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Deep learning predicts patients outcome and mutations from
digitized histology slides in gastrointestinal stromal tumor
Yu Fu 1,8, Marie Karanian2,8, Raul Perret 3,8, Axel Camara 1,8✉, François Le Loarer3,4, Myriam Jean-Denis2, Isabelle Hostein3,
Audrey Michot5, Françoise Ducimetiere 2, Antoine Giraud6, Jean-Baptiste Courreges6, Kevin Courtet3, Yech’an Laizet 3,
Etienne Bendjebbar1, Jean Ogier Du Terrail 1, Benoit Schmauch 1, Charles Maussion 1, Jean-Yves Blay 2,9, Antoine Italiano4,7,9 and
Jean-Michel Coindre3,4,9

Risk assessment of gastrointestinal stromal tumor (GIST) according to the AFIP/Miettinen classification and mutational profiling are
major tools for patient management. However, the AFIP/Miettinen classification depends heavily on mitotic counts, which is
laborious and sometimes inconsistent between pathologists. It has also been shown to be imperfect in stratifying patients.
Molecular testing is costly and time-consuming, therefore, not systematically performed in all countries. New methods to improve
risk and molecular predictions are hence crucial to improve the tailoring of adjuvant therapy. We have built deep learning (DL)
models on digitized HES-stained whole slide images (WSI) to predict patients’ outcome and mutations. Models were trained with a
cohort of 1233 GIST and validated on an independent cohort of 286 GIST. DL models yielded comparable results to the Miettinen
classification for relapse-free-survival prediction in localized GIST without adjuvant Imatinib (C-index=0.83 in cross-validation and
0.72 for independent testing). DL splitted Miettinen intermediate risk GIST into high/low-risk groups (p value= 0.002 in the training
set and p value= 0.29 in the testing set). DL models achieved an area under the receiver operating characteristic curve (AUC) of
0.81, 0.91, and 0.71 for predicting mutations in KIT, PDGFRA and wild type, respectively, in cross-validation and 0.76, 0.90, and 0.55 in
independent testing. Notably, PDGFRA exon18 D842V mutation, which is resistant to Imatinib, was predicted with an AUC of 0.87
and 0.90 in cross-validation and independent testing, respectively. Additionally, novel histological criteria predictive of patients’
outcome and mutations were identified by reviewing the tiles selected by the models. As a proof of concept, our study showed the
possibility of implementing DL with digitized WSI and may represent a reproducible way to improve tailoring therapy and precision
medicine for patients with GIST.
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INTRODUCTION
Gastrointestinal stromal tumor (GIST) is the most common
mesenchymal neoplasm of the gastrointestinal tract, and is
characterized by a variable clinical behavior. GIST arises from the
interstitial cells of Cajal1 and most cases have activating mutations
in the tyrosine kinase coding genes KIT or platelet-derived growth
factor receptor alpha (PDGFRA), which results in oncogenic
addiction2,3. Imatinib, a tyrosine kinase inhibitor (TKI) targeting
mutated activated KIT and PDGFRA, has been a breakthrough in
the treatment of advanced phases of the disease4,5. Notably,
response to imatinib treatment is dependent on the type of
mutation. Patients with KIT exon 11 and exon 9 mutations respond
well to imatinib at different dosages (double dose may be needed
for patients with mutations in KIT exon 9)6 while patients with
tumors harboring PDGFRA exon 18 D842V mutations are
resistant7. The standard management of a localized GIST is
complete surgical resection8, but about 20 to 40% of patients
relapse with mainly secondary peritoneal and/or liver locations9.
Adjuvant therapy with imatinib has been proved to benefit
patients with a high risk of relapse10. Therefore, it is crucial to
accurately identify this group of patients at initial diagnosis. The
most used system for evaluating relapse risk of GIST is the Armed
Forces Institute of Pathology (AFIP)/Miettinen classification

(Miettinen) based on tumor location, tumor size and mitotic
count per 5 mm[211. Mitotic count is an essential factor of this
classification, but reproducibility between pathologists is not
perfect12. In a retrospective study (see Methods for details), the
crude proportion of agreement observed between the outside
laboratories and the reference center laboratories was 88.9% for
the mitotic count (<=5 or >5mitoses/5 mm2) with a discordance
of 6.3% in the resulting Miettinen classification. Moreover, the
mitotic count is not always possible in small samples (i.e., core
needle biopsies). Deep learning on virtual slides has been
successfully used for the classification of tumors13 and prediction
of survival14 and molecular abnormalities15. In this study, we
evaluated the efficacy of deep learning models for predicting both
patient prognosis and mutational profile of GIST on digitized
hematoxylin, eosin and saffron (HES)-stained whole slide images
(WSI).

RESULTS
Deep learning and prediction of patients’ outcome
We investigated the prognostic power of DL (the full DL workflow
is shown in Fig. 1) in three subgroups of patients using different
endpoints: recurrence-free survival (RFS) for patients with localized
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GIST and without adjuvant therapy (N= 161), RFS for patients with
localized GIST and treated with adjuvant therapy (N= 66) and
overall survival for patients with advanced GIST and treated with
imatinib (N= 131, 69 metastatic at diagnosis and 62 recurrent,
Supplementary Fig. 1). All models were trained using cross-
validation with the whole cohort and evaluated within these
subgroups (Methods) using data from center 1 and tested
independently using the data from center 2.
DL showed an improvement in predicting RFS from images

alone for patients with localized GIST and without adjuvant
therapy (C-index = 0.81, std= 0.04 from CV in center 1) compared
to the Miettinen (C-index = 0.76, std= 0.04). The performance of
the multimodal DL model that includes HES images, tumor
location and tumor size (Deep Miettinen) is numerically higher but
was not significant compared to the model using images alone (C-
index = 0.83, std= 0.04, Fig. 2a). We obtained a C-index of 0.72
(95% CI = [0.63, 0.80]) for localized untreated patients in center 2
using the Deep Miettinen model. Image only model achieved a
C-index of 0.62(95% CI = [0.58, 0.66]) and the Miettinen model
achieved a C-index of 0.73(95% CI = [0.62, 0.82]). No difference in
performance between Deep Miettien and Miettinen models was
observed in center 2.
In terms of risk stratification, the difference of the estimated

relapse risk between high and low-risk groups defined by the
Deep Miettinen was greater than that defined by the Miettinen
model. (chi-square statistic= 70.05, log-rank test p-value= 58e-17
and chi-square statistic= 45.56, log-rank test p value= 1.3e-10 for
Deep Miettinen and Miettinen respectively for localized untreated
patients in the training set). These differences are shown in the
Kaplan-Meier curve in Fig. 2c.
Furthermore, the Deep Miettinen model was capable of

stratifying classical Miettinen intermediate and high-risk groups
into subgroups of different prognoses (log-rank test p value=
0.002 for both intermediate and high-risk groups, Fig. 2c). Of note,
when testing the Deep Miettinen model in center 2, none of the
patients was labeled as high-risk using the threshold estimated
from center 1. Therefore, a dataset-adapted threshold for high and
low-risk groups was used (a cutoff that led to a comparable
number of high-risk patients as defined by the Miettinen). A
higher median RFS time was observed in the low-risk group
compared to the high-risk group estimated by Deep Miettinen for
both intermediate and high-risk groups defined by Miettinen.
However, the tests did not meet statistical significance (log-rank
test p value= 0.29 and 0.31 for intermediate and high-risk groups
respectively, Supplementary Fig. 2).
When examining the predictive tiles that were related to

different risks, we noticed that mitoses, high cellular density and
necrosis were associated with high-risk while cytoplasmic

vacuolization and low cellular density were associated with low-
risk (Fig. 2b, Supplementary Table 1–3).
For localized and treated GIST, we obtained C-index= 0.81,

std= 0.1 for DL with image only, C-index= 0.68, std= 0.11 for
Miettinen and C-index= 0.84, std= 0.1 for Deep Miettinen;
however, these results were not validated in center 2 (C-
index= 0.44 for DL with image only, C-index= 0.54 for Miettinen
and C-index= 0.45 for Deep Miettinen).
For advanced GIST receiving imatinib, the performance was

poor in both center 1 and center 2 (C-index= 0.52, std= 0.1 for
DL with image only, C-index= 0.46, std= 0.1 for Miettinen and C-
index= 0.64, std= 0.15 for Deep Miettinen in center 1 and C-
index= 0.64 for DL with image only, C-index= 0.49 for Miettinen
and C-index= 0.62 for Deep Miettinen in center 2).

Deep learning and prediction of mutations
The mutational profile is important for the treatment decision and
the outcome of GIST patients. We investigated the predictive
power of DL on WSI for mutation classification. The main
mutations were in KIT exon 11 (Center 1: 61.5% and Center 2:
58.4%), PDGFRA exon 18 (Center 1: 14.0% and Center 2: 13.4%),
and KIT exon 9 (Center 1: 8.2% and Center 2: 7.1%; Tables 1 and 2).
We first tested DL models in mutation classification at the gene

level (KIT mutant, PDGFRA mutant or wild-type). Patients without
mutations or with mutations in genes other than KIT and PDGFRA
were considered Wild-type. We obtained a macro AUC of 0.81
from CV in center 1 (weighted precision = 0.75 and weighted
recall=0.78, Table 3, Fig. 3a, Supplementary Fig. 3). This model was
validated in center 2 with a macro-AUC of 0.74 (weighted
precision = 0.68 and weighted recall= 0.78, Table 3, Fig. 3a).
We obtained a better performance for tumors from the stomach in
both centers (Table 3, Fig. 3a).
Next, we built predictive models for WT, PDGFRA exon 18, KIT

exon 11, KIT exon 9 and other mutations in KIT or PDGFRA. We
obtained a macro AUC of 0.76 from CV in center 1 (Weighted
precision = 0.54 and weighted recall=0.60) and a macro=AUC of
0.69 (weighted precision = 0.53 and weighted recall=0.66) in
center 2(Table 3, Fig. 3b, Supplementary Fig. 3). Similar to the
gene-level mutation classification model, we obtained better
performance for tumors from the stomach. Results are shown in
Table 3 (Fig. 3b, Supplementary Fig. 3).
Finally, we investigated if DL could predict mutation types at

the codon level with 2 particular types: PDGFRA exon18 D842V
mutation, which is associated with imatinib resistance7 and KIT
codons 557/558 deletion (del-inc 557/558) mutations which have
been reported to be associated with a worse prognosis when
compared to other KIT exon 11 mutations16–18. For the PDGFRA
exon 18 D842V mutation, we obtained an AUC= 0.87 (95% CI =

Fig. 1 Deep learning workflow. Our DL pipeline consists of three main steps. Data preprocessing. For one raw WSI, we apply a matter
detection algorithm on it in order to extract the tissue area and to remove the artifacts (blur area, etc). On the extracted tissue area, we apply a
tiling which consists of dividing the whole-slide images into tiles of 112 × 112 μm (224 × 224 pixels) at a zoom level of 0.5 microns per pixel.
Feature extraction. We trained from scratch a 50-layer ResNet using an inhouse dataset of sarcoma of 1287 WSI (942,626 tiles) and Momentum
Contrast v2 (MoCo v2) algorithm, a self-supervised learning algorithm based on contrastive loss. Using this model, we extracted 2048 features
from each of the tiles, such that a slide could be represented as a N × 2048 matrix with N equals to the total number of tiles. Predictive models.
MLP were trained using the 2048 features to predict mutation types or survival risk.

Y Fu et al.

2

npj Precision Oncology (2023)    71 Published in partnership with The Hormel Institute, University of Minnesota

1
2
3
4
5
6
7
8
9
0
()
:,;



[0.84, 0.90]) in cross-validation from center 1 and AUC= 0.90 (95%
CI = [0.84, 0.96]) in testing from center 2 for all samples.
Comparable results were obtained for samples from the stomach
only (AUC= 0.82, 95% CI= [0.78, 0.86] in center 1 and AUC= 0.87,
95%= [0.80, 0.95] in center 2, Table 3, Fig. 3c, Supplementary Fig.
3). Cutoff was selected for each mutation class to achieve a
sensitivity of 90%. The model achieved a specificity of 26% using a
cutoff of 0.29 for all samples and a specificity of 52% using a cutoff
of 0.34 for the stomach only. For the KIT del-inc 557/558
mutations, we obtained an AUC= 0.69 (95% CI= [0.65, 0.72]) in
center 1 and AUC= 0.76 (95% CI= [0.66, 0.86]) in center 2 for all
samples and an AUC= 0.78 (95% CI= [0.75, 0.83] in center 1 and
AUC= 0.74 (95% CI= [0.66, 0.82]) in center 2 for samples from the
stomach only. For a sensitivity of 90%, the model achieved a
specificity of 43% using a cutoff of 0.31 for all samples and a
specificity of 40% using a cutoff of 0.32 for the stomach only.
When reviewing the most predictive tiles for these different
mutations, we observed that the PDGFRA exon 18 D842V mutation

was associated with epithelioid or mixt cell morphology,
cytoplasmic vacuolization, myxoid stroma, and lymphoid infiltrate.
In contrast, KIT del-inc 557/558 mutation was associated with
mitotic activity and nuclear hyperchromasia and KIT exon 9
mutation was associated with lymphoid infiltrate (Fig. 3d,
Supplementary Tables 1–3).

Comparison of performance between DL and tumor cell morphology
for mutation prediction. Next, we built mutation predictive
models (baseline models for mutation classification, see Methods)
based exclusively on tumor cell morphology (spindle cell,
epithelioid cell or mixed). These models showed inferior
performance for mutation prediction compared to DL (AUC= 0.8,
95%CI= [0.76, 0.86] for PDGFRA exon 18, AUC= 0.66, 95%CI=
[0.60, 0.70] for KIT exon 11, AUC= 0.56, 95%CI= [0.49, 0.63] for KIT
exon 9, AUC= 0.57, 95%CI= [0.47, 0.67] for other mutations and
AUC= 0.47, 95%CI= [0.4, 0.54] for WT in center 1 and AUC= 0.71,
95%CI= [0.61, 0.81] for PDGFRA exon 18, AUC= 0.57, 95%CI=
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Fig. 2 DL predicts risk of relapse from HES slides. a Concordance index of predicting incidents using HES slides alone (dark red), Miettinen
risk criteria(light green) and Deep Miettinen(dark green) for RFS in localized, untreated patients. Shown is the distribution across 5 repetitions
of 4-fold cross-validation (n= 20 for each boxplot). All boxplots demarcate quartiles and median values, while whiskers extend to 1.5× the
interquartile range. b Example of tiles with high and low (indicated on the left) estimated risk based on the histopathological features. The
most predictive tiles for high risk of relapse showed mitoses (1), high cellular density (2) and necrosis (3) while tiles with low risk of relapse
showed cytoplasmic vacuolization (4, 5) low cellular density (6). c Kaplan–Meier plots shown for RFS for localized untreated patients within
different categories. From left to right: risk groups defined by Miettinen; risk groups defined by Deep Miettinen (Low risk corresponds to risk
score <mean+ 0.2*std); risk groups defined by Deep Miettinen for high risk patients defined by Miettinen; risk groups defined by Deep
Miettinen for intermediate risk patients defined by Miettinen.
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[0.52, 0.62] for KIT exon 11, AUC= 0.54, 95%CI= [0.45, 0.64] for KIT
exon 9, AUC= 0.54, 95%CI= [0.38, 0.69] for other mutations and
AUC= 0.58, 95%CI= [0.49, 0.68] for WT in center 2, test DeLong p
value= 0.003 for PDGFRA exon18, p-value= 8.9e-05 for KIT
exon11, p value= 0.004 for KIT exon9, p value= 0.09 for other
mutations and p value= 0.02 for WT in center 1 and p value=
0.0004 for PDGFRA exon18, p-value= 0.03 for KIT exon11, p
value= 0.008 for KIT exon9, p value= 0.16 for other mutations
and p value= 0.8 for WT in center 2, Supplementary Fig. 4).

Importantly, PDGFRA exon 18 mutations are known to be
associated with epithelioid cell morphology in the stomach, while
KIT exon 11 mutations are associated with spindle cell morphol-
ogy. Therefore, we compared the performance of the baseline
model using samples only from the stomach and obtained
anAUC=0.80(95%CI= [0.71, 0.93]) for PDGFRA exon18 mutations
and an AUC= 0.78(95%CI= [0.72, 0.82]) for KIT exon 11 mutations,
both of which were significantly inferior to DL (test DeLong=0.001
for both PDGFRA exon18 and KIT exon 11).

Table 1. Center 1 cohort description.

Patient characteristics of cohorts from
center 1

Mutation
prediction

Recurrence
prediction

Gender, n (%) N= 1233 N= 305

Male 661 (54%) 180 (59.0%)

Female 572 (46%) 125 (41.0%)

Age, years

Median 66 64

Range 19–97 19–97

Type of sampling

Tumor resection 1002 (81.3%) 244 (80.0%)

Open biopsy 42 (3.2%) 10 (3.3%)

Core needle biopsy 191 (15.5%) 51 (16,7%)

Tumor site

Gastric 677 (54.9%) 167 (54.8%)

Small intestine 357 (29.0%) 97 (31.8%)

Colon or rectum 53 (4.3%) 13 (4.3%)

NA 14 (1.1%) 4 (1,3%)

Others 132 (10.7%) 24 (7.8%)

Type of tumor cell

Spindle 716 (58.0%)

Epithelioid 351 (28.5%)

Mixt 166 (13.5%)

Mutated exon

KIT exon 11 758 (61.5%) 180 (59.0%)

KIT exon 9 101 (8.2%) 30 (9.8%)

PDGFRA exon 18 173 (14.0%) 35 (11.5%)

Wild type 130 (10.5%) 38 (12.5%)

Others 71 (5.8%) 14 (4.6%)

Tumor size

<5 cm 70 (23.0%)

5–10 cm 126 ((41.3%)

>10 cm 103 ((33.8%)

NA 6 (.,9%)

Mitotic count, per 5mm2

<5 133 (43.6%)

5–10 62 (20.3%)

>10 100 (32.8%)

NA 10 (3.3%)

Risk Group (AFIP)

Low risk 74 (24.3%)

Intermediate risk 54 (17.7%)

High risk 170 (55.7%)

NA 7 (2.3%)

Table 2. Center 2 cohort description.

Patient characteristics of cohorts from
center 2

Mutation
prediction

Recurrence
prediction

Gender, n (%) N= 238 N= 286

Male 113 (47.5%) 143 (50.0%)

Female 125 (52.5%) 143 (50.0%)

Age, years

Median 64 64

Range 20-91 20-91

Type of sampling

Tumor resection 169 (71.0%) 207 (72.4%)

Open biopsy 23 (9.7%) 25 (8.6%)

Core needle biopsy 46 (19.3%) 54 (18.0%)

Tumor site

Gastric 127 (53.4%) 148 (51.8%)

Small intestine 55 (23.1%) 73 (25.5%)

Colon or rectum 17 (7.1%) 23 (8.0%)

Others 39 (16.4%) 42 (14.7%)

Type of tumor cell

Spindle 170(74.5%) 220(76.9%)

Epithelioid 41(17.8%) 46(16.1%)

Mixt 18(7.8%) 20(7.0%)

Mutated exon

KIT exon 11 139 (58.4%) 139 (48.6%)

KIT exon 9 17 (7.1%) 17 (5.9%)

PDGFRA exon 18 32 (13.5%) 32 (11.2%)

Wild type 30 (12.6%) 30 (10.5%)

Others 20 (8.4%) 20 (7.0%)

NA 48 (16.8%)

Tumor size

<5 cm 73 (25.6%)

5–10 cm 119 (41.7%)

>10 cm 89 (31.1%)

NA 5(1.6%)

Mitotic count, per 5mm2

<5 139 (48.6%)

5–10 61 (21.3%)

>10 77 (26.9%)

NA 9 (3.2%)

Risk Group (AFIP)

Low risk 86 (301%)

Intermediate risk 51 (17.8%)

High risk 130 (45.4%)

NA 19 (6.6%)
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DISCUSSION
In the current study, we have shown that a deep learning model
can predict outcomes and mutations directly from HES-stained
WSIs of GIST to a certain degree. We were particularly interested in

predicting local/distant recurrence-free survival (RFS) for patients
with localized GIST since the use of adjuvant therapy is known to
have an impact on patients’ baseline risk stratification and
prognosis8. In center 1, deep Miettinen model outperformed the

Table 3. DL models training and testing results on the mutation classification task.

AUC[95% CI]

CV from training in center 1 independant testing in center 2

All samples Stomach only All samples Stomach only

KIT 0.81[0.78, 0.84] 0.87[0.84, 0.90] 0.84[0.76, 0.91] 0.85[0.77, 0.93]

PDGFRA 0.91[0.90, 0.94] 0.92[0.90, 0.94] 0.93[0.88, 0.97] 0.92[0.86, 0.97]

WT 0.71[0.66, 0.75] 0.72[0.64, 0.80] 0.56[0.42, 0.70] 0.63[0.45, 0.82]

PDGFRA exon18 0.90[0.87, 0.92] 0.88[0.85, 0.91] 0.90[0.84, 0.96] 0.89[0.82, 0.96]

KIT exon11 0.74[0.71, 0.77] 0.87[0.84, 0.90] 0.77[0.70, 0.85] 0.85[0.77, 0.93]

KIT exon9 0.71[0.66, 0.75] NA[NA, NA] 0.73[0.56, 0.89] 0.87[NA, NA]

Other mutations 0.60[0.53, 0.67] 0.69[0.61, 0.76] 0.59[0.39, 0.79] 0.69[0.36, 1]

PDGFRA_Exon18 D842V 0.87[0.84, 0.90] 0.82[0.78, 0.86] 0.90[0.84, 0.96] 0.87[0.79, 0.95]

PDGFRA_Exon18 other mutation 0.86[0.83, 0.90] 0.82[0.78, 0.86] 0.78[0.67, 0.88] 0.72[0.58, 0.85]

KIT_del-inc557-558 0.69[0.65, 0.72] 0.79[0.75, 0.83] 0.74[0.66, 0.82] 0.76[0.66, 0.87]

KIT_Exon11 other mutation 0.62[0.59, 0.65] 0.72[0.69, 0.76] 0.66[0.57, 0.75] 0.78[0.66, 0.88]
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Fig. 3 DL predicts mutations from HES slides. a Line plots with AUC values for mutation classification at gene level. Shown for all samples
(left) and samples from stomach tumors only (right). Each point corresponds to the average AUC from 4-fold cross validation. AUCs from left-
out fold during training are shown in blue and AUCs from independent testing are shown in green. Error line indicates the CI estimated using
cvAUC. b Line plots with AUC values for mutation classification at exon level. c Line plots with AUC values for mutation classification at codon
level. d Example of correctly predicted tiles for each mutation at codon level. 3 tiles per mutation are shown with the mutation type indicated
on the top: the most predictive tiles for KIT exon9 mutation (1) showed lymphoid infiltrate (black arrows); the most predictive tiles for KIT
exon11 del557_558 (2) showed mitoses (black arrow) and nuclear hyperchromasia (green arrow) and the most predictive tiles for PDGFRA
exon18 D842V (3) showed vacuolization of cells (black arrows) and myxoid stroma (green arrows).
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traditional Miettinen evaluation system for predicting outcome in
localized GIST with no adjuvant imatinib suggesting that DL was
able to extract additional prognostic data from histological
images, beyond mitotic activity. In addition, unlike the Miettinen
system that includes an intermediate risk category, the Deep
Miettinen model was able to stratify patients into two distinct high
and low-risk groups. Moreover, the Deep Miettinen model was
able to stratify further patients falling in the high and
intermediate-risk categories of the conventional Miettinen system.
When reviewing the predictive tiles related to high and low risks,
we observed that in addition to mitoses, high cellular density, and
necrosis were associated with a high risk while cytoplasmic
vacuolization and low cellular density were associated with a low
risk. However, the performance of our model decreased from
center 1 to center 2. This is probably related to the small size of
our training set as the lack of diversity in small cohorts often leads
to poor transferability of deep learning models due to domain
shift19–22. Indeed, a shift in risk prediction was observed when
applying our model in the testing cohort, resulting in an under
estimation of patients’ risk of relapse. This shift needs to be
addressed for clinical usages. Several research directions are
promising to deal with the ‘domain shift’ problem. For instance,
train a feature extractor with images from multiple centers using
different tissue preparation protocols, scanners, compression
algorithms and compression rates to extract invariant image
features from different domains. Another approach is to train a
predictive model with a larger dataset or multiple datasets so that
the model will generalize better in unseen data. Despite the
decrease in performance across centers, our results are promising.
If validated and improved using additional cohorts, they could be
potentially integrated into clinical practice, particularly for
predicting RFS in patients with localized GIST.
We also evaluated DL models in GIST patients treated with TKIs.

DL gave good results for predicting RFS in patients with localized
GIST that received adjuvant treatment in center 1, but this was not
validated in center 2. Results of DL were poor in patients with
advanced GIST receiving imatinib. These data suggest that the
treatment effect is crucial to patients’ prognosis and models built
on baseline images alone are not capable of predicting the
outcome.
Since the mutational profile is essential for the treatment

decision and outcome of GIST patients, we investigated the
predictive power of DL on WSI for mutation classification. Our
results suggest that DL models can predict mutation type at the
gene, exon and codon levels with good performance. The link
between histology and mutation is well in line with previous
studies that showed that the mutational landscape of GIST
correlates with histological features23,24, particularly with tumor
cell morphology (spindle versus epithelioid) and tumor site. Thus a
gastric tumor composed of epithelioid cells often harbors a
PDGFRA exon 18 mutation. However, the correlation between
tumor cell morphology (even associated with tumor site) and
mutations was inferior to mutation prediction using DL. These
results suggest that the tumor cell morphology can only partially
explain the mutational profile, and DL learns additional morpho-
logical features related to mutations. With this unprecedented
large cohort of patients, the model performance and robustness
have been greatly improved for predicting mutations at gene level
compared to a previous study19. More importantly, DL was able to
accurately predict mutations that have a great impact in patients’
treatment decision and prognostic estimation such as PDGFRA
exon18 D842V mutation which is a predictor for imatinib
resistance and avapritinib25 sensitivity, and KIT del-inc 557/558
mutations which are associated with a worse prognosis and high-
risk of relapse. While the models’ performance for predicting
mutations are remarkable, it is still not perfect to replace genetic
testing. However, these models can serve as pre-screening tools to
greatly reduce the cost by pre-selecting a subset of patients for

genetic testing, like it has been done for genotyping colorectal
cancer26.
The black-box characteristic of deep learning is often men-

tioned as a drawback of such systems, especially for medical
decision-making. In this study, we have shown that the systematic
review of extremal tiles identified by the DL models as predictive
is useful for understanding how the DL models made the
predictions.
Before our system can be used in clinical practice, some

limitations need to be addressed. The cohorts used for outcome
prediction were relatively small, particularly when studying
subgroups defined by tumorstage (localized versus advanced
GIST) and treatment. Larger and heterogeneous cohorts should be
used in training to develop a more robust model, which should
then be validated extensively with additional cohorts. As we have
seen that the Miettinien system works well and is robust, another
direction of future improvement of the DL prognostic model is to
integrate DL based mitotic counts into the Miettinien evaluation
system to predict relapse risk. Several studies27–30, have shown
that deep learning models could improve the accuracy and
reproducibility of mitotic count. This approach could lead to more
straightforward and human interpretable DL models and increase
the prognostic power and reproducibility of the Miettinen
evaluation system.
In conclusion, this study shows that DL could help to predict the

risk of progression in localized GIST but needs improvements to
be used in the clinical management of patients. DL seems more
robust for identifying somatic mutations directly from HES whole
slide images of patients with GIST. Such systematic tools could be
useful for the management of GIST patients, especially those with
localized disease. The DL method could be helpful to speed up
therapeutic decisions by predicting PDGFRA exon18 D842V
mutation in intermediate- risk Miettinen patients, which generally
do not need adjuvant treatment and in high-risk Miettinen
patients who need to receive avapratinib treatment25. This
method could benefit countries where molecular techniques are
not readily available. Moreover, DL could also be used as a
potential research tool for discovering novel predictive histologi-
cal features from whole slide images.

METHODS
Description of patient cohorts
Two cohorts of patients with GIST were extracted from the
Sarcoma Clinical and Biological database (https://sarcomabcb.org/),
a data warehouse of clinical, pathological and molecular data31.
The first cohort from Bergonié Institute (France) served as a
training dataset (center 1). It consisted of 1233 patients with a GIST
with mutation status. For 305 patients, treatment and follow-up are
known (Table 1). These patients were mainly from south west of
France. The second cohort from Center Léon Bérard (France) was
used as an independent testing set with 286 patients with
information on treatment and follow-up and 238 patients with
mutation status (center 2). These patients were mainly from south
east of France (Table 2). Eligible patients were required to have a
tumor located in the gastrointestinal tract with a tumor
morphology compatible with GIST and positive immunostaining
for the KIT and/or the discovered on GIST-1 (DOG1) proteins. The
following data were collected: gender, age at diagnosis, tumor site,
type of sampling (resection, open biopsy, core needle biopsy), type
of tumor cells (spindle, epithelioid, mixt). For patients with
treatment and follow-up knowledge, additional data were
collected: tumor size, mitotic count per 5mm2, risk group
according to the AFIP criteria (Tables 1 and 2), surgery (yes/no),
date, type and result of surgery, targeted therapy (yes/no), date
and type of targeted therapy, recurrence of disease, date and site
of recurrence, last news date and status, death (yes/no), date and
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cause of death. All cases are recorded in the database of the
French Sarcoma BCB (https://sarcomabcb.org/), which is approved
by the National Committee for Protection of Personal Data
(Commission Nationale de l’Informatique et des Libertés - CNIL,
no. 910390). The study was declared to the CNIL on the 3rd April
2020 under the Sar-IA-Path project number MR 0012030420 and an
informed consent form with nonopposition principle for the reuse
of health data for research purposes was communicated to the
patients of this study. The study was approved by the Institutional
Review Board of both centers (Collège de Recherche Clinique for
the Institut Bergonié and Comité de Revue des Études Cliniques for
the Centre Léon Bérard.). Written informed consent was obtained
from all patients.

Sequencing
Mutational analysis of KIT and PDGFRA was performed based on
DNA isolated from formalin-fixed, paraffin-embedded. Mutation of
KIT exons 9, 11, 13, and 17 and PDGFRA exons 12, 14, and 18 was
identified by Sanger sequencing of PCR products (Tables 1 and 2).
Patients with no mutation in these 7 exons were considered as
wild type (WT) GIST.

Whole slide digitization
For each tumor, one representative formalin-fixed, paraffin-
embedded, HES-stained slide was digitized at 40X magnification
using a Hamamatsu Nanozoomer Series scanner (Hamamatsu
Photonics, Hamamatsu, Japan) in Center 1 and an Aperio AT2 (Leica
Biosystems, France) in Center 2. Tissue segmentation. We trained an
Unet with a VGG11 encoder pre-trained with ImageNet32 and a
decoder trained from scratch to segment the tissue sections from
the whole slide images. The Unet was trained with an annotated
dataset collected from publicly available sources containing 570
whole slides images of hematoxylin and eosin (H&E), HES and
immunohistochemistry staining. Tissue areas were annotated by a
pathologist inhouse for all slides.The model was trained in 460 H&E
and IHC slides and validated in 115 slides. The model was trained on
patches of size 2048 × 2048 μm (512 × 512 px) extracted from the
WSI during 400 epochs, with a batch size of 2 slides using data
augmentation such as center crop, color jitter (brightness, contrast,
saturation, hue) and a standardization. A learning rate of 0.0003 has
been used for the training The tissue segmentation model achieved
a dice score of 0.96. By applying this algorithm, we removed all
regions without tissue or artifacts such as pen marks on the slides.
Tiling. The application of deep-learning algorithms to histological
data is a challenging problem, particularly due to the high
dimensionality of the data (up to 100,000 × 100,000 pixels for a
single whole-slide image) and the small size of available datasets. We
divided the whole-slide images into tiles of 112 × 112 μm (224 × 224
pixels) at a zoom level of 0.5 microns per pixel. Feature extraction. In
order to extract imaging features from the tiles, we trained from
scratch a 50-layer ResNet33 using an inhouse dataset of sarcoma of
1287 WSI from 1261 Soft Tissue Sarcoma patients (equally
distributed between Female and male) diagnosed with complex
genomic profiles from Institut Bergonié. The dataset contains both
primary site tumor and metastases. All WSI were digitized using a
Hamamatsu Nanozoomer Series scanner (Hamamatsu Photonics,
Hamamatsu, Japan) at magnification of 40X. The model was trained
with 942,626 tiles at a zoom level of 0.5 microns per pixel for 60
epochs with a batch size of 768 using LARS optimizer (learning rate
of 0.3, momentum of 0.9, weight decay of 1.5e-6 and eta of 1e-3) and
Momentum Contrast v2 (MoCo v2) algorithm34, a self-supervised
learning algorithm using contrastive loss to shape one embedding
space where different augmented views of the same image are close
together. Heavy data augmentation was used during the training
process in order to extract robust features that are invariant to
rotation, color changes and blur (random rotation of 90°, 170° and
280°; random vertical and horizontal flip; random crop with

scale= (0.2 to 1); random grayscale; random color jitter with
brightness=0.8, contrast=0.8, saturation=0.8, hue=0.2; gaussian
blur with sigma= (0.1, 2.0)). Using this model, we extracted 2048
features from each of the tiles, such that a slide could be represented
as a N × 2048 matrix with N equals to the total number of tiles. Blur
filtering. Additional filter based on the weighted gradient magnitude
(using Sobel operator) was applied to remove blurred tiles (tiles with
a weighted gradient magnitude smaller than 15 for more than half of
the pixels). The tiles (RGB 0-255) were first converted to grayscale
using the function of cvtColor from the openCV library. Vertical and
horizontal sobel derivatives were calculated using the Sobel function
from openCV with a kernel size of 3. Weighted gradient magnitudes
were calculated using weight = 0.5 from both directions. Tumor
segmentation. We trained a MLP model (with an input layer of 2048
neurons, one hidden layer of 256 neurons and one fully connected
layer) to segment the tumor regions from the WSI. The model was
trained at the tile level using 1259 annotated whole slides by an
expert soft-tissue pathologist (JMC) in center 1 (50 randomly selected
tiles from each WSI were included in the training, loss function=B-
CEloss, optimiser=Adam, lr=3e-3, batch size=32, epochs=10). All
models were trained using GPU.

Weakly supervised learning
Weakly supervised learning exploits the global labels (WSI-level)
annotations to automatically infer local-level (pixel/patch-level)
information. This paradigm is particularly well suited to our
problem where the global-level information is available in the
form of image level labels, e.g., mutated or wild type, but pixel-
level annotations are more difficult to obtain. For both classifica-
tion and prognosis models, we used a multilayer perceptron (MLP)
model with an input layer with 2048 neurons, 2 hidden layers with
512 neurons and one fully connected layer with 0.25 dropout
rate35 . Models were trained with learning rate = 3e-4, batch size
= 32, optimiser=Adam, loss function = cross entropy for mutation
classification and cox loss function for survival model. Models
were written in python under the framework of pytorch.

Mutation classification model
For training of the classification model, the dataset was split into
four folds at the patient level for cross validation. The models were
trained using cross entropy as loss function, only the top 100 tiles
with the greatest scores for each of the classes were used in the
backpropagation. Per-slide predictions were calculated using the
average prediction of all tiles. The model performance was
evaluated using Area Under the Curve (AUC) for each of the classes
in a one versus the rest fashion. The final model performance was
reported by the mean predicted AUC in the hold out fold. 95% CIs
for the average AUC across folds were estimated using the cvAUC R
package36. For each of the four folds, a p value was calculated by
evaluating model predictions on the held-back fifth using Wilcoxon’s
rank-sum test37. The resulting five p-values from each test were
combined into a single p value statistic using Fisher’s method38.
Precision-recall curves were also generated for all models for model
evaluation. Prognostic model. In order to compare the performance
of DL models to the existing evaluation system, we built deep
learning (DL) models with images alone and multimodal models
(Deep Miettinen) including images, tumor location and tumor size.
For the Deep Miettinen model, the clinical variables were
concatenated directly to the image features at the input layer
(2050 features per tile including 2048 images features, tumor
location as binary variable(stomach= 1, non-stomach= 0) and
tumor size as continuous variable). For training of the prognostic
model, the dataset was split into four folds at the patient level for
cross validation. The cross validation was repeated 5 times for all
models. The models were trained using cox loss function as loss
function and only the top 100 tiles with the greatest scores were
used in the backpropagation. Per-slide predictions were calculated
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using the average prediction of all tiles. The final model performance
for prognosis was reported by average C-index and CI by standard
deviation from cross-validation. Patients were assigned into high
and low risk groups by using the mean+ 0.2*standard deviation of
the estimated risk scores from the training set as threshold (high risk
group: risk >mean+0.2*std).

Baseline model
To compare the predictive accuracy of DL with conventional
histopathological evaluation methods, we built linear models to
predict mutation classes from tumor cell types and cox models to
predict prognostic risk from Miettinen risk criteria (mitotic count,
tumor location and tumor size). Predicted accuracy (AUC for
classification and C-index for prognosis) and p-values were
calculated as described above using the same fold splits and
repeats. All models were trained on a Tesla P40 (24 Go memory) in
center 1 and tested on a NVIDIA GeForce GTX 1080 Ti (12 Go
memory) in center 2.

Expert blinded assessment of mitotic counts
We collected 824 GIST that were sent to Pathology Departments
of Bergonie Institute and Centre Leon Berard for a second opinion
or a systematic review in the context of the French Pathology
Network for soft tissue tumors39 from January 2016 to December
2020. For 559 cases, mitotic count was known for both outside
and reference center laboratories. The mitotic counts were
categorized into two groups (more than 5 mitosis v.s less than
or equals to 5 mitosis).

Model interpretability
In order to better understand the features associated with
recurrence risk and different types of mutation, a set of
representative tiles were selected for pathologist examination in
each condition. For high risk of recurrence, 25 tiles with the
highest predicted risk scores were selected from 30 patients
relapsed within 300 days. For low risk of recurrence, 25 tiles with
the lowest predicted risk scores were selected from 30 predicted
patients that did not relapse within 900 days. For each of the
mutations, 25 tiles with the highest predicted score for the
corresponding mutation from 10 positive patients were selected.
All tiles were selected from the non-blurred tumor region using
our tumor segmentation model and an additional blur filtering.
Representatives tiles from each category were included in the
main figures. These 2750 selected tiles from 110 patients were
presented to 2 expert soft-tissue pathologists (RP and JMC)
without the corresponding labels. The following predefined
parameters were evaluated: 1- Tumor cellularity: low (<10%),
medium (<10% and >50%), high (>50%), 2- Stroma if present,
specify the type of stroma: fibrosis, myxoid, fibromyxoid,
osseous,vacuolized pattern, 3- Cell type if single type > 50% of
tumor cells, specify: spindle, pleomorphic, round, or epithelioid,
otherwise: mixt, 4- Cell vacuolization: presence or absence, 5-
Nuclear atypia: mild, moderate, important, 6- Hyperchromasia:
presence or absence, 7- Mitosis: presence (specify number) or
absence, 8- Necrosis: presence or absence, 9- Red blood cells:
presence or absence, 10- Tumor infiltration if present : lympho-
cytes, neutrophils, other inflammatory cells, 11- Vessels: presence
or absence. Statistical tests were performed in high vs low risk
groups and in One v.s. the rest fashion for mutations. Two-sided T-
test was used for quantitative annotations and chi-square test was
performed for qualitative annotations.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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