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GANT-61 induces cell cycle resting and autophagy by down-
regulating RNAP III signal pathway and tRNA-Gly-CCC synthesis
to combate chondrosarcoma
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Chondrosarcoma is ineffective for conventional radiotherapy and chemotherapy with a poor prognosis. Hedgehog (Hh) signal
pathway plays a crucial role in tumor growth and progression, which is constitutive activated in chondrosarcoma. GLI transcription
factors as targets for new drugs or interference technology for the treatment of chondrosarcoma are of great significance. In this
study, we indicated that the Hedgehog-GLI1 signal pathway is activated in chondrosarcoma, which further enhances the RNAP III
signal pathway to mediate endogenous tRNA fragments synthesis. Downstream oncology functions of endogenous tRNA
fragments, such as “cell cycle” and “death receptor binding”, are involved in malignant chondrosarcoma. The GANT-61, as an
inhibitor of GLI1, could inhibit chondrosarcoma tumor growth effectively by inhibiting the RNAP III signal pathway and tRNA-Gly-
CCC synthesis in vivo. Induced G2/M cell cycle resting, apoptosis, and autophagy were the main mechanisms for the inhibitory
effect of GANT-61 on chondrosarcoma, which correspond with the above-described downstream oncology functions of
endogenous tRNA fragments. We also identified the molecular mechanism by which GANT-61-induced autophagy is involved in
ULK1 expression and MAPK signaling pathway. Thus, GANT-61 will be an ideal and promising strategy for combating
chondrosarcoma.
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INTRODUCTION
Chondrosarcoma is the second most common primary bone
malignancy, which is ineffective for conventional radiotherapy and
chemotherapy with a poor prognosis. Surgical resection is
currently the only treatment for chondrosarcoma. Therefore, there
is an extremely urgent need to explore new therapeutic targets to
combat this tumor [1].
Hedgehog (Hh) signal pathway plays a crucial role in tumor

growth and development, which is constitutive activated in
chondrosarcoma [2]. In mammals, the three GLI factors encode
context-dependent activities with GLI1 being mostly an activator
and GLI3 often a repressor, GLI2 may be an activator or repressor
in different cells at different times [3]. GLI transcription factors as
targets for new drugs or interference technology for the treatment
of chondrosarcoma are of great significance [4, 5]. In our early
study, we have shown that GLI1 inhibition could significantly
inhibit the growth and development of chondrosarcoma in vitro,
but more work still needs to be carried out to verify the effect of
GLI1 inhibition and fully elucidate GLI1 functions in vivo. A
promising therapeutic agent is GANT-61, which directly binds to
the transcription factor GLI1/2, inhibits tumor cell proliferation and
suppresses tumor formation in many preclinical studies [6]. Fu

et al. showed that GANT-61 inhibits pancreatic cancer stem cell
growth in vitro and NOD/SCID/IL2R gamma null mice xenograft
[7]. Malin Wickström et al. proved that GANT-61 enhances the
effects of chemotherapeutic drugs used in the treatment of
neuroblastoma in an additive or synergistic manner and reduces
the growth of established neuroblastoma xenografts in nude mice
[8]. Therefore, Targeting the Hh pathway by using GANT-61 may
provide a promising therapy for chondrosarcoma.
Up to now, some new perspectives and biology functions

appeared against refractory malignant tumors, such as those
below. (1) RNA polymerase III (RNAP III) is a nucleoprotein that
transcribes DNA to synthesize tRNA. tRNA fragments (tRFs) have
been shown to have crucial regulatory roles in cancer biology.
However, the contributions of tRFs to chondrosarcoma remain
largely unknown [9, 10]. (2) Autophagy has been reported to
either promote or inhibit tumorigenesis, development, and
chemotherapy resistance. It is worth exploring these mechanisms
in chondrosarcoma, as they may reveal remarkable insights into
novel means for regulating chondrosarcoma growth, recurrence,
and metastasis [11, 12]. (3) Disruption of cell cycle checkpoints
represent a series of tightly integrated events that allow the cell to
grow and proliferate. Targeting cell-cycle checkpoints may
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provide substantial improvement to cancer therapy [13, 14]. In this
study, we devoted ourselves to demonstrating the relationship
among the Hh signal, RNAP III transcription pathway, and tRFs. We
reported the antitumor activity of GANT-61 and its mechanisms
(cell cycle arrest and autophagy) for chondrosarcomas in vivo. This
report shows the possibility that GLI1 inhibitors might be a
potential clinical compound in the treatment of chondrosarcomas.

RESULTS
Activated Hedgehog-Gli1 signal pathway contributed to
chondrosarcoma
To explore the potential activated signal pathways in chondro-
sarcoma, we processed the GSE30835 data from GEO datasets,
which included two growth plates, four normal cartilages, and four
chondrosarcomas, but excluded the Ollier disease [15]. After
quality control, we performed a PCA analysis and found that the
normal cartilage and chondrosarcoma have different develop-
mental trajectories from the growth plate (Fig. 1A). Finally, we
found 326 up-regulated genes in normal cartilage and 116 up-
regulated genes in chondrosarcoma respectively (log2FC > 0.5, p
value < 0.01, Fig. 1B). Of these, the Hh signal pathway is in off sate
in normal cartilage, while “Regulation of IGF Transport And Uptake
By IGFBPs” signal pathway is activated in chondrosarcoma (Fig. 1C,
D). In the previous study, IGFBP3 is regulated by GLI signaling in
the progression to malignant chondrosarcoma [16]. We also found
that GLI1 could act directly on IGFBP3 to regulate the downstream
signal in one chip-seq analysis (GSE100936) (Fig. 1E). GLI1 is the
final and most crucial transcript factor in the hedgehog signal
pathway [17]. Then, we collected 10 normal cartilages, 26 low-
grade (I–II), 33 high-grade (III), as well as 25 dedifferentiated
chondrosarcomas to detect the expression of GLI1, which has no
significant difference between normal cartilage and low-grade
chondrosarcoma, but obviously increased in high-grade and
dedifferentiated chondrosarcoma in our IHC staining (Fig. 1F, G).
Prehypertrophic and hypertrophic chondrocytes secrete IHH,
which stimulates proliferation of growth plate chondrocytes. The
Hedgehog (HH) pathway activates GLI-mediated transcription
through transmembrane proteins, including patched 1 (PTCH1)
and smoothened (SMO) [5]. Then, Using qRT-PCR, we measured
the expression of IHH, PTCH1, SMO, and GLI1 and found that their
levels were significantly lower in normal articular cartilage
compared to any other chondrosarcomas, particularly in dediffer-
entiated chondrosarcoma (Fig. 1H). According to the results, we
deeply deem that Hedgehog-GLI1 pathway is on state and further
activates the downstream signals in chondrosarcoma.

Hedgehog-GLI1 signal mediated the RNAP III signal pathway
and tRNA synthesis to regulate cell cycle and death receptor
binding in chondrosarcoma
To further determine the mechanism of the Hedgehog-GLI1 signal
in malignant chondrosarcoma, we reanalyzed a gene expression
profiling of 17 fresh frozen chondrosarcoma biopsies [18]. After
normalizing the data, the expression of GLI1 was dichotomized
using the median as a cutoff to define ‘high’’ or ‘low’’ expression
categories for each sample (Fig. 2A). Furthermore, we compared
the transcriptional profiles of GLI1high to GLI1low samples. A total of
542 differentially expressed transcripts (p < 0.05; |log2FC| > 0.25)
were identified, and 117 of them were elevated in GLI1high

chondrosarcomas. We analyzed the BioPlanet signal pathways
using the GLI1high expressed transcripts to gain insight into the
functional relevance. RNA polymerase III (RNAP III) transcription-
relevant pathways were enriched, which are attributed to the
Hedgehog-GLI1 pathway activation (Fig. 2B). We also validated
these results using qRT-PCR to assess the level of GLI1 expression
in our collected chondrosarcoma samples (excluding dediffer-
entiated chondrosarcoma to match the public microarray data).
Our analysis identified 26 GLI1low and 33 GLI1high chondrosarcoma

samples, which correlated with tumor grade (as shown in Fig. 1H)
and suggests that GLI1 expression promotes chondrosarcoma
progression. Notably, the hub genes of the RNAP III signaling
pathway, such as POU2F1, SNAPC1, and POLR1B, were signifi-
cantly higher in the GLI1high group compared to the GLI1low group
(Fig. 2C). In addition, we processed chondrocyte-specific transcrip-
tion factors that could directly convert human amnion cells into
chondrosarcoma to demonstrate the RNAP III transcription signal
pathway in chondrosarcoma progression. Enrichment plot GSEA
indicated that RNAP III transcription signal pathway enriched in
chondrosarcoma (P < 0.01, NES= 2.48) (Fig. 2D). The heatmap
representation of this subset of genes was shown in Fig. 2E.
The abundant tRNAs in eukaryote cells that are synthesized by

RNAP III have key functional roles [19]. Therefore, we analyzed a
modulated expression of endogenous tRNA fragments (tRFs) in six
normal cartilage and fourteen chondrosarcomas. We detected 478
up-regulated and 321 down-regulated tRFs in chondrosarcoma (|
log2FC| > 1.0, p < 0.01, Fig. 2F). Then we used the Genomic tRNA
Database (GtRNAdb) to predict the tRNA gene. Out of 21 enriched
tRFs in the human species present in GtRNAdb, six tRNAs were
detected. We confirmed the expression levels of these tRNAs
using qPCR, which revealed that, except for Ser-GCT, the other
tRNAs (tRNA-Asp-GTC, tRNA-Gly-TCC, tRNA-Gly-GCC, tRNA-Gly-
CCC, and tRNA-Lys-CTT) showed significantly higher expression
in chondrosarcoma compared to normal cartilage (Fig. 2G).
Another dataset called tsRFuntion (tsRFun) was applied to predict
the functions of tRFs target genes by GO enrichment analysis. The
enrichment analysis highlighted “cell cycle” and “death receptor
binding” were the most significant biological processes (BP) and
molecular functions (MF) respectively (Fig. 2H, I). Taking all the
results together, the Hedgehog-GLI1 signal mediated the RNAP III
signal pathway and tRNA synthesis to regulate the cell cycle and
death receptor binding in chondrosarcoma.

GLI1 inhibitor (GANT-61) suppressed chondrosarcoma by
inhibiting the RNAP III signal pathway and tRNA-Gly-CCC
synthesis in vivo
As the Hedgehog-GLI1 signal pathway is activated in chondro-
sarcoma, we established a vivo subcutaneous xenograft model by
SW1353 cells. After five days of xenograft, mice were treated with
GANT-61 intravenous injection per three days for one month (Fig.
3A). Tumor volumes were calculated in the GANT-61 group were
decreased by 53 ± 8.9%, as well as had a lower proliferation rate
than the control group (Fig. 3B, C, P < 0.01). The tumor weights
were also decreased by 51.2 ± 11.0% (Fig. 3D). The significant
increase in regions of necrosis elicited by GANT-61 was assessed by
microscopic examination of H&E-staining is shown in Fig. 3E, in
which necrosis rate already accounted for ~70% when compared
to 5% of the control group (Fig. 3F). Then we conducted an IHC test
to detect tumor cell proliferation by examining the expression of
Ki-67, and our findings indicate that GANT-61 significantly inhibits
the number of Ki67-positive cells (Fig. 3G, H). To further test the
functions of GANT-61 on Hh signal pathway, we assessed the key
members IHH, PTCH1, SMO, GLI1, GLI2 in the hedgehog pathway
by using qRT-PCR. We found that the PTCH1 and GLI1 expression
was significantly decreased, while the GLI2 expression was
increased (Fig. 3I). We assessed the protein levels of GLI1 and
GLI2 and found consistent results with the mRNA levels,
suggesting that GANT-61 primarily reduces GLI1 expression rather
than GLI2 in chondrosarcoma (Fig. 3J). To validate whether the
anti-tumor effects of GANT-61 were reflected at gene expression
levels, we performed microarray-based transcriptomic profiling of
chondrosarcoma subcutaneous tumor tissues. It was found that
massive genes in vivo xenograft models were differentially
expressed (|log2FC| ≥ 1; p < 0.01) following treatment with GANT-
61. There were 1772 genes with up-regulated and 2479 genes with
downregulated mRNA expression levels (supplement table 2).
Following the analysis of the microarray data, the hub genes of the
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Fig. 1 Activated Hedgehog-Gli1 signal pathway contributed to chondrosarcoma. A We processed the GSE30835 data from GEO datasets
including 2 growth plates, 4 normal cartilages, and 4 chondrosarcomas. Principal component analysis (PCA) plot of transcriptional profiles
with 95% confidence ellipsoids. B Then heat map showed the significantly different genes in these three groups (log2FC > 1; P < 0.01).
C, D Enrichment of BioPlanet signal pathways in normal cartilage and chondrosarcoma group respectively. E ChIP-Seq was used to map
IGFBP3 binding sites for GLI1 in chondrosarcoma. F Immunohistochemistry (IHC) analyses for GLI1 were performed in tissue sections from the
normal articular cartilage (NC), low-grade (LC), high-grade (HC), and dedifferentiated chondrosarcoma (DC). G Densitometry of IHC were
performed for quantification by using ImageJ 1.53 (**P < 0.01). HmRNA expression changes of IHH, PTCH1, SMO, and Gli1 were detected using
qPCR in the NC, LC, HC, and DC groups (*P < 0.05, **P < 0.01).

Y. Sun et al.

3

Cell Death and Disease          (2023) 14:461 



RNAP III signal pathway were downregulated (Fig. 3K). To test
whether the downregulated RNAP III signal pathway affects the
tRNA synthesis or not, the six upregulated candidate tRNAs in Fig.
3L were further checked by qRT-PCR, Interestingly, only tRNA-Gly-
CCC was significantly declined in our study. SNAPC1 in the RNAP III

signal pathway is the bridge genes between GANT-61 and tRNA-
Gly-CCC, and the target sequence of tRNA-Gly-CCC was described
in the Fig. 3M. All these findings imply that GANT-61 tends to
inhibit chondrosarcoma tumor formation by suppressing the RNAP
III signal pathway regulated tRNA-Gly-CCC expression in vivo.
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Fig. 2 Hedgehog-GLI1 signal mediated the RNAP III signal pathway and tRNA synthesis to regulate cell cycle and death receptor binding
in chondrosarcoma. A The expression of GLI1 was dichotomized using the median as a cutoff to define ‘high’’ or ‘low’’ expression categories
for each sample obtained from GSE12475 (**P < 0.01). B Enrichment of BioPlanet signal pathways in GLI1high group. C mRNA expression
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GANT-61 blocks the chondrosarcoma cells in G2/M cell cycle
phase
Just as described in Fig. 2H, the cell cycle signal pathway is
activated in chondrosarcoma through the endogenous tRNA

fragments enrichment analysis. We also acquired a consistent
result in transcriptomic expression levels, which was that cell
cycle pathway is significantly elevated in chondrosarcoma
when compared to the amnion cells, fetal and adult
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chondrocytes by GSEA analysis (P < 0.01, NES= 1.88) (Fig. 4A,
B). We carried out a pathway enrichment analysis by using the
down-regulated genes, and found that the cell cycle signal
pathway was successfully suppressed by the GANT-61 in our
microarray data (Fig. 4C). We further confirmed that GANT-61
treatment caused marked accumulation of a G2/M population
in the isolated tumor cells of the animal models with flow

cytometry (Fig. 4D). G2/M arrest population was 30.41 ± 4.67%
in those animals exposed to GANT-61, while approximately
2.5 ± 0.53% of the control group (Fig. 4E). The underlying
mechanism behind the inhibition of the G2/M checkpoint by
GANT-61 can be attributed to its ability to impede the
molecular changes of CDK1 and Cyclin 2A at both the mRNA
and protein levels. (Fig. 4F, I).

Fig. 3 GLI1 inhibitor (GANT-61) suppressed chondrosarcoma by inhibiting the RNAP III signal pathway and tRNA-Gly-CCC synthesis
in vivo. A Establishment of an in vivo xenograft mouse model. B Representative images of xenograft tumors. C Mice were treated with or
without GANT-61 intravenous injection per three days for six times. Tumor volume growth curve was measured per three days for one month
(**P < 0.01). D Tumor weights of mice from different treatment regimens (**P < 0.01). E Tumor tissue necrosis with or without GANT-61
detected by H&E staining. Five representative fields at a 400-fold magnification were counted per animal. F The mean necrosis rate between
GANT-61 treated animals and the control group (**P < 0.01). G Tissue sections from GANT-61 treated animals and the control group were
subjected to IHC analysis for Ki-67. H The number of Ki-67 positive cells was compared between GANT-61 treated animals and the control
group (**P < 0.01). I mRNA expression changes of IHH, PTCH1, SMO, Gli1, and Gli2 were detected using qPCR in the two groups (*P < 0.05,
**P < 0.01). J Western blot (WB) analysis was performed to assess the protein expression levels of Gli1, and Gli2. K Heat map of hub genes of
RNAP III transcription signal pathway. L Relative expression of tRNA-Asp-GTC, tRNA-Gly-TCC, tRNA-Gly-GCC, tRNA-Gly-CCC, tRNA-Lys-CTT,
tRNA-Ser-GCT (*P < 0.05, **P < 0.01). M Illustration of the relationship among Hedgehog-GLI1 signal, RNAP III transcription signal pathway, and
tRNA-Gly-TCC.
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GANT-61 induced chondrosarcoma cell death through
apoptosis and autophagy
Given that the “Death receptor binding” function was observed in
the endogenous tRNA fragments enrichment analysis of chon-
drosarcoma (Fig. 2I). Then we put our efforts into which cell death
manners can be induced by GANT-61. Firstly, apoptosis rate
distribution was determined by flow cytometry and increased by
16.89 ± 2.475% in GANT-61 treated group (Fig. 4D, G). And our
findings suggest that the observed apoptosis is mediated by
caspase-3 (Fig. 4H, I). Subsequently, we applied GSEA analysis to
observe the autophagy level in chondrosarcoma. The interesting

fact is that the autophagy in chondrosarcoma is at a lower level
than in amnion cells, fetal and adult chondrocytes (p < 0.01,
NES=−2.03) (Fig. 5A, B). In our transcriptomic expression data,
the enrichment degrees of the cellular components also showed
that differentially encoded product proteins were mainly dis-
tributed on vacuole, pre-autophagysomal structure membrane,
autophagic vacuole by using the up-regulated genes in GANT-61
group (Fig. 5C). Meanwhile, GSEA analysis showed differentially
up-regulated genes were related to the activation of autophago-
some (p < 0.01, NES= 1.15) and macroautophagy (P < 0.01, NES=
1.14) (Fig. 5D, E). The KEGG signaling pathways analysis results
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also expounded that their encoding proteins were most involved
in the autophagy signaling pathway (Fig. 6G).
To verify whether GANT-61 is involved in autophagy, TEM was

used to detect the ultrastructures of autophagy. We found some
representative features in the group of GANT-61 treatment, such
as autophagic vacuole and autophagosome (Fig. 5F). Endogenous
LC3-II visualized by immunofluorescence is recognized as an
increased autophagosomal formation in living cells. We observed
that GANT-61 significantly increased endogenous LC3-II puncta in
the isolated tumor cells of the xenograft models (Fig. 5G).
Detecting LC3-II and p62 combined with bafilomycin A1 (Baf A1,
inhibitor of lysosomal degradation) by immunoblotting has
become a reliable method for monitoring autophagy and
autophagy-related processes. Our results show that GANT-61
increased the LC3-II localization in the cytoplasm and resulted in
the process of transferring LC3-I to LC3-II with or without Baf A1
(Fig. 5H). A link between autophagy and cell death has been
demonstrated using pharmacological (e.g., Rapamycin (Rapa) is a
potent inducer of autophagy, chloroquine (CQ) is a lysosomo-
tropic agent that has been suggested to inhibit autophagy) [20].
The autophagy inhibitor CQ (10 µM) significantly enhanced the
viability of cells, but the autophagy inducer Rapa (100 nM) further

depresses the viability in response to GANT-61 (Fig. 6A). In the
xenograft model, the findings revealed that the GANT-61+ CQ
group displayed a significant 61.3 ± 13.7% increase in tumor
volume and a higher proliferation rate when compared to the
GANT-61 group. Conversely, no tumor formation was observed in
the GANT-61+Rapa group (Fig. 6B, C, *P < 0.01). Overall, the
enrichment analysis of the up-regulated genes, along with the
TEM, immunofluorescence technique, and immunoblotting results
indicated that autophagy is silent in chondrosarcoma, but GANT-
61 can arouse the autophagy to against this malignant sarcoma.
Meanwhile, a combined strategy using GANT-61 and autophagy
promoters, such as rapamycin, produces a superior antitumor
effect.

GANT-61 activated ULK1 and MAPK Signaling pathway to
regulate autophagy
To declare the underlying mechanism of autophagy, GSEA analysis
was also dedicated to performing leading edge analysis of the
differential genes which was the most critical one. Genes in the
subset list showed that ULK1 (unc-51 like autophagy activating
kinase 1) had the highest impact on the biological process of
autophagy (Fig. 6D). We uncovered that MAPK signal pathway is
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involved in the regulation of autophagy in our previous study [21].
Subsequently, we applied GSEA analysis to observe the MAPK
signal level in chondrosarcoma and found that the MAPK signal is
not in an activated state in chondrosarcoma (p < 0.01, NES=
−1.61) (Fig. 6E, F). However, the autophagy and MAPK signal
pathway were activated simultaneously when exposed to GANT-
61 in the KEGG signal pathway analysis (Fig. 6G). Also, there is a
potential correlation between autophagy and MAPK signaling
pathway (Fig. 6H).

DISCUSSION
According to our previous research and the public data, we found
that the Hedgehog-GLI1 signal pathway is aberrantly activated in
chondrosarcoma. The GLI1 transcription factor mediated RNAP III
transcription signal pathway and tRFs synthesis has crucial roles in
regulating chondrosarcoma proliferation, cell cycle, and cell death.
We demonstrated that GANT-61 induced cell cycle resting and
autophagy by down-regulating RNAP III signal pathway and tRNA-
Gly-CCC synthesis to suppress chondrosarcoma tumor growth in
vivo. We also found that the MAPK signaling pathway played a
significant role in the process of GANT-61 induced autophagy,
ULK1 was also involved in the process. Therefore, we deeply
believed that GANT-61 will be a novel approach for anticancer
therapy for chondrosarcoma.
The Hh signal pathway is activated in various kinds of cancers

[22]. Many studies showed that inhibition of GLI function holds
strong potential to become a novel, clinically effective approach
to treat malignant sarcoma. In recent years, the small molecule
inhibitor GANT-61 is the most widely appreciated drug target of
the GLI1/2, with improved potency and chemical stability, has
strong and extensive anti-tumor effects in pancreatic cancer,
breast cancer, rhabdomyosarcoma, glioblastoma, myeloid leuke-
mia, osteosarcoma, melanomas, and so on [23, 24]. GANT-61 killed
the sensitive tumor cells through anti-proliferation, oxidative
stress, apoptosis, and autophagy, DNA damage, modulate the
radiosensitivity and migration of cancer cells [25–28]. But the
cancer therapy effect of GANT-61 on chondrosarcoma has not
been reported. Possible mechanisms and implications of GANT-61
for clinical practice remain to be further studied in
chondrosarcoma.
In parallel with the activated hedgehog signal pathway, our

study highlighted that RNAP III transcription is more frequent in
the GLI1 high-expression population in chondrosarcoma. RNAP III
uniquely synthesizes and modifies most of the tRNAs that
enhance mRNA decoding, which is primarily tied to the regulation
of cell growth, cell cycle, and cell survival [29]. Notably, tRNA and
tRFs have been reported to have crucial regulatory roles in a wide
range of tumor biological processes [30, 31]. Goodarzi et al.
reported that tRFs derived from tRNA-Asp, tRNA-Glu, tRNA-Tyr,
and tRNA-Gly maintain cell stability with stress and increase cell
proliferation in breast cancer [32]. Shao et al. covered that tRF-Leu
−CAG promoted cell cycle progression and cell proliferation in
lung cancer [33]. Some studies also found that silencing the
expression of tRFs inhibited DNA synthesis, arrested cells at the
G2/M phase, and decreased cell viability in common cancers,
including lung cancer, colorectal cancer, prostate cancer, and
breast cancer [34]. In our study, up-regulated tRFs was associated
with the cell cycle and death-related molecular functions. GANT-
61 is a useful drug that inhibited the RNAP III transcription
pathway as well as tRNA-Gly-CCC synthesis, and further sup-
pressed tumor growth by inducing G2/M cell cycle phase resting
and programming cell death: autophagy and apoptosis.
Autophagy in most contexts facilitates tumorigenesis, and

autophagy inhibition usually is an effective therapeutic strategy in
many aggressive cancers [35]. In contrast to protective autophagy,
induction of autophagic cell death has also been proposed as a
possible tumor suppressor mechanism [36]. Our findings were

expected to reflect the latest research that the status of autophagy
is a key factor that determines the therapeutic response to Hh-
targeted therapies. Firstly, autophagy is off sate in chondrosar-
coma when compare to amnion cells, fetal and adult chondro-
cytes. Furthermore, GANT-61 induced autophagy promotes cell
death against chondrosarcoma. Indeed, GANT-61 has been
verified to induce tumor-suppressing autophagic cell death in
pancreatic ductal adenocarcinoma (PDAC) and hepatocellular
carcinoma (HCC), which has been used to monitor the relationship
between specific GLI targeting and autophagy [17, 37, 38].
However, it is important to acknowledge that the concentration

of GANT-61 used in this study is exceptionally high, and its safety
needs to be thoroughly evaluated before proceeding to clinical
trials. Consequently, our focus is to explore a novel delivery system
that can effectively administer functional GANT-61 to
chondrosarcoma-afflicted animals, thereby reducing its concen-
tration while enhancing safety and efficacy in future investiga-
tions. Furthermore, in our study, GANT-61 reduced GLI1
expression while having no effect on GLI2. Given the overlapping
and distinct activities of GLI proteins, including the fact that Gli1
acts as a transcriptional activator while Gli2 displays both activator
and repressor functions, there is a need for further investigation of
their functions.
In conclusion, our results indicated that the Hedgehog-Gli1

signal pathway was activated in chondrosarcoma, which further
enhanced the RNAP III signal pathway to mediate endogenous
tRNA fragments synthesis. Downstream oncology functions of
endogenous tRNA fragments, such as “cell cycle” and “death
receptor binding”, were involved in malignant chondrosarcoma.
The GANT-61 could inhibit chondrosarcoma tumor growth
effectively by inhibiting the RNAP III signal pathway and tRNA-
Gly-CCC synthesis in vivo. Induced G2/M cell cycle resting,
apoptosis, and autophagy are the main mechanisms for the
inhibitory effect of GANT-61 on chondrosarcoma, which corre-
spond with the above-described downstream oncology functions
of endogenous tRNA fragments. We also identified the molecular
mechanism by which GANT-61-induced autophagy was involved
in ULK1 expression and MAPK signaling pathway (Fig. 7). Thus,
GANT-61 will be an ideal strategy for combating chondrosarcoma.

MATERIALS AND METHODS
Cell lines and reagents
The chondrosarcoma cell line used in the study is SW1353 (ATCC HTB-94;
Manassas, VA, USA), which was maintained in L-15 medium with 10% FBS

Fig. 7 Overview of the signal pathways and biological functions
in chondrosarcoma. The activated Hedgehog-Gli1 signal pathway in
chondrosarcoma enhances RNAP III signaling for endogenoust RNA
fragments synthesis. GANT-61 effectively inhibits tumor growth by
targeting RNAP III and tRNA-Gly-CCC synthesis, inducing G2/M cell
cycle arrest, apoptosis, and autophagy. GANT-61-induced autophagy
involves ULK1 expression and MAPK signaling.
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and 1% antibiotics. The reagent GANT-61 (S8075), Chloroquine (S6999),
Bafilomycin A1 (S1413), and Rapamycin (S1039) were purchased from
Selleckchem. Polyclonal antibodies against P62 (P0067), and LC3B (L7543)
were obtained from Sigma-Aldrich. Anti-GLI1 (2643), Anti-GLI2 (18773),
Anti-β-actin (4970), Anti-Ki-67 (34330), Anti-CDK1 (77055), Anti-Cyclin A2
(67955), Anti-Cleaved-Caspase3 (9664) were purchased from Cell Signaling
Technology.

Human articular cartilage and chondrosarcoma specimens
10 normal cartilages, 26 low-grade (I–II), 33 high-grade (III), as well as 25
dedifferentiated chondrosarcomas specimens were obtained in accor-
dance with the approved protocols of the Institutional Ethics Review
Boards of The First Affiliated Hospital of Shandong First Medical University
&Shandong Provincial Qianfoshan Hospital. Informed written consent was
obtained from all patients for the experimental use of surgical specimens,
following the hospital’s ethical guidelines. Excisions obtained after surgery
were appropriately preserved for the experiment.

Xenograft animal model and primary cells isolation
Six weeks old BALB/c female nude mice (Charles River, Beijing, China) were
inoculated subcutaneously in the right flank with SW1353 cells (2 × 106 in
100 μL PBS). Firstly, eight mice were randomly divided equally into two
groups. 100 μL GANT-61 (60mg/kg) or ethanol (negative control) were
injected intravenous every 3 days a total of 6 times beginning at day 5
after tumor inoculation. Secondly, fifteen mice were randomly divided into
three groups, with equal numbers in each group. They were intravenously
injected with GANT-61 (60mg/kg) in combination with the autophagy
inhibitor CQ (30 mg/kg), or the autophagy promoter Rapa (0.20 mg/kg),
every 3 days, for a total of 6 injections, starting from day 5 after tumor
inoculation, to assess their effects on tumor progression. After injection,
mice were investigated, and tumor volumes were calculated every 3 days
using a caliper (tumor volume= (length × width2)/2). All tumor tissues
were harvested 30 days after treatment. Tumor samples were processed
for gene expression microarray analyses, qPCR analysis, HE staining, and
transmission electron microscopy (TEM). Primary cells were isolated from
the tissue according to published techniques [39]. Briefly, Chop these
pieces with a surgical blade cutting object, then add 5ml trypsin-EDTA
solution, and incubate for 10–20min at 37 °C. Repeat spin and filtered 2 ~ 3
times, resuspend the cells with medium, and aliquot into a 6-well plate for
the flow cytometry and immunofluorescence analysis.

Microarray processing
Total RNA from tumor tissues was extracted using a Total RNA Miniprep Kit
(T2010S, NEB). The quality of the isolated RNA was estimated using a
NanoDrop 2000 (Thermo, China) and Agilent 2100 (Agilent, China).
Triplicate samples for each group with A260/A280 ratio within 1.8–2.1
between 1.8 and 2.1 and a 28S/18S ratio between 1.5 and 2 were further
processed for gene expression microarray analyses according to the
manufacturer protocol (PrimeView Human Gene Expression Array, China).
In this process, summary statistics were computed for each array and then
compared across the arrays.

Microarray data and public data analysis
Analyses were carried out with software package R (version 4.1.2) as
previously described [40]. Significance analysis was performed by using the
“limma” package. Principal component analysis was performed to evaluate
the availability and quality of gene expression microarray. P value and
absolute fold change (|Fold Change|) between the two experimental
conditions (GANT-61 vs. Control) were used to identify the statistically
most significant changes in gene expression. Gene Set Enrichment Analysis
(GSEA) was used to explore the underlying mechanisms by identifying a
priori-defined set of genes that shows statistically significant, concordant
differences between two biological states. The gene-concept network
analysis was performed by using the R packages ‘clusterProfiler’ and
visualized in Cytoscape.
Total five human datasets (GSE30835, GSE100936, GSE12475, GSE29745,

GSE86576) in GEO (https://www.ncbi.nlm.nih.gov/geo/) were collected
[15, 18, 41, 42]. And the necessary documents were also respectively
downloaded to annotate the respective probe sets into gene symbol sets.
Enrichr (https://maayanlab.cloud/Enrichr/) is a robust web-server that
contains many types of datasets, among which we used the Reactome
signal pathway database, BioPlanet signal pathway database, KEGG
pathway database, GO Biological_Processes, GO Molecular Functions.

ChIP-seq data were analyzed by IGV_2.15.2 software. GtRNAdb (http://
gtrnadb.ucsc.edu/) and tsRFun (http://rna.sysu.edu.cn/tsRFun/index.php)
datasets were used to analyze the endogenous tRNA fragments.

Cell viability assay
Tumor cell viability was tested using cell counting kit-8 (CCK8) assay.
Firstly, 5000 cells/well were suspended in 200 μL of medium and incubated
overnight in 96-well plates. After 48 h exposure to different treatment,
then add 10 μL of CCK8 solution to each well and incubate for 2–4 h.
Absorbance at 450 nm was observed using a microplate reader.

RNA extraction and quantitative PCR analysis
Total RNA from tumor tissues was extracted using the Total RNA Miniprep
Kit (T2010S, NEB). Then the RNA was reverse transcribed into cDNA in a
reverse transcription reaction with RevertAid H Minus First Strand cDNA
Synthesis Kit (k1632, Thermo Fisher). qPCR can be carried out sequentially
in the same tube using a two-step qPCR Kit (M3003E, NEB) with LightCycler
480II (Roche; Basel, Switzerland). The primers used for amplification of IHH,
PTCH1, SMO, GLI1, GLI2, CDK1, Cyclin A2, and Caspase 3 transcripts were
shown in Supplement Table 1. The tRNA primer sets perform superbly with
the rtStar™ tRNA Pretreatment & First-Strand cDNA Synthesis Kit (CAT# AS-
FS-004) and Arraystar SYBR Green qPCR Master Mix.

Transmission electron microscopy
Fresh tumor tissues were cut to 5 mm× 5mm size, then 3% glutaraldehyde
was added for 3 h at 4 °C for fixation. Ultrathin sections (100 nm) were
prepared, stained with uranyl acetate and lead citrate, and examined
under Transmission Electron Microscopy (TEM) (H-600; Hitachi, Tokyo,
Japan).

Western blotting and Immunofluorescence analysis
Equal amounts of proteins were collected from different tissue lysates of
the two groups, and standard procedures of Western blotting were
performed as described previously [21]. Primary cells were isolated for
immunofluorescence observation, incubated with rabbit polyclonal anti-
LC3B Ab (1:200) at 4 °C overnight, and then reacted with anti-rabbit IgG
conjugated with Dylight 488 (1:400) at room temperature for 2 h. After
washing with PBS, the puncta LC3B of cells were mounted on a vectashield
and visualized using high-resolution microscopy (ZEISS ZEN Microscopy).

H&E staining and Immunohistochemistry (IHC)
Harvested tissues were embedded in paraffin, Paraffin sections were
subjected to Hematoxylin and Eosin (H&E) Staining and reacted with
primary antibody according to manufacturer’s specification. For IHC, HRP-
labeled polymer secondary antibody was applied. Five representative fields
at a 400-fold magnification were counted per animal. Densitometry of IHC
was performed for quantification by using ImageJ1.53.

Cell cycle and apoptosis analysis by flow cytometry
Isolated tumor cells were fixed in 70% ethanol, and permeabilized in Triton
X-100. Dispersed into single cells with RNAse A, and stained with
Propidium Iodide kit (P1304MP, Thermo Fisher) according to the
manufacturer’s instructions and analyzed by flow cytometry.

Statistical analysis
The R software (version 4.1.2) and GraphPad Prism 7.0 statistical software
were used to perform bioinformatic analysis and statistical analyses. Data
were analyzed using one-way analysis of variance (ANOVA) with the
Bonferroni multiple comparison test. Unpaired t-tests were employed for
comparing between two groups. The data are presented as mean ± S.D.
Statistical significance was defined as P < 0.05.

DATA AVAILABILITY
The accession number for the microarray data reported in this paper is OMIX002572-
01. These data have been deposited in the Genome Sequence Archive under project
PRJCA013766.
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CODE AVAILABILITY
The code used and/or analyzed during the current study are available from the
corresponding author on reasonable request.
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