Table 3.
Emotion prediction performance of machine learning algorithms in the frequency domain.
| Class | Index | LR | NB | SVM | RF | KNN | CNN+LSTM | SNN | SBP-SNN |
|---|---|---|---|---|---|---|---|---|---|
| Fearful and Neutral | Acc. (%) | 31.48 | 52.44 | 79.13 | 83.86 | 73.41 | 89.25 | 82.18 | 86.36 |
| F1-Sc. | 0.31 | 0.61 | 0.53 | 0.79 | 0.64 | 0.83 | 0.82 | 0.92 | |
| Sad and Neutral | Acc. (%) | 62.85 | 57.68 | 73.38 | 47.26 | 61.84 | 82.50 | 86.24 | 95.18 |
| F1-Sc. | 0.43 | 0.43 | 0.80 | 0.29 | 0.57 | 0.79 | 0.85 | 0.95 | |
| Happy and Neutral | Acc. (%) | 36.66 | 52.10 | 79.65 | 73.43 | 66.12 | 89.38 | 83.56 | 89.09 |
| F1-Sc. | 0.28 | 0.28 | 0.70 | 0.75 | 0.64 | 0.79 | 0.85 | 0.80 | |
| Four classes | Acc. (%) | – | 61.19 | 68.88 | 58.71 | 61.66 | 67.10 | 65.35 | 70.25 |
| F1-Sc. | – | 0.48 | 0.63 | 0.47 | 0.55 | 0.65 | 0.70 | 0.73 |