones automatically. We assessed theHamp2-
CreER and Mup3-CreER reporter mice that label a small
subset of hepatocytes in the liver. TPS analysis of sec-
tions from Hamp2-CreER mice showed that cells from
any zone could express Tomato, but that midlobular
zone 2 cells were labeled with the highest probability.
TPS analysis of sections from Mup3-CreER mice also
showed that cells from any zone could express Tomato,
but zone 1 cells were labeled with the highest proba-
bility, followed by zones 2 and 3 (Fig. 3b). Then we
analyzed Tert-CreER mice created in our lab. TERT high
cells were reported to be randomly distributed
throughout the lobule based on visual inspection.10 TPS
analysis of sections from Tert-CreER mice showed that
cells from any zone could express Tomato, but zone
3 cells were labeled with the highest probability
(Fig. 3b). TPS was able to discern the distinct patterns of
each of these two reporter strains that sparsely label
0.3–10% of cells. These results show that a zonated
pattern can exist even though visual inspection may only
appreciate a randomly distributed pattern of expression.
www.thelancet.com Vol 94 August, 2023
For the second problem, we developed a function in
TPS that can process images from full-sized liver sec-
tions in parallel, so that a large number of cells can be
easily measured with analysis of whole-liver section
images within a few hours on a HPC (High Perfor-
mance Computer) node. We achieved this using the
following steps. Each whole liver section image was
divided into fixed-sized cropped images, and TPS seg-
mentation was performed on each image in parallel
(Fig. 4a and b). Then, cropped images containing vessel
masks were re-assembled and used as the vessel mask
in later analyses (Fig. 4c and d). Finally, TPS layers were
defined on the original image. Zonal expression pat-
terns derived from this large image processing were
identical to those that were derived from smaller images
(Fig. 4e and f).

We tested this workflow using hepatocyte labeling
in the Rosa-LSL-Tomato reporter mouse using low titer
AAV-TBG-Cre injection, as is commonly used to ach-
ieve genetic recombination in a small subset of hepa-
tocytes in a sparse but “random” fashion.18 Indeed, TPS
analysis of sections from these mice showed that he-
patocytes were labeled with Tomato in an evenly
distributed pattern across zones (Fig. 4f). Next, we
applied this work flow on whole-liver section images
derived from Mup3-CreER and Tert-CreER reporter
mice and found similar zonal expression patterns
compared to those from smaller cropped images
(Supplementary Fig. S2).

TPS facilitates lineage tracing of cells during steady
state homeostasis
TPS is also helpful in evaluating changes in labeling
patterns during development, aging, or disease. To
examine hepatocyte repopulation from different zones
during steady state homeostasis, we applied TPS to all
of the above CreER mice that were traced for over 26
weeks, or 6 months.14 The change in the percentage
area labeled by Tomato reflects the expansion or
shrinkage of domains that were labeled after tamoxifen
induction. TPS analysis confirmed an expansion of
cells in Cyp1a2-CreER and Oat-CreER mice, as well as a
contraction of cells in Gls2-CreER mice (Fig. 5a). The
most significant increase occurred in zone 2 cells
labeled by Hamp2-CreER mice. The percentage of
cellular area labeled by Tomato in Hamp2-CreER mice
increased by more than 3-fold after 6 months of tracing
(from 4.63% to 14.51%; p-value <0.0001) across all
zones, but the most enriched region of expression was
found near zone 2 (Fig. 5a). Using TPS, we again found
that zone 2 had a large increase in the percentage area
labeled by Tomato between time points, suggesting
greater expansion of cells from this midlobular zone.
These results showed that TPS can extract aspects of
zonal expression patterns that are very difficult to
quantify using traditional methods.
9

www.thelancet.com/digital-health


Fig. 4: Processing of whole-liver section images by TPS. TPS can be scaled up to process whole-liver section images. This is especially useful
for features that are rare or sparse, such as the low dose AAV-TBG-Cre labeling that is shown in this figure. This is achieved using a bottom up
approach where each whole-liver section image is divided into cropped images and analyzed in a parallel fashion. Thus, CV/PV masks from each
cropped image were pooled and used in the remaining TPS processes. a. Original fluorescence image obtained from Tomato reporter mice
treated with low titer AAV-TBG-Cre. The liver from this AAV experiment was obtained from Wei et al. and analyzed here. b. Cropped images
used in the TPS segmentation steps. Images were extracted in a sliding window pattern, and cropped images not covering significant amounts
of tissue (median DAPI intensity = 0) were not processed. Each image was set to be 3500 x 1500 pixels, but during TPS segmentation, regions

Articles

10 www.thelancet.com Vol 94 August, 2023

www.thelancet.com/digital-health


Articles
TPS is able to measure clone number, size, and
location within the lobule
Beyond reporter expression, TPS was able to analyze
tissue features associated with cellular clones. TPS can
measure the number, size, and location of clones within
lobules, information that is crucial for the understand-
ing of regenerative activities of cells as a function of
location. Here, a clone is defined as a contiguous set of
reporter expressing cells surrounded by reporter nega-
tive cells. Clone size can be measured in terms of pixel
area or nuclei number. The number of nuclei per clone
was determined by using watershed segmentation16 of
the DAPI channel. We identified, counted, then
measured clone size in sparsely labeled reporter models
such as Hamp2-CreER and Mup3-CreER mice. In
Hamp2-CreER mice, the percentage of clones with more
than 1 nuclei increased in all zones after 6 months of
tracing (Fig. 5b). This indicated that many clones
expanded over time. Although expanding clones could
be identified in every zone, the highest number of large
clones were found in midlobular zone 2 (Fig. 5c).
Similarly, we found that Tomato labeled cells in Mup3-
CreER mice could be found in each zone, but the largest
clones (≥2 nuclei) were enriched in zone 2
(Supplementary Fig. S3 and b). These data confirmed
that clonal expansion occurs more frequently in zone 2
compared to other zones. These results provided an
example of how TPS-empowered zone segmentation
can be used to systemically and reproducibly extract
information about clonal dynamics as a function of
location.

TPS revealed differential regeneration from cells in
different zones during injury
We also used TPS to evaluate zonal expression patterns
in damaged liver tissues. To induce chronic biliary
injury, we fed reporter mice with diets containing 0.1%
DDC for 6 weeks, after which we harvested the liver and
examined the distribution of tdTomato labeled cells.
DDC is a strong cholestatic injury that models human
cholangiopathies.19 Importantly, DDC induces an
inflammation related “ductular reaction” around the PV
that is also seen in human liver diseases. As expected,
DDC liver injury resulted in histological artifacts that
complicated the analysis. For example, dark spots
observed near the portal triads (Fig. 6a) may represent
cellular debris or inclusion bodies, and if coalesced
together, could be mistaken as large vessels. After
introducing an additional step to shrink the dark areas
of 250 pixels were added to each image to allow the correct identificatio
segmentation on each cropped image were stitched together and used as
the CVs (green) and PVs (blue) in the stitched masks derived from all ind
shown in red, and those closer to PV were brighter. CV and PV masks were
of total tomato positive area by the total cellular area in each TPS layer.
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in the image to mitigate this possibility, TPS segmen-
tation was able to reliably identify and distinguish CVs
and PVs, and quantify Tomato expression across the
lobule (Fig. 6a–c). To examine the changes that occur in
pan-zone, zone 3, and zone 1 labeled mice fed DDC, we
gave tamoxifen to ApoC4-CreER, GS-CreER, and Gls2-
CreER Tomato reporter mice, then gave them DDC
food. Comparing uninjured age matched control and
DDC fed livers showed that cholestatic injury caused a
significant contraction of Tomato labeled zone 1 cells
near the PV (TPS layers 19–24) in both the ApoC4-CreER
and Gls2-CreER strains (P-value <0.0001 in both cases)
(Fig. 6c and d). In agreement with this, there was an
increase in the number of zone 3 cells labeled with
Tomato (Fig. 6c and d). These results were consistent
with the idea that DDC-induced liver damage causes
loss of cells positioned in zone 1, which are in turn
replaced by cells originating from zones 2 or 3. In
addition, this showed that TPS was able to quantify
zonal repopulation, even in the context of liver injuries
that result in histological artifacts associated with tissue
damage. This makes TPS a particularly useful tool for
studying the cellular dynamics of livers in various
settings.
Discussion
In the liver, tissue patterning or zonation is thought to
be important for normal liver metabolic function,20,21 but
whether or not altered zonation might impact normal
physiology and disease pathogenesis is not known. Very
little is known in part because there are no computa-
tional tools to measure zonation. In addition, zonation is
dynamic and can change through development and with
disease, adding to the need to measure zonation over
time automatically and with high precision. To our
knowledge, TPS is a fully automatic, unsupervised tool
that outputs zonal information directly from input im-
ages. It can efficiently process a 4000*2000 image in
minutes and a 20,000 x 20,000 whole tissue section
image in less than half an hour.

There are several critical advantages of TPS.
Currently, the identification of zonal axes usually re-
quires visual analysis of images and manual discrimi-
nation of vessel identities,9–11,22 which is labor intensive
and susceptible to bias. Existing computational tools for
liver zonation analysis only provide limited information
about CV and PV locations and their effectiveness in
characterizing different zonal patterns is unknown.12,13
n of vessels near cropped image boundaries. c. The results from TPS
the overall vessel mask in the following TPS processes. d. Shown are
ividual images. DAPI staining was colored in red. e. TPS layers were
shown in green and blue, respectively. f. Line plot of the percentage
The TPS layers were organized from CV to PV from left to right.
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Fig. 5: TPS revealed dynamics of liver cell subpopulations from different zones at 1 and 26 weeks after reporter labeling. TPS quantifies
the changes in Tomato labeling patterns during steady state homeostasis. This analysis is able to reveal differential lineage fates of cells marked
within the same zones. a. Comparison of lineage tracing results of 13 CreER markers 1 and 26 weeks after tamoxifen induced Tomato labeling.
TPS layers were organized along the CV-PV axis. The 95% confidence interval for each TPS layer is shown as shaded areas. b. Number of nuclei in
each Tomato marked clone in liver sections from Hamp2-CreER mice. Data were grouped into four clone size categories as follows: 1 nuclei, 2–4
nuclei, 5–7 nuclei and >8 nuclei. c. Change in the spatial distribution of expanded clones (defined as clones with more than 3 nuclei) across
hepatocyte zones in Hamp2-CreER mice examined at 1 and 26 weeks after tamoxifen.
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Fig. 6: TPS revealed cellular dynamics in different zones during biliary injury. TPS is able to examine changes in Tomato labeling in livers that
have been exposed to DDC. a. Representative original images from control and DDC treated CreER mice. b. Predicted TPS layers from each
representative image. Layers were shown in red, and those closer to PV were brighter. CV and PV masks were shown in green and blue, respectively.
c. Line plot showing the percentage of total tomato positive area by the total cellular area in each TPS layer from the representative images. The
TPS layers were organized from CV to PV in left to right order. d. Comparison of Tomato area percentage between control and DDC treated group.
The TPS layers were organized from CV to PV in left to right order. The 95% confidence interval for each TPS layer is shown as shaded areas.
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TPS is a complete, fully automatic zonation analysis tool
that allows accurate identification of CVs (f1 = 0.8500,
mIoU = 0.9029) and PVs (f1 = 0.8620, mIoU = 0.9170),
as well as characterization of zonated expression pat-
terns. The robustness of TPS in detecting the correct
zonation pattern was demonstrated in protein markers
with different zonated expression patterns. In addition,
the position of tissue features such as expression are
reported as continuous variables along the CV-PV axis,
rather than a qualitative measure based on the arbi-
trarily defined 3-zone system. This makes it possible to
use more robust statistical methods to compare the
zonal positions of tissue features. Because of these ad-
vances, results from TPS are likely to be more accurate,
reproducible, and comparable between different
experiments.

TPS was able to determine the expression pattern of
reporter mice with zone-specific expression, as well as
mice with undefined, sparse expression patterns. We
applied TPS to sections from CreER mice lines labeled
with markers with different zonal expression patterns.
TPS faithfully reported expected zonal expression pat-
terns of all 14 of these reporter lines. In addition, TPS
was able to quantitatively distinguish distinct strains that
express reporters in a qualitatively similar fashion (i.e.
within the same zone). TPS was also able to define the
zonal distribution of sparsely labeled cells within lobules.
The sparseness of labeling makes it difficult to determine
the zonal expression pattern with manual visual analysis.
For example, TERT expression in the liver was previously
reported to be uniform across lobules,10 however, TPS
showed that TERT reporter expression had a modest
location preference for zone 3. TPS can analyze whole
liver sections, which increases the throughput and thus
improves the accuracy of results. TPS is particularly
suited for analyzing sparse markers to determine if there
is a zone-specific expression pattern.

While we applied TPS to specific questions in liver
biology, at its core TPS is able to analyze spatial location
in the context of any positional landmarks. Any data
associated with a position on a tissue section can be
assessed with TPS. For example, any measurable tissue
feature such as cell size, subcellular structures, inflam-
matory cells, lipid droplets, cell proliferation, or cell death
can be integrated into TPS in a modular fashion. While
we tested and challenged TPS with only a single gene
expression readout (Tomato), it is possible to assess any
number of expression values, as long as they are anno-
tated with positional information. For example, spatial
transcriptomic data, which will produce expression data
for thousands of genes per cell/position, will be able to be
positionally analyzed as a function of zones using TPS.
Although TPS vessel segmentation is developed more
specifically for the use case of liver, its ability to extract
zonal expression patterns around the landmark struc-
tures in a tissue can be generalized to other organ sys-
tems and tissue types such as intestines, lungs, and
lymph nodes. Thus, TPS can be adapted to other tissue
types to facilitate research on biological processes that
involve differential spatial patterning of any marker.
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