Table 2.
Emotion prediction performance of machine learning algorithms in the time domain.
| Class | Index | LR | NB | SVM | RF | KNN | CNN-LSTM | SNN | SBP-SNN |
|---|---|---|---|---|---|---|---|---|---|
| Fearful and Neutral | Acc. (%) | 28.62 | 47.67 | 71.94 | 76.24 | 66.74 | 87.50 | 76.72 | 81.82 |
| F1-Sc. | 0.28 | 0.55 | 0.48 | 0.72 | 0.58 | 0.75 | 0.74 | 0.84 | |
| Sad and Neutral | Acc. (%) | 57.14 | 52.44 | 66.71 | 42.96 | 56.22 | 75.00 | 78.19 | 84.09 |
| F1-Sc. | 0.39 | 0.39 | 0.73 | 0.26 | 0.52 | 0.72 | 0.80 | 0.86 | |
| Happy and Neutral | Acc. (%) | 33.33 | 47.36 | 72.41 | 66.75 | 60.11 | 81.25 | 75.48 | 81.82 |
| F1-Sc. | 0.25 | 0.25 | 0.64 | 0.68 | 0.58 | 0.72 | 0.76 | 0.83 | |
| Four classes | Acc. (%) | – | 55.63 | 62.62 | 53.37 | 56.05 | 61.00 | 53.88 | 63.86 |
| F1-Sc. | – | 0.44 | 0.57 | 0.43 | 0.50 | 0.59 | 0.56 | 0.66 |