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Abstract
We propose a three-dimensional computational model to simulate the transient deformation of suspended cancer cells flow-
ing through a constricted microchannel. We model the cell as a liquid droplet enclosed by a viscoelastic membrane, and its 
nucleus as a smaller stiffer capsule. The cell deformation and its interaction with the suspending fluid are solved through a 
well-tested immersed boundary lattice Boltzmann method. To identify a minimal mechanical model that can quantitatively 
predict the transient cell deformation in a constricted channel, we conduct extensive parametric studies of the effects of 
the rheology of the cell membrane, cytoplasm and nucleus and compare the results with a recent experiment conducted on 
human leukaemia cells. We find that excellent agreement with the experiment can be achieved by employing a viscoelastic 
cell membrane model with the membrane viscosity depending on its mode of deformation (shear versus elongation). The 
cell nucleus limits the overall deformation of the whole cell, and its effect increases with the nucleus size. The present 
computational model may be used to guide the design of microfluidic devices to sort cancer cells, or to inversely infer cell 
mechanical properties from their flow-induced deformation.

Keywords  Biological fluid dynamics · Cancer cells · Microfluidics · Immersed boundary method

1  Introduction

The dynamics of cancer cells flowing in microchannels is a 
fundamental problem that has attracted increasing attention 
in recent years. The problem is highly relevant to cancer 
metastasis, where cancer cells shed into the bloodstream 
from the primary tumour, travel through the blood or lym-
phatic circulations to distant organs and form secondary 
tumours. The fluid dynamics of cancer cells is also at the 
heart of the recent developments of microfluidic technolo-
gies for cancer diagnosis and monitoring. It has been well 
established that the mechanical properties of cancerous cells 

can be very different from their healthy counterparts (Suresh 
2007; Lee and Lim 2007). The difference leads to distinct 
cell flow trajectories in microchannels, which has been 
utilized to isolate cancer cells for clinical purposes (Chen 
et al 2012; Shields IV et al 2015). In the past two decades, 
considerable efforts have been focused on the mechanical 
characterization of cancerous and normal cells (Darling and 
Di Carlo 2015; Wu et al 2018; Guck 2019). Different meth-
ods have been proposed, which typically apply well-defined 
stress to cells and measure the deformation to extract their 
mechanical properties. Among these methods, the deform-
ability cytometry (DC) (Gossett et  al 2012; Byun et  al 
2013; Otto et al 2015; Mietke et al 2015; Ahmmed et al 
2018; Fregin et al 2019; Armistead et al 2019; Urbanska 
et al 2020) is a promising technique due to its much higher 
throughput rate than classical methods such as micropipette 
aspiration and atomic force microscopy. In DC, cells flow 
through a microfluidic channel and deform under the fluid 
viscous stress. The deformed cell profiles can then be used to 
infer cell mechanical properties, which serve as a label-free 
biomarker to quantify cell states and distinguish cancerous 
cells from normal ones (Di Carlo 2012; Guck 2019).
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Numerical simulations provide an important alternative 
approach to study the dynamics of cancer cells in flows and 
they can complement experiments for the following reasons. 
Firstly, in microfluidics for mechanical characterization of 
cancer cells (e.g. the DC), experimental measurements must 
be fitted to model predictions to infer cell mechanical prop-
erties. Analytical solutions are always limited to small cell 
deformation in the Stokes flow regime. Large cell deforma-
tion in inertial flows, which is a common feature in high-
throughput microfluidics, can only be solved by means of 
numerical simulations. Secondly, numerical simulations can 
provide crucial information about cell dynamics that cannot 
be measured conveniently in experiments, such as the flow 
fields around and inside individual cells. Thirdly, compared 
with trial-and-error experiments, numerical simulations 
enable faster, cheaper, and rational design and optimisa-
tion of microfluidic devices for cell sorting or mechanical 
characterization.

Most previous numerical studies of cell dynamics under 
flows have been focused on red blood cells (RBCs), which 
consist of a thin membrane enclosing Newtonian haemo-
globin solution (Zhang et al 2008; Krüger et al 2013; Peng 
et al 2013; Freund 2014; Fedosov et al 2014; Secomb 2017; 
Balogh and Bagchi 2017; Shen et al 2018). Cancer cells 
usually have a more complicated structure with a cell mem-
brane, cytoplasm (including the cytosol, cytoskeleton and 
various organelles) and a nucleus (Lim et al 2006). So far, 
there have been mainly three types of continuum mechanical 
models for the dynamics of cancer cells in flows. The first 
considers cancer cells as single or compound liquid drop-
lets (Leong et al 2011; Zhang et al 2017). Although lacking 
a membrane, the model can successfully recover the flow 
velocity of a breast cancer cell when it is entering a con-
stricted microchannel (Leong et al 2011). The second type 
of models considers a cancer cell as a deformable microcap-
sule, which consists of a liquid droplet enclosed by a thin 
elastic membrane (Takeishi et al 2015; King et al 2015; Xiao 
et al 2016; Cui et al 2021). Although these models have been 
used to study blood flow with a large number of suspended 
blood and cancer cells, direct comparison with experiments 
is rare. The third type of model treats a cancer cell as a 
compound microcapsule, using a smaller capsule to mimic 
the cell nucleus (Balogh et al 2021). The cell nucleus has 
been shown to be crucial in reproducing the shape and pas-
sage time of murine lung cancer cells through a microchan-
nel that is smaller than the cells. More details of the cancer 
cell models can be found from Lim et al (2006); Puleri et al 
(2021). Notably, active cell migration in extracellular matrix 
(ECM), on substrates or in confinement has been modelled 
extensively (Borau et al 2011; Tozluoğlu et al 2013; Allena 
et al 2015; Zhu and Mogilner 2016; Lee et al 2017; Maxian 
et al 2020). Our focus here is on cells carried passively by 
the flow.

Biological cells present viscoelastic behaviour in response 
to external stresses (Desprat et al 2005; Suresh 2007). The 
elastic response is mainly due to the cytoskeleton, while the 
viscous response comes from the membrane lipid bilayer and 
the cytoplasm. Cancer cells flowing in constricted or cross-
slot microchannels in DC may experience strain rates of 103 
s−1 or higher. Therefore, it is expected that the viscosity of 
the subcellular components, particularly the membrane, will 
play a significant role in determining the dynamics of the 
cells. For RBCs in micropipette aspiration, the viscous dis-
sipation in the cell membrane can be two orders of magni-
tude greater than that in the haemoglobin solution (Evans 
and Hochmuth 1976; Hochmuth and Waugh 1987; Puig-de-
Morales-Marinkovic et al 2007). However, most previous 
numerical studies on the dynamics of cancer cells in micro-
channels have not taken into account cell membrane viscos-
ity. The only two exceptions we have found are Lykov et al 
(2017) for breast epithelial cells and Barber and Zhu (2019) 
for breast cancer cells. The former suggests a strong role for 
membrane and cytoplasmic viscosity in cell transit through 
a constricted microchannel, whereas the latter found no such 
role. At present, this remains an open question.

In the present study, we develop a three-dimensional 
computational method to simulate the transient deforma-
tion of suspended cancer cells flowing through a constricted 
microchannel. Our cell model takes into account the three 
major subcellular components: a viscoelastic membrane that 
represents the lipid bilayer and the underlying cell cortex, 
a viscous cytoplasm, and a nucleus modelled as a smaller 
deformable capsule. We solve the cell motion and deforma-
tion by means of an immersed boundary lattice Boltzmann 
method (Sui et al 2008a, b; Wang et al 2016, 2018; Lu et al 
2021). Our ultimate aim is to build a minimal model which 
can accurately predict the transient deformation of cancer 
cells flowing in channels. However, validation of such a 
model against a wide variety of cell types is not currently 
possible, due to the lack of comparable experimental data 
on cell transit in fluid flows. As a first step towards the goal, 
we conduct extensive parametric studies of the effects of 
the rheology of the three subcellular components on cell 
transient deformation and compare the results with a recent 
experiment conducted on human leukaemia cells (Fregin 
et al 2019).

Our paper is organized as follows: in Sect. 2, we describe 
the flow problem and cell model and briefly cover the 
numerical method and its validation. In Sect. 3, we present 
simulation results from extensive parametric studies of the 
effects of the rheology of the subcellular components and 
determine the essential cell features that must be included in 
a minimal mechanical model to accurately reproduce the cell 
dynamics observed in the recent experiment. We conclude 
the paper and discuss the limitations and potential applica-
tions of the model in Sect. 4.
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2 � Problem statement and computational 
method

2.1 � Problem description

We consider an initially spherical cancer cell flowing 
through a constricted channel, as shown in Fig. 1. The flow 
setup is taken from a recent experiment (Fregin et al 2019) 
conducted on human leukaemia HL-60 cells. The cell has 
a radius of a = 8.5 μ m and is released with zero velocity 
at x = −190 μ m. It first flows through a constriction with a 
constant converging angle of 45◦ and then enters a narrow 
straight channel with a square cross section that has a width 
of l = 30 μ m. The length of the straight channel is 300 μ m 
and it is connected to a diverging section with a constant 
angle of 45◦ . A three-dimensional Cartesian coordinate sys-
tem is defined with the x-axis along the flow direction, the 
y and z-axes along the depth and width of the channel, and 
the origin at the centre of the plane which connects the con-
verging section and the straight narrow channel (see Fig. 1a). 
The flow is driven by a constant pressure difference between 
the channel inlets and the outlet, which can be tuned in the 
absence of the cell to match the flow rate of the experiment. 
At the same flow rate, the fluid velocity along the centreline 
of the channel in the present simulation is almost identical 
to that reported by Fregin et al (2019). Due to the small vol-
ume of the cell compared with the computational domain, 
its effect on the flow rate is negligible. The no-slip boundary 
condition is imposed on all solid walls.

2.2 � Cell mechanical model

The present mechanical model for cancer cells has included 
the three main subcellular components: a membrane, a cyto-
plasm and a nucleus (see Fig. 1c). For most biological cells, 
the plasma membrane is supported by an underlying actin cor-
tex which reinforces the thin lipid bilayer (Yeung and Evans 
1989; Mogilner and Manhart 2018). This structure contributes 
to the membrane viscosity, and the elastic resistance to shear 
deformation and area dilatation. Here, we assume that the total 
stress tensor of the viscoelastic membrane is the sum of the 
elastic and viscous stresses:

The cell membrane is assumed to be infinitely thin and its 
elasticity follows the strain-hardening Skalak’s (SK) law 
(Skalak et al 1973), with a strain energy function:

where W is the strain energy density per unit undeformed 
surface area, Gs is the surface shear elasticity modulus, I1 
and I2 are two strain invariants with I1 = �2

1
+ �2

2
− 2 and 

I2 = (�1�2)
2 − 1 . Here �1 and �2 are the principal exten-

sion ratios. The membrane area dilatation modulus is 
Ks = (1 + 2C)Gs . For a cell membrane, the hardness param-
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1
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2
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Fig. 1   a Channel geometry in x − z plane. b Geometry of the 3D computational domain. (c) Illustration of the cell mechanical model
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The elastic stress tensor can be obtained from

where e1 and e2 are directions corresponding to two principal 
tensions.

The viscous stress of the membrane is separated into the 
contributions from the membrane shear viscosity �s and 
from the membrane dilatational viscosity �′

s
 (Barthès-Biesel 

and Sgaier 1985):

where D is the strain rate tensor of the membrane, tr(D) is 
the rate of area dilatation and P is the projection tensor of the 
deformed surface. In the present study, we have neglected 
the viscous effect due to area dilatation for simplicity. This 
term has been shown to be negligible for cell membranes 
with small area dilatation (Tran-Son-Tay et al 1984).

The bending resistance of the membrane is modelled fol-
lowing Helfrich’s bending energy formulation (Zhong-Can 
and Helfrich 1989)

where kc is the bending modulus, A0 is the surface area, H 
is the mean curvature, and c0 is the spontaneous curvature. 
A small bending resistance kc = 0.001Gsa

2 has been used in 
the present study to prevent membrane wrinkles.

The cytoplasm of the cell is modelled as a Newtonian 
liquid. The cell nucleus is represented by a small capsule, 
where a viscous fluid is enclosed by a nucleus membrane 
that obeys the SK law.

2.3 � Dimensionless parameters

The cell deformation is mainly determined by the following 
dimensionless parameters:

•	 The capillary number Ca, which compare the viscous 
fluid force acting on the cell to the elastic force of the 
cell membrane 

 where �0 and V are, respectively, the average viscosity 
and flow speed of the fluid in the straight channel.

•	 The dimensionless viscosity of the cell membrane 

(3)
�e
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(7)Ca =
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,

•	 The viscosity ratio between the cell cytoplasm and chan-
nel fluid 

•	 The confinement ratio between the cell diameter and 
channel width 2a/l.

•	 The size ratio between the cell nucleus and whole cell 
an∕a , where an is the nucleus radius.

•	 The flow Reynolds number Re evaluated in the straight 
channel 

 where � is the density of the channel fluid.
Since our simulation aims to reproduce quantitatively the 
experimental data of Fregin et al (2019), we have tried to use 
their experimental parameters in evaluating the dimension-
less parameters in our model. First, our channel geometry 
and the cell size are taken directly from the experiment, thus 
the ratio 2a∕l = 0.57 . In the experiment, the channel fluid is 
a phosphate-buffered saline with 1%(w/v) methylcellulose 
and its viscosity follows a power law

where m = 0.60 Pa s , � = 0.64 , 𝛾̇ is the local shear rate and 
̇𝛾0 = 1 s−1 . The fluid density is � =1065 kgm−3 , which is 

comparable to that of the cancer cell (Zhao et al 2015). The 
same power law and parameters have been used in the pre-
sent model. A typical flow rate is 8 nL s−1 , corresponding to 
an average flow speed in the narrow straight channel with 
V = 0.89 cm s−1 . The average fluid viscosity �0 , calculated in 
the channel cross section at x = 150 μ m, is 32.5 mPa s . These 
lead to a flow Reynolds number of about 0.01.

At the subcellular level, the elastic moduli and viscos-
ity of the cell membrane, cytoplasm and nucleus all remain 
unknown. In fact, previous studies often treated leukaemia 
cells as either a homogeneous solid sphere or a liquid droplet 
(Rosenbluth et al 2006). Therefore, the values of Ca, �∗ and � 
in the present model need to be inferred by fitting simulation 
results to the experiment. The size of the nucleus of leukae-
mia HL-60 cells was also not reported in the experiment 
of Fregin et al (2019). However, according to Rowat et al 
(2013), the nucleus radius is typically 3.5-5 μ m, leading to 
a size ratio of an∕a in the range of 0.4 to 0.6.

To quantify cell deformation, we employ a deforma-
tion index (DI) (Fregin et al 2019) which measures the cell 
non-circularity

(8)�∗ =
�s

�0a
.

(9)� =
�c

�0

.

(10)Re =
�Vl
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,
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where A and P are the projected surface area and perimeter 
of the cell, respectively, in the symmetric y = 0 plane.

2.4 � Numerical method and its validation

The present numerical framework is based on a well-tested 
immersed boundary lattice Boltzmann method (Sui et al 
2008a, b; Wang et al 2016, 2018; Lu et al 2021; Lin et al 
2021, 2022) and here we only provide a very brief over-
view. The fluid flow is solved by the three-dimensional 
Navier–Stokes equations using a three-dimensional nine-
teen-velocity (D3Q19) LBGK model. At the walls of the 
constricted channel, the no-slip boundary condition is 
applied using a second-order bounce-back scheme (Bouzidi 
et al 2001). A second-order non-equilibrium extrapolation 
method (Guo et al 2002) has been employed to impose the 
pressure boundary conditions at the inlets and the outlet. The 
interaction between the fluid and the cell is solved using the 
immersed boundary method of Peskin (1977). The mem-
branes of the cell and its nucleus are discretized into flat 
triangular elements, following Ramanujan and Pozrikidis 
(1998). A finite element method (Shrivastava and Tang 
1993) is used to calculate the deformation gradient tensor, 
the principal extension ratios �1 and �2 and the elastic stress 
tensor. To compute the viscoelastic stress, we follow the 
approach of Yazdani and Bagchi (2013), more details can 
be found in Appendix 1. The numerical method to calculate 
the bending force can be found in Appendix 1. Following 
Gabbanelli et al (2005), we use a truncated power-law model 
for the viscosity of the channel fluid surrounding the cell. To 
validate the power-law model, we compare the simulation 
result of the flow velocity between two parallel plates with 
the analytical solution and obtain satisfactory agreement. To 
account for the viscosity contrast between the cytoplasm and 
channel fluid, we employ a front-tracking approach (Tryg-
gvason et al 2001; Sui et al 2010), where a colour function 
is used to discriminate the fluids and calculate their physical 
properties.

Our computational method for capsules with a hyperelas-
tic membrane had been validated extensively against previ-
ous theoretical and computational results of capsules in lin-
ear shear flow (Sui et al 2008b, c) and channel flows (Wang 
et al 2016, 2018). Here, we validate the model for mem-
brane viscosity by considering the deformation of a spheri-
cal capsule with a viscoelastic membrane in a Newtonian 
shear flow. The flow is in the Stokes regime and the capsule 
membrane mechanics follows Eqs. (2) and (5). Two main 
dimensionless parameters that determine capsule deforma-
tion are: the dimensionless membrane viscosity �∗ = �s∕�0a 
and the capillary number Ca = 𝜇0𝛾̇a∕Gs , where 𝛾̇ is the shear 

(12)DI = 1 −
2
√

�A

P
,

rate. In Fig. 2, we compare our simulation results with pre-
dictions of the small deformation theory of Barthès-Biesel 
and Sgaier (1985). Good agreement has been obtained when 
the Taylor deformation parameter of the capsule is less than 
0.1. Membrane viscosity has restricted the overall deforma-
tion of the tank-treading capsule in the linear shear flow.

For the present problem of a cancer cell flowing through 
a constricted channel, we have conducted mesh convergence 
study for both the fluid and cell membrane grids. The fluid 
grid size that is finally chosen is Δx = 0.0156l . The mem-
branes of the cell and its nucleus have been discretized into 
8192 flat triangular elements connecting 4098 nodes, with 
a maximum element edge length of ΔLc ∼ 0.0215l . Using 
a finer fluid grid of Δx = 0.0125 l or increasing the number 
of membrane elements to 32768 does not lead to any visible 
change in the cell’s flow trajectory or deformed shapes (not 
shown). We have also examined the effect of the initial axial 
position of cell and found that the cell transient deformation 
in the region of interest, i.e. x ≥ −60 μ m, is almost identical 
when the cell is released from x ≤ −160 μm.

3 � Results and discussion

In this section, we conduct extensive parametric studies of 
the effects of mechanical properties of the cell membrane, 
cytoplasm and nucleus on the transient cell deformation in 
the constricted microchannel. We consider cell models with 
increasing complexity and compare the simulation results, in 
terms of the spatial evolution of the cell deformation index 

Fig. 2   Validation of the present viscoelastic membrane model against 
analytical solutions. The steady Taylor shape parameter D of a cap-
sule in simple shear flow at different Ca and �∗ is compared between 
our simulations (symbols) and analytical solutions (lines) using the 
small deformation theory of Barthès-Biesel and Sgaier (1985). The 
Taylor shape parameter indicates the extent of capsule deformation 
and is defined as D = (L − B)∕(L + B) , where L and B are the semi-
major and semiminor lengths of the deformed capsule in the plane of 
shear
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and cell profiles, with the recent experiment of Fregin et al 
(2019). The comparison enables us to identify a minimal 
cell mechanical model and estimate values of associated 
parameters that can accurately reproduce the transient cell 
deformation in the constricted channel.

3.1 � A cell with a hyperelastic membrane

3.1.1 � Estimation of cell membrane elasticity

We start from a simple cell mechanical model where the 
membranes of the cell and its nucleus are both purely hyper-
elastic that follow the SK law. We do so mainly for three 
reasons. Firstly, the model is the simplest; it can be solved 
through well-established numerical approaches such as the 
boundary element method or immersed boundary method. 
Secondly, in the experiments of Fregin et al (2019), the leu-
kaemia HL-60 cell has reached an apparent steady profile at 
the end of the narrow straight channel. The cell cytoplasm is 
therefore largely in solid translation and viscous effects from 
cell subcellular components will not play significant roles in 
determining the cell steady shape. A hyperelastic cell model 
that accurately accounts for the cell elasticity should be suf-
ficient to predict the cell steady shape and enable estimations 
of the cell membrane elastic moduli Gs and Ks . Note that 
the values of the two parameters of leukaemia HL-60 cells 
have not been reported in any previous study. Finally, the 
hyperelastic model enables us to identify the unique effect 
of membrane elasticity on cell deformation.

We cover a wide range of Gs and Ks that correspond to 
0.1 ≤ Ca ≤ 5 and 1 ≤ C ≤ 50 . In Sect. 3.1, unless other-
wise specified, we assume that the viscosity of the cell 
cytoplasm is identical to that of the channel fluid ( � = 1 ), 
and the nucleus has a size ratio of an∕a = 0.5 . The elastic 
moduli of the cell nucleus membrane are also assumed to 

be twice those of the cell membrane, to represent the fact 
that a cell nucleus is generally stiffer than the whole cell. 
Effects of those parameters on cell deformation will be 
studied in later sections.

An example of the cell transient profiles in the con-
stricted channel is shown in Fig. 3a, for a modelled cell 
with SK membranes with C = 10 at Ca = 0.75 . The cell 
is firstly elongated in the flow direction in the converging 
part of the channel, and the elongation is at the maxi-
mum when the cell is entering the narrow straight channel. 
Inside the narrow channel, the cell gradually develops into 
a steady bullet shape at about x = 150 μ m, under the effect 
of fluid shear. In the diverging part of the channel, the cell 
is compressed along the flow direction. The cell deforma-
tion history can be readily understood by features of the 
undisturbed flow inside the channel.

Figure 3b depicts the spatial evolution of the deforma-
tion index for three sets of Ca and C values. Interestingly, 
all three combinations of parameters capture the steady 
deformation index accurately. However, when comparing 
the steady cell cross-sectional profiles (in the symmetric 
plane at y = 0 ), we find that the parameter combination 
of Ca = 0.75 and C = 10 gives the best agreement with 
the experimental profile (Fig. 3c). At the best fit, the cell 
membrane area has increased by 4%. The present study 
therefore suggests that compared with the deformation 
index, the cell shape serves as a better indicator when 
comparing a simulation result with the experiment. In 
the present setup, the parameters of Ca = 0.75 and C = 10 
correspond to cell membrane elastic moduli values of 
Gs = 0.39mNm−1 and Ks = 8.10mNm−1 . Neither has been 
reported in any previous study of leukaemia HL-60 cells. 
The inferred membrane shear elasticity is close to that of 
neutrophils which has Gs = 0.35mNm−1 (Dong and Skalak 
1992).

Fig. 3   a Instantaneous profiles of a modelled cell with hyperelas-
tic membranes (SK law with C = 10 ) flowing through a constricted 
channel at Ca = 0.75 . b Cell deformation index as a function of the 
axial position of the cell mass centre. All three combinations of Ca 
and C can lead to good agreement in the steady DI of the cell in the 
narrow straight channel between numerical simulation (lines) and the 

experiment of Fregin et  al (2019) (symbols). In the experiment, the 
cell reaches steady deformation at around x = 250 μ m. In simulations 
with the hyperelastic membrane model, steady deformation is reached 
earlier, before x = 200 μ m. c Comparison of the cell steady profiles of 
the three numerical simulations in (b) with the experiment when the 
cell mass centres are at x = 274 μ m. In c the scale bar represents 5 μm
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3.1.2 � Effect of membrane elasticity on cell deformation

To vary the shear and dilatation moduli of the cell mem-
brane simultaneously, we vary the capillary number Ca 
while keeping the membrane hardness parameter C con-
stant. The nucleus-to-cell membrane shear elastic moduli 
ratio is also kept as Gsn∕Gs = 2 . Figure 4 presents the evo-
lution of cell deformation index along its axial position for 
Ca = 0.2 ∼ 1.2 with C = 10 . It is seen that the maximum 
deformation of the cell occurs a very short distance before 
the narrow channel at about x = −6 μ m, irrespective of 
the cell membrane elasticity. The maximum deformation 
decreases with the membrane elasticity. After entering the 
narrow channel, the cell deformation index drops sharply 
due to a rapid decrease in flow extension. It then evolves 
to a steady value that is determined by the shear stress of 
the channel fluid and the cell membrane elasticity.

As shown from Fig. 3b, although the steady cell defor-
mation index can be reproduced by several combinations 
of Ca and C, we find it impossible for any combination to 
capture the transient cell deformation further upstream. 
The maximum cell deformation in the experiment is much 
lower than that of the simulation, and it takes place further 
downstream, approximately at the entrance of the straight 
channel. Furthermore, compared with the experiment, the 
time required for the simulated cell deformation index to 
drop from the peak to the following trough is also much 
shorter (not shown). These features suggest that the pre-
sent mechanical model has under-represented viscous dis-
sipation within the cell during its transient deformation. 
The results are not surprising. Several sources can contrib-
ute to the viscous dissipation of the cell, such as the cell 

membrane and cytoplasm. We will first consider the effect 
of the cytoplasm viscosity in Sect. 3.1.3.

3.1.3 � Effect of cytoplasm viscosity

In our numerical tests of this section, we keep the param-
eter values that have led to the best fit with the experiment 
in the steady cell profile while adjusting the cell cyto-
plasm viscosity. The spatial evolution of the deformation 
index of the cells with a wide range of cytoplasm viscosity 
( 0.2 ≤ � ≤ 20 ) is presented in Fig. 5, where several inter-
esting observations can be made. Firstly, higher cytoplas-
mic viscosity reduces the maximum deformation of the cell 
in the constriction. Secondly, it slows down cell deforma-
tion, delaying the onset of the maximum cell deformation 
in the constriction and the approach to steady deformation 
in the narrow straight channel. Note that both features are 
needed to improve the agreement between the simulation 
and experiment (see Fig. 3b). However, by varying � alone 
it is impossible to achieve a good agreement between the 
model prediction and experiment in the cell deformation 
along the entire length of the microchannel.

It has been suggested in previous studies that the cyto-
plasm of biological cells, e.g. leukocytes, may be shear-thin-
ning, because it is a suspension of filaments and organelles 
(Tsai et al 1993; Marella and Udaykumar 2004). Here one 
may wonder if a shear-thinning cytoplasm model would 
improve the agreement between the model prediction and 
experiment. From simulation results (not shown), we find 
that the volume-average strain rate of the cytoplasm peaks 
when the cell is near the entrance of the narrow straight 
channel, due to the rapid elongation of the cell, and then 
decreases as the cell flows downstream. If the cytoplasm was 

Fig. 4   Cell deformation index 
as a function of the axial posi-
tion of the cell mass centre at 
different Ca with C = 10 . The 
experimental result is from 
Fregin et al (2019) and is shown 
in symbols

µ

Fig. 5   Cell deformation index 
as a function of the axial posi-
tion of its mass centre with 
different values of viscosity 
ratio � at Ca = 0.75 and C = 10 . 
Symbols are experimental 
results (Fregin et al 2019)

µ

λ
λ

λ
λ
λ
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shear-thinning, its viscosity would be at a minimum near 
x = 0 and then increase down the straight channel. However, 
Fig. 5 suggests that to match the cell deformation along the 
entire length of the microchannel in the experiment, a higher 
cytoplasmic viscosity with 𝜆 > 20 is needed at x = 0 , and 
the cytoplasm viscosity should decrease quickly when the 
cell flows downstream so that it can reach the steady shape at 
around x = 250 μ m. Therefore, cytoplasmic shear-thinning 
would not remedy the inadequacies of the model shown in 
Fig. 5.

3.2 � A cell with a viscoelastic membrane

The poor performance of the hyperelastic cell model in pre-
dicting cell transient deformation presented in Sect. 3.1 is 
not surprising. The membrane of biological cells generally 
consists of a viscous lipid bilayer with cholesterols and vari-
ous proteins. For RBCs, previous studies (Hochmuth et al 
1979; Tran-Son-Tay et al 1984; Tomaiuolo and Guido 2011; 
Prado et al 2015) have shown the important role of mem-
brane viscosity in determining the relaxation time of the 
whole cell. Relatively few studies have been done on the 
membrane viscosity of other cells, but modelling of neu-
trophils has suggested that membrane viscosity is essential 
to explain the time-dependence of cell entry into a micro-
pipette under aspiration (Drury and Dembo 2001; Herant 
et al 2003).

In this section, we consider a cell with a viscoelastic 
membrane. The membrane elasticity follows the same SK 
law that is used in Sect. 3.1, and we add the membrane vis-
cosity using Eq. (1). In our simulations in this section, we 
adjust the cell membrane viscosity, while keeping the values 
of all other parameters that have led to the best fit with the 
experiment in the steady cell profile in Sect. 3.1. Note that 
the cell membrane viscosity does not affect the steady cell 
shape.

3.2.1 � Cell membrane with a constant viscosity

We first employ a Newtonian membrane viscosity model and 
consider a cell with different levels of constant membrane 
viscosity. Figure 6 presents the spatial evolution of the defor-
mation index of cells with 1 ≤ �∗ ≤ 120 . The results indicate 

that the effect of cell membrane viscosity on cell transient 
deformation is generally similar to that of the cell cytoplasm 
viscosity. When comparing the simulation results with the 
experiment, we can find that near the entrance of the nar-
row straight channel, a good agreement with the experiment 
requires a high viscosity: 80 ≤ �∗ ≤ 120 , while approaching 
the channel exit, a much smaller value of �∗ ≤ 20 is needed 
for the cell to reach its steady shape. The inconsistency sug-
gests that a Newtonian viscosity model is not sufficient to 
account for the complexity of the cell membrane rheology 
in the experiment. 

3.2.2 � Cell membrane with shear‑thinning or ‑thickening 
rheology

We then consider a cell with its membrane following shear-
thinning or -thickening rheology. The empirical model of 
Drury and Dembo (2001) has been used for the membrane 
viscosity:

The constants �1 and �0 represent a zero-shear viscosity 
and a characteristic strain rate, respectively. The sign of the 
power exponent n determines shear-thinning or -thickening. 
The strain rate 𝛾̄m =

√

2tr(D2) is averaged over the entire 
cell membrane. One example of 𝛾̄m is shown in Fig. 7a for 
a cell with a constant membrane viscosity of �∗ = 40 . We 
find that 𝛾̄m peaks near the entrance of the narrow straight 
channel, due to the rapid cell elongation and its subsequent 
adaption to shear deformation. The membrane strain rate 
then decreases when the cell is flowing down the narrow 
channel and approaching its steady bullet shape. In Eq. (13), 
we have assumed that the membrane viscosity is a global 
property that depends on the area-averaged membrane strain 
rate. In principle �s can be determined locally, but the for-
mer approach is more computationally stable, enabling us 
to explore a much wider parametric space. A comparison 
between the predictions of the two methods is presented in 
Fig. 7b for a shear-thinning membrane, and the results seem 
to be very similar.

(13)𝜇s = 𝜇1

(

1 +
𝛾̄m

𝛾0

)n

.

Fig. 6   Cell deformation index 
as a function of the axial posi-
tion of the cell mass centre for 
different cell membrane viscos-
ity �∗ at Ca = 0.75 and C = 10

µ

η
η
η

η
η
η
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Using Eq. (13) over a wide range of parameters, we find it 
impossible to bring the model predictions into close agree-
ment with the experiment. With a shear-thinning model, 
since the membrane strain rate generally drops when the cell 
flows down the narrow straight channel, the cell membrane 
viscosity increases. Figure 6 shows, on the other hand, that 
the membrane viscosity would need to decrease after the cell 
enters the narrow channel in order to capture the higher DI 
in experiments. One example of our simulations is shown 
in Fig. 7b using a solid line, for a cell with �1∕�0a = 400 , 
�0∕(V∕l) = 0.0075 and n = −0.8 . The shear-thinning mem-
brane approximately reproduces the maximum deformation 
observed in the experiment; however, it underpredicts DI in 
the straight channel downstream due to the high membrane 
viscosity.

In view of the above, a shear-thickening membrane 
model seems to be more promising in that the cell mem-
brane viscosity will generally drop when the cell is flowing 
downstream the straight channel. However, the membrane 
strain rate remains high in the straight channel for a long 
distance, till x = 60 μ m as shown in Fig. 7a. Therefore, the 
decrease of the membrane viscosity is not quick enough for 
a good agreement with the experiment. The dash line in 
Fig. 7b is for a cell with shear-thickening membrane with 
�1∕�0a = 19 , �0∕(V∕l) = 0.005 and n = 0.8 . With the maxi-
mum deformation approximately matching the experiment, 
the model cell is unable to respond to the flow as quickly as 
needed after it enters the straight channel. In addition, the 
shear-thickening model also overpredicts DI in the upstream 
converging channel.

3.2.3 � A phenomenological model for membrane viscosity

Based on the observation from Fig. 6 that the membrane vis-
cosity should behave differently when the cell is in the con-
verging and straight sections of the channel, and the fact that 
the cell is subject to distinct elongational and shear effects 
in the two channel sections, we propose a simple phenom-
enological model to describe the cell membrane viscosity. 
In the model, the membrane viscosity depends on whether 
it is being stretched or sheared:

The constants �s
s
 and �e

s
 represent the membrane shear and 

extensional viscosity, respectively. The term � represents the 
flow type parameter of the background flow in the symmet-
ric plane y = 0 : 𝜖 = (∣ 𝛾̇ ∣ − ∣ 𝜔 ∣)∕(∣ 𝛾̇ ∣ + ∣ 𝜔 ∣) , where ∣ 𝛾̇ ∣ 
and ∣ � ∣ are the magnitudes of the fluid strain rate tensor 
𝛾̇ = ∇u + ∇uT and the fluid vorticity tensor � = ∇u − ∇uT , 
respectively (Fuller and Leal 1980; Patil et al 2006). The 
flow type parameter is an average along −a ≤ z ≤ a at the 
x−axis position corresponding to the mass centre of the cell. 
For simple shear or extensional flow, � = 0 or 1, respectively.

Basing the membrane viscosity on the flow-type param-
eter follows from an extensive rheological literature on the 
response of polymeric liquids to different flow types (Fuller 
and Leal 1980; Singh and Leal 1994; Patil et al 2006). 
Despite the heterogeneous structure of the cell membrane, 
we may liken its viscosity to that of a polymeric liquid, 
which exhibits distinct extensional and shear rheologies. 

(14)�s = (1 − �)�s
s
+ ��e

s
.

µµ

µ

γ

Fig. 7   a The membrane area-average strain rate 𝛾̄m as a function of 
the cell position at Ca = 0.75 , C = 10 , �∗ = 40 . b Comparison of the 
deformation index of cells with a shear-thinning or -thickening mem-
brane. The parameters in the shear-thinning model are �

1
∕�

0
a = 400 , 

�
0
∕(V∕l) = 0.0075 , n = −0.8 , and in the shear-thickening model 

�
1
∕�

0
a = 19 , �

0
∕(V∕l) = 0.005 and n = 0.8 . The dash dot line is the 

prediction of the shear-thinning model with �s determined from the 
local membrane strain rate. The membrane elasticity follows the SK 
law with Ca = 0.75 , C = 10 . The experimental result of Fregin et al 
(2019) is shown in symbols
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The two different modes of deformation elicit different con-
formational changes in the polymer chains, with extensional 
flow typically causing chain stretching and alignment and 
provoking a much stronger mechanical response than shear 
flow. The ratio of the extensional and shear viscosity is the 
Trouton ratio Tr, which is always three for a Newtonian fluid. 
However, Tr can be orders of magnitude higher for poly-
meric fluids in an effect commonly called “strain hardening” 
(Bird et al 1987).

We find excellent agreement with the experiment when 
using Eq. (14) with �e

s
∕�0a = 100 and �s

s
∕�0a = 20 . This 

is demonstrated in Fig. 8 using the cell deformation index, 
transient profiles, and cell velocity. In the experimental 
images, the cell appears slightly off-centre before entering 
the straight narrow channel (Fig. 8b). We have tested the 
effect of a small initial offset in our simulations, up to 2a 
along the −z direction, and found the cell behaviour little 
affected. All the results of Fig. 8 and below use an initial 
offset of a. 

Note that the membrane viscosity of leukaemia cells 
has not been reported previously. In Fig. 8, the dimen-
sional cell membrane viscosity �s

s
 and �e

s
 are 5.5 and 

27.5 μNsm−1 , respectively. These are comparable to the 
membrane viscosity of 8.5 μNsm−1 reported for granulo-
cytes (Evans and Yeung 1989), but are much higher than 
that of a RBC membrane (Evans and Hochmuth 1976; 
Hochmuth et al 1979; Tran-Son-Tay et al 1984). Interest-
ingly, we notice that previous experiments had reported 
distinct values of membrane viscosity when RBCs were 
subjected to shear or extensional flow. In simple shear flow 
(Tran-Son-Tay et al 1984), the RBC membrane viscosity 
was found to be on the order of 0.1 μNsm−1 . Significantly 

higher values, on the order of 1 μNsm−1 , were reported 
when cells were stretched during micropipette aspiration 
(Evans and Hochmuth 1976; Hochmuth et al 1979). There-
fore, our results suggest that the leukaemia cell resembles 
the RBC in how its membrane viscosity depends on the 
mode of deformation. Of course, the underlying mecha-
nisms may differ. For example, the spectrin network of 
the RBC membrane may behave differently from the leu-
kaemia cell membrane, especially under the large strains 
typical of micropipette aspiration.

Since the cytoplasmic viscosity of leukaemia HL-60 
cells is not known, in Fig. 8, we have used the baseline 
value � = 1 . Figure 9 explores the effect of � . In the range 
of 0.2 ≤ � ≤ 2 , the dependency of cell deformation on the 
cytoplasm viscosity is not strong. A unity viscosity ratio 
seems to give the best fit. In the present setup, this corre-
sponds to a cytoplasm viscosity of 32.5 mPa s . It has been 
found in previous studies that the effective cytoplasmic 
viscosity of biological cells ranges roughly from 10 to 100 
mPa s (Luby-Phelps 1999; Mogilner and Manhart 2018), 
which is consistent with the value inferred from the pre-
sent study for the leukaemia HL-60 cell.

3.3 � Effect of the cell nucleus

So far in our simulations we have fixed the nucleus size at 
an∕a = 0.5 . We further assume that the nucleus membrane 
is hyperelastic, following the SK law, but stiffer than the 
cell membrane with Gsn = 2Gs,C = 10 . Here, we test the 
effects of the nucleus size and its membrane stiffness on 

Fig. 8   Comparisons of a cell 
deformation index, b instanta-
neous profiles, and c cell flow 
speed obtained from the present 
simulation and experiment 
(Fregin et al 2019). In b the 
scale bar represents 10 μ m. In 
simulation, the cell membrane 
viscosity follows Eq. (14) with 
�e

s
∕�

0
a = 100 , �s

s
∕�

0
a = 20 . 

The membrane elastic-
ity follows the SK law with 
Ca = 0.75 , C = 10
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the transient cell deformation in the constricted channel. 
For the cell membrane and cytoplasm, we use the same 
models and associated parameters of Fig. 8.

Not surprisingly, a larger cell nucleus decreases the over-
all deformation of the cell (Fig. 10a). However, in the practi-
cal range of 0.4 ≤ an∕a ≤ 0.6 for the leukaemia HL-60 cell 
considered, the effect is small. The effect of membrane elas-
ticity of the cell nucleus for a cell with an∕a = 0.5 is shown 
in Fig. 10b. A nucleus membrane that is one order of mag-
nitude stiffer than the cell membrane does not significantly 
reduce the cell deformation in the present case, because the 
nucleus of the HL-60 cell is not very large and therefore 
does not sustain much deformation during the cell’s transit. 
Indeed, the present results suggest that when an∕a ≤0.5, it is 
not essential to account for the cell nucleus in the mechani-
cal model.

Nevertheless, it has been known that cancer cells typi-
cally have a larger nucleus than healthy cells. We expect 
that the effect of the nucleus membrane stiffness on the over-
all cell deformation in a microfluidic channel will become 
increasingly significant with the size of the nucleus. A large 
and stiff cell nucleus could be the dominant factor in limiting 
the cell deformation, in particular in small channels with the 
cross-sectional dimension being similar to that of the cell.

4 � Conclusions and limitations

The present study aims to determine the minimum set of 
attributes that must be included in a mechanical model 
to quantitatively predict the transient deformation of sus-
pended cancer cells flowing through a constricted chan-
nel. To achieve this goal, we have conducted extensive 
and systematic numerical simulations, using a range of 
models with increasing complexity, and compared the 
simulation results with a recent experiment where the 
transient profiles of a human leukaemia HL-60 cell in a 
constricted microchannel were clearly recorded. We find 
that the hyperelastic cell membrane model, using the SK 
law, can only recover the steady-state deformation of the 
cell in the straight channel. Excellent agreement with the 
experiment in transient cell dynamics can be achieved by 
properly accounting for the membrane viscoelasticity. 
Specifically, the membrane viscosity of the cell in elon-
gational deformation should be higher than that when the 
cell deformation is shear-dominant, by a factor of about 
five. The cell nucleus, with a stiffer membrane than the 
cell membrane, tends to reduce the overall cell deforma-
tion. However, its effect is small when the nucleus is not 
too large, i.e. an∕a ≤ 0.6 in the present setup.

Fig. 9   Cell deformation index 
as a function of cell axial loca-
tion with different viscosity 
ratios. Other parameters are the 
same to those of Fig. 8

µ

λ
λ
λ

Fig. 10   Effect of a cell nucleus 
size, and b nucleus membrane 
shear elasticity on evolution 
of the cell deformation index. 
Other parameters are the same 
to those of Fig. 8

µ

µ
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A limitation of the present study is that the model has 
only been validated against a leukaemia cell line. As a gen-
eral model, of course, it needs to be tested on other cell 
types and in other flow geometries. Such broad validation 
is not possible at present, due to the lack of quantitative 
experimental data on the transit of suspended cells in a fluid 
medium. Other experiments such as micropipette aspiration 
of cells, cell squeezing through narrow constrictions, or cell 
migration on substrates, in ECM and through confinement, 
involve cell response that might fundamentally differ from 
the present situation where the cell is carried passively by 
the flow without touching the solid wall. To use such data 
for validation, the model must be equipped with additional 
features, to consider, for instance, the stress fibres in adher-
ent, active cell cortex deformation, cell-ECM and cell-wall 
interactions (Borau et al 2011; Peng et al 2013; Tozluoğlu 
et al 2013; Allena et al 2015; Zhu and Mogilner 2016; Lee 
et al 2017; Lykov et al 2017; Maxian et al 2020; Balogh 
et al 2021; Campbell and Bagchi 2021), which are beyond 
the scope of the present study. Our model has considered 
the cytoplasm as a viscous liquid and is therefore mainly 
suitable for suspended cells, where the cytoskeleton consists 
mostly in the cell cortex underlying the plasma membrane, 
which is represented by our membrane model. For cells with 
a strong cytoskeleton linking the cell membrane and nucleus, 
such as the many types of solid tumour cells, it may be more 
suitable to model the cytoplasm as a viscoelastic solid.

Regarding practical applications, the present computa-
tional model has the potential of inferring the mechanical 
properties of subcellular components of suspended cancer 
cells from their transient flow-induced deformation. By 
fitting the steady deformed cell profile to computational 
results, one can obtain the cell membrane shear and dilata-
tional moduli. The spatial evolution of the cell deformation 
will enable one to estimate the viscosities of the cell mem-
brane and cytoplasm. These have been demonstrated in the 
present study on the HL-60 cells. For further validation, 
however, our method of inverse analysis should be tested 
against cell types for which the parameters to be inferred are 
already known. At present, no such benchmark experimental 
data are available in the literature. Thus validated, the com-
putational model may facilitate the design and optimisation 
of microfluidic devices for mechanical characterization or 
sorting of suspended cancer cells.

Appendix 1: Numerical method 
for viscoelastic stress

The model for the membrane viscoelastic stress, Eq. (1), 
assumes that the elastic and the viscous terms are in par-
allel, and the total stress is the sum of the elastic and the 
viscous contributions. Previous studies had found that 

directly solving Eq. (1) leads to numerical instabilities 
due to the time derivatives of strains (Yazdani and Bagchi 
2013; Li and Zhang 2019). To resolve this problem, we 
have adopted the methodology of Yazdani and Bagchi 
(2013) and employed a modified mechanical system to 
approximate Eq. (1). The method is briefly described here, 
and details can be found in pertinent literature (Yazdani 
and Bagchi 2013; ABAQUS/Standard Theory Manual 
2002).

The modified mechanical system is illustrated in 
Fig. 11. Compared with the system of Eq. (1), an addi-
tional elastic term, with the stiffness G1 , is added in series 
with the viscous term to form a Maxwell element. The 
total viscoelastic stress is related to the strain history by 
a time-dependent shear relaxation modulus G(t) that is 
expressed with a Prony series:

where �1 = �s∕G1 is the relaxation time of the Maxwell ele-
ment. When G1 is sufficiently large, G(t) approaches Gs , and 
the modified mechanical system of Fig. 11 can represent Eq. 
(1) (Yazdani and Bagchi 2013).

The total viscoelastic stress tensor �(t) can be written as

The term �dev
0

(t) represents the instantaneous deviatoric 
stress, which is equivalent to the deviatoric part of �e in Eq. 
(4), with Gs replaced by the instantaneous shear modulus 
that can be calculated as G0 = G(t = 0) = Gs + G1 . The term 
Ft(t − s) is the deformation gradient between times t − s and 
t. The operator SYM enforces the symmetry of the stress ten-
sor. Since we have neglected the viscous effect due to mem-
brane area dilatation, the membrane volumetric stress �vol(t) 
is equivalent to the volumetric part of the elastic stress tensor 
in Eq. (4). Equation (16) is integrated forward in time, fol-
lowing the approach detailed in ABAQUS/Standard Theory 
Manual (2002).

(15)G(t) = Gs + G1e
−t∕�1 ,

(16)
�(t) = �

dev

0
(t) + SYM

[

∫
t

0

Ġ(s)

G
0

F
−1
t
(t − s)

⋅�
dev

0
(t − s) ⋅ Ft(t − s)ds

]

+ �
vol(t).

Fig. 11   Schematic diagram of the viscoelastic membrane model
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Appendix 2: Numerical method 
for the bending force

The bending force density derived from the bending 
energy formulation Eq. (6) is (Zhong-Can and Helfrich 
1989; Guckenberger and Gekle 2017)

where �g is the Gaussian curvature, and n is the outwards 
unit normal vector. The curvatures and the normal direc-
tion at each node of the cell membrane are calculated using 
a quadratic surface fitting (Garimella and Swartz 2003; 
Yazdani and Bagchi 2012)

where (x�, y�, z�) represents a local coordinate system with the 
origin being the membrane node of interest, and the z�−axis 
aligning with the estimated normal direction. To fit the coef-
ficients in Eq. (18), one-ring neighbouring points have been 
used with a least-square method. Then, the curvatures, H 
and �g , and the normal unit vector n can be calculated from

To discretize the Laplace–Beltrami operator ∇s ⋅ ∇s , we fol-
low the approach of Meyer et al (2003).
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H =

a + c + ae2 + cd2 − bde

(1 + d2 + e2)3∕2
,
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(20)n =
1
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