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SUMMARY

Droplet-based single-cell RNA-seq (scRNA-seq) data are plagued by ambient con-
taminations caused by nucleic acid material released by dead and dying cells. This
material is mixed into the buffer and is co-encapsulated with cells, leading to a
lower signal-to-noise ratio. Although there exist computational methods to re-
move ambient contaminations post-hoc, the reliability of algorithms in gener-
ating high-quality data from low-quality sources remains uncertain. Here, we
assess data quality before data filtering by a set of quantitative, contamination-
based metrics that assess data quality more effectively than standard metrics.
Through a series of controlled experiments, we report improvements that can
minimize ambient contamination outside of tissue dissociation, via cell fixation,
improved cell loading, microfluidic dilution, and nuclei versus cell preparation;
many of these parameters are inaccessible on commercial platforms. We provide
end-users with insights on factors that can guide their decision-making regarding
optimizations that minimize ambient contamination, and metrics to assess data
quality.

INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) is a technique that allows for the investigation of genome-scale

gene expression in thousands of individual cells, facilitating the deconvolution of tissue heterogeneity and

population dynamics. The are many scRNA-seq platforms that employ various strategies to partition single

cells. Plate-based methods involve the deposition and lysis of individual cells in multiwell plates.1–3 Micro-

fluidic-based methods employ microfluidic chambers and arrays to isolate and process single cells.4 Tem-

plated emulsions and combinatorial indexing are innovative methods that do not require specialized

equipment to barcode single cells5–7 Lastly, spatial sequencing enables gene expression while maintaining

spatial resolution.8 The most popular scRNA-seq platforms by far are droplet-based methods, which

involve microfluidic encapsulation of cells and barcoded capture oligonucleotides in oil emulsions, that ul-

timately enable sequencing reads to be assigned to each droplet or cell.9–11 For droplet-based methods,

because of the low cellular loading required to avoid two or more cells captured in an individual droplet,

most droplets are devoid of cells and ideally only contain loading buffer and RNA-capture beads. However,

this is often not the case because stress encountered by cells during single-cell processing induces cell

death and leakage, leading to deposition of ambient RNA into the loading buffer. This RNA is either co-

captured with cells into droplets or into empty droplets themselves.12 Ambient RNA contamination lowers

effective sequencing read depth and, more importantly, contributes to an insidious signal that masks bio-

logical signals and confounds downstream biological interpretation.

The dissociation of tissues into single cell suspensions is a well-known cause of ambient contamination.

Thus, a variety of tissue dissociation strategies have been developed, many of which were optimized for

cell viability specific to tissue and cell types. For instance, van der Wijst et al. developed a one-step colla-

genase dissociation protocol for gut mucosal biopsies.13 A listing of many of these protocols matched to

tissue types was presented by Regev and colleagues.14 Many of these protocols generate highly viable cells

coming out of dissociation, as assessed by flow cytometry and live/dead dye visualization. However, they

do not address the continuous stresses that cells are exposed to downstream of dissociation before and

during the encapsulation process. Single cells in suspensions removed from their native tissue niches
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are often more prone to cell death.15 For processing death-prone tissues, single-nucleus RNA-seq (snRNA-

seq) has been developed.16 Because nuclei are not cells, the prevalent thought in the field is that they are

resistant to typical stresses that induce cell death. However, substantial amounts of cytoplasmic RNA and

ribosomes adhere to the surfaces of isolated nuclei.14 In addition, the lysis buffers used for cell lysis may

also damage nuclei and result in leakage RNAs. An area that has received relatively little attention in

droplet-based approaches is the investigation into the fluidic technologies themselves, which are often

viewed as a ’black box’ by most end-users.

Another missing element is a quantitative method to evaluate data quality in the context of contamination.

Although the ambient contamination issue is well-known in the field, data quality is still often evaluated us-

ing standard quality control (QC) metrics, mainly focused on the number of cells, genes, total transcripts,

and mitochondrial transcripts recovered (Hong et al., 202217), which cannot identify ambient contamina-

tion. Tools exist to leverage ambient contamination for filtering cells from empty barcodes,18–20 whereas

others algorithmically factor out ambient RNA.12,21,22 Although these post-hoc algorithms use different

methods and parameters to attempt to identify contaminant contribution and ambient genes, they are

imperfect and often provide an incomplete picture for reliably evaluating data quality. Because of this

need, we strive to develop a unique set of metrics to evaluate data quality by specifically considering

ambient contamination before any barcode filtering or post-hoc removal of ambient contamination. Rather

than mathematically removing ambient RNA, we acknowledge the inability to completely remove contam-

ination algorithmically in every circumstance. Instead, we emphasize the importance of evaluating data

quality based on the level of ambient contamination before any data processing to allow end-users to

apply appropriatemeasures to combat the problem. This approach provides an important aspect of quality

control that allows researchers to systematically evaluate and report quality metrics of their data, which

promotes greater transparency in the upstream design and downstream analysis of scRNA-seq

experiments.

In this study, we conducted a series of controlled experiments using an open-source scRNA-seq platform

(inDrops) to assess the factors that contribute to ambient RNA contamination. We developed quantitative

contamination-focused metrics to assess ambient RNA encapsulated into droplets as reflected in

sequencing data. We confirmed the validity of our contamination metrics by applying them to evaluate

dissociation protocols known to result in either high cell death or enhanced cell viability. Furthermore,

we demonstrated parameters in the microfluidic technology that impact ambient contamination. The sig-

nificance of quantitative data quality evaluation cannot be overstated in single-cell biology as the accuracy

and reliability of downstream analysis are highly dependent on the quality of the input data. We thus pro-

vide end-users with quantitative methods to deduce quality from unprocessed data and illuminate how

technical parameters behind the technology outside of dissociation protocols can impact contamination.

RESULTS

Metrics that focus on ambient contamination can identify poor quality scRNA-seq datasets

We set out to first develop a set of quantitative metrics focused on ambient RNA levels, such that modifi-

cations made to downstream protocols can be adequately assessed. For illustrating situations with high

and low ambient contamination, we used CellBender22 to simulate representative low contamination

(ambient UMI count = 100) and high contamination (ambient UMI count = 4000) datasets (see STAR

Methods). Other parameters such as number of cells, droplets, and UMI per cell were kept relatively con-

stant between simulations (Figures S1A–S1D). Because ambient contamination is present in cells as well as

empty droplets, we developed metrics that apply to unfiltered data. This way, ambient contamination

assessment can be performed automatically without the subjectivity of data filtering.

High ambient RNA disrupts the ability to separate real cells from empty droplets, as can be illustrated by

the standard UMI count versus log ranked barcodes curve (Figures S1E and S1F), which can also be repre-

sented as the cumulative distribution of counts versus ranked barcodes (Figures S1G and S1H). We scaled

the total number of barcodes analyzed with respect to the number of expected cells for each dataset to

enable comparison between samples with different numbers of encapsulated cells and empty droplets.

A sharp change in slope of the cumulative count curve, with a clear inflection point, was observed in the

high-quality dataset because real cells contribute to notably larger increments of gene counts than empty

droplets when background noise is low. The change in slope was less apparent in the low-quality dataset

because ambient genes contribute to high increments of gene counts in empty droplets (Figures S1G and
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S1H). Although these curves can visually give a gross impression of data quality, we surmise that ambient

contamination occurs to various degrees in real datasets. Thus, quantitative metrics are needed to reflect

different levels of contamination.

The ability to separate true signals from background contamination can be assessed in two ways: geomet-

rically or statistically. Geometrically, a cumulative count curve resembling a rectangular hyperbola reflects

this sharp change in slope, and hence higher quality, while the resemblance to a straight line reflects the

opposite. For quantification, we defined secant lines connecting each point on the cumulative count curve

to the diagonal line linking the origin to the last data point of the cumulative count curve (Figure 1A). The

high-quality dataset, because of its resemblance to a rectangular hyperbola, has a larger maximal secant

line distance as well as a larger standard deviation over all secant line distances, as compared to the

low-quality dataset (Figure 1A). We also assessed the direct resemblance of the curve to a rectangle by

calculating an area ratio between the area under the cumulative count curve and the minimal rectangle cir-

cumscribing the curve, which we termed AUC percentage over minimal rectangle, with high quality data

Figure 1. Ambient contamination metrics robustly reflect data quality on simulated datasets

(A) Scaled cumulative total transcript counts over ranked barcodes by total transcript counts for datasets simulated with (top) low ambient level and (bottom)

high ambient level. Secant lines from the curve to the diagonal line are colored in gray with the line with maximal secant line colored in green, which were

used to calculate inverted maximal secant distance and secant line standard deviation. The area under curve (colored in orange) and the minimal rectangle

circumscribing (dashed purple line) were used to calculate the inverted AUC percentage.

(B) Scaled representation of the slope distribution histograms shown in Figures S1I and S1J for (top) low and (bottom) high ambient datasets shown in A. The

x axis values are midpoint of each bin in the slope distribution histogram, and the y axis values are multiplication product of the bin midpoint values and the

bin heights. The region representing slopes that were below the threshold were considered as empty droplets and were colored in blue. The sum of these

datapoints is quantified as empty droplets’ scaled slope sum.

(C) Distribution of dropout rate of genes ranked by ascending dropout rate for datasets simulated with (top) low and (bottom) high ambient level. The pink

line is drawn at 2% dropout rate, the cut-off below which a gene will be defined as ambient.

(D) Distribution of percentage of ambient genes expressed per cell for dataset simulated with (top) low and (bottom) high ambient level. The mean

percentage is quantified. The AmbiQuant overall score is labeled in red.

(E–H) (E) Maximal secant distance (green) and secant line standard deviation (yellow), (F) AUC percentage, (G) cell’s scaled slope sum, and (H) percent counts

ambient over different ambient levels for simulations. Line plots shown as mean G stdev of n = 1000 replicates for each ambient level.
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occupying more of the rectangular area (Figure 1A). We then inverted these quantitative assessments to

establish contamination metrics, such that they scale in proportion to the degree of contamination accord-

ing to the geometry of the cumulative counts versus ranked barcodes curve (Figure 1A).

We also used statistical distributions to quantify ambient contamination, by first generating a distribution

of slopes at each point of the cumulative count curve displayed as a histogram, where bin widths are the

range of slopes and bin heights are the number of data points with a slope falling into the range of the

bin width (Figures S1I and S1J). Taking the midpoint of each bin and multiplying the midpoints value

with its bin height, we generated a line plot with the midpoints being x values and the product of multipli-

cation as y values, which is a scaled representation of the slope distribution that has a higher density over

data points that have higher slope values. Because high slope data are hypothetically contributed by real

cell’s transcript counts, the scaling achieves an increased contribution of real cells, weighted by their tran-

script count, against the contribution of empty droplets (Figure 1B). The scaled distributions were normal-

ized to one to enable cross dataset comparisons. We surmised that a contaminated dataset should have a

slope distribution closer to unimodal, because of indistinguishable cells and empty droplets, while a high-

quality dataset should have a multimodal slope distribution. Thus, a cut-off was determined to separate an

‘‘empty droplet’’ slope distribution from a ‘‘cell’’ slope distribution. This cut off was determined to be one

standard deviation above the median of all slopes to approximate the ‘‘empty droplet’’ distribution,

because most barcodes are empty droplets in a scRNA-seq experiment (Figure 1B). The sum of scaled

slopes below this threshold, denoting data points that are potentially background ambient signals, is a

quantitative metric that scales with the dataset’s contamination level (Figure 1B). Aside from slope distri-

butions, we further constructed distributions characterizing ambient genes. These are genes detected to

be present in most barcodes (both cells and empty droplets) and have a dropout rate of less than 2%

(Figure 1C) (see STAR Methods). The number of ambient genes and the mean percentage of the ambient

gene expressed per cell quantitatively differed between high- and low-quality datasets (Figures 1C and

1D). Thus, summary metrics from various statistical distributions can also be used to quantitatively assess

ambient contamination.

To verify the robustness of these metrics to quantitatively assess ambient contamination, we evaluated

simulated datasets at 10 ambient levels over n = 1000 replicates. The contamination metrics - inverted

maximal secant distance, inverted secant line standard deviation, inverted AUC percentage, sum of

weighted slopes under threshold, average percentage of ambient genes, and the number of ambient

genes all quantitatively increased in proportion to the ambient level set (Figures 1E–1H and S1K). We

also used real datasets to simulate different sequencing depths and ambient contamination levels and

showed that our metrics are resistant to sequencing depth variations but are specific to changes in ambient

contamination levels (Figures S1L–S1O). Meanwhile, ambient count percentage and ambient gene counts

are sensitive to different sequencing depths and, thus, these metrics need to be used with more scrutiny

(Figures S2P–S2R). Together, these results demonstrate that the quantitative metrics derived, which we

termed contamination metrics, can robustly inform scRNA-seq data quality on a continuous scale based

on ambient RNA contamination. For simplicity, we developed an overall score combining several of the

contamination metrics, bound between ‘0’ (best quality – perfect signal-to-noise ratio) to ‘1’ (worst quality –

all noise). The approach we took to quantify ambient contamination is implemented in a package called

AmbiQuant (https://github.com/Ken-Lau-Lab/AmbiQuant.git).

Application of contamination metrics revealed ambient contamination in datasets that

passed standard QC

We first compared the performance of the contamination metrics against standard metrics as defined by

Hong et al. on inDrops scRNA-seq datasets (Hong et al., 202217). These metrics are prevalently used in cur-

rent scRNA-seq QC, and include total number of cells, average percent mitochondrial gene expression,

average total transcripts per cell, and average total number of genes detected per cell. Note that the total

number of cells is not the cells that enter the chip to be encapsulated, because that number is standardized

by visualizing and counting the rate of cell entry into the cell hopper of the microfluidics chip. Instead, the

total number of cells represents the number of cells identified in the data after barcode filtering down-

stream, providing a glimpse of the actual numbers of intact cells that survived encapsulation.

We applied contamination metrics on datasets generated from the inDrops platform without any modifi-

cation (standard inDrops).9 K562 cells, as optimized in the original inDrops manuscript, demonstrated
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low contamination based on our metrics (AmbiQuant Overall Score: Sample 1–0.25; Sample 2–0.31; Sam-

ple 3–0.27), as well as standard QCmetrics such as mitochondrial count percentage per cell (Figures 2A–2D

and S2A–S2K and Table S1). Cultured cells maintain very high viability after minimal or no dissociation,

leading to high data quality. In contrast, we also dissociated gastric corpus tissues in an unoptimized

fashion and applied inDrops (see STARMethods). The gastric corpus is the site of stomach acid production

and houses various types of gastric cells, including acid-producing parietal cells.23 Thus, dissociated single

cells in this environment are exposed to extrinsic stress and damage. Standard data analysis revealed

obvious QC failure in scRNA-seq data generated, as reflected by a high mitochondrial percentage, low

number of genes detected, and general inability to detect known cell types (Figure S2L and Table S1).

Poor data quality was also captured by our contamination metrics (AmbiQuant Overall Score: 0.78)

(Figures 2E–2H and Table S1). Although obvious QC failure is easy to detect, there are intermediate cases

where low data quality can be concealed within data that qualitatively passed QC, such as the case with the

colonic epithelium. The colonic epithelium consists of a unilaminar layer of connected differentiated and

undifferentiated epithelial cells. Differentiated cells do not self-renew and undergo anoikis when dissoci-

ated from their neighbors, increasing the propensity of dying cells in suspension.15 More importantly,

secretory cells, including goblet cells, are constantly under endoplasmic reticulum stress (because of

heightened protein production) and are packed with tubulovesicular elements for protein secretion, lead-

ing to increased fragility.24 Standard inDrops scRNA-seq of colonic epithelium25 did not lead to QC failure,

and two major lineages of secretory and absorptive cells can clearly be delineated from the data

(Figure S2M and Table S1). However, closer examination of the data revealed that the high expressing,

Goblet cell-specific gene Muc2 was found in every cell, demonstrating a high degree of ambient contam-

ination (Figure S2N). Standard quality metrics such as mitochondrial count percentage, total UMI count,

Figure 2. Contamination metrics on experimental datasets inform data quality on a continuous scale

Ambient contamination plots and metrics, formatted similarly to Figure 1 of experimental datasets of different quality: (A–D) K562 (Sample 1) cell line, (E–H)

mouse gastric corpus, (I–L) and mouse colonic crypts.
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and total genes were unable to distinguish datasets of low versus high quality arising from ambient RNA,

but our contamination-based metrics could (AmbiQuant Overall Score: 0.58) (Figures 2I–2L and Table S1).

These results demonstrate that our contamination metrics can reveal previously missed problems of

ambient RNA in data generated using droplet-based scRNA-seq.

Pre-encapsulation variables affect scRNA-seq data quality and cell type diversity

Using colonic epithelium as our model system, we further tested our contamination metrics against pre-

encapsulation variables that were shown to impact downstream ambient contamination in a tissue-specific

manner.14 We first compared scRNA-seq data quality following the standard HTAPP tissue dissociation

protocol (https://doi.org/10.17504/protocols.io.busfnwbn) compared with our standard crypt chelation

strategy followed by cold protease dissociation (cold protease and DNase cocktail; see STAR Methods).

The HTAPP protocol that requires the act of mechanical separation via total tissue mincing followed by

a 20-min enzymatic dissociation at 37�C led to cell death and damage, which can be visualized in the

cell hopper of the microfluidic encapsulation chip as streaks of cellular material as opposed to intact cells

(Figure 3A). Quantitatively, tissue mincing, followed by either warm or cold dissociation, led to poor data

quality as reflected by both standard and contamination metrics (Table 1; Figures S3A and S3B). The

Figure 3. Pre-encapsulation variables affect scRNA-seq data quality and cell type diversity

(A) Live hopper visualization of (left) viable single cells and (right) dying cells.

(B and C) Quantification of (B) AmbiQuant overall score, (C) percent counts ambient comparing near QC failure runs (MACs enzyme on minced tissue, cold

protease on minced tissue, MACs enzyme on minced, and Collagenase/DNase on Crypts) and cold protease dissociation on crypts. Mean with SEM as error

bars for n = 3 or 4 samples. **p < 0.01 by t-test.

(D) UMAP embedding of filtered cells from (blue) TrypLE and (orange) cold protease datasets. Expression of Dclk1, a tuft cell marker, and Ptprc, an immune

cell marker, were overlaid.

(E and F) UMAP overlay with percent counts ambient or Muc2 expression for (E) unfixed cells or (F) fixed cells prepared with cold protease dissociation on

crypts. Secretory (red) and absorptive (green) lineages are outlined. Gene expression values on scale bars are Z-scores of normalized values described in

STAR Methods.

(G) Live hopper visualization of (left) unfixed cells and (right) cells fixed with 0.1 X DSP.
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inability to distinguish different cell populations or cells from empty droplets in these datasets is similar to

the QC failure of the gastric dataset above, and thus, they are labeled as near QC failure results. To isolate

single-cell dissociation steps, we eliminated mechanical tissue separation and tested different dissociation

enzymes only on isolated crypts that were produced by chelation (see STAR Methods). Standard dissoci-

ation enzymes such as the collagenase/DNase cocktail, and the Miltenyi MACs enzyme also led to poor

contamination metrics when applied to crypts and resulted in near QC failure (Table 1, Figures S3C and

S3D). These dissociation enzymes require long incubation times at 37�C which may accelerate biological

processes including cell death in single-cell suspensions, as opposed to cold protease which has been

shown to preserve viability by the opposite effect.26 Contamination metrics calculated on cold protease

dissociation on crypts datasets were quantitatively lower than the four near-QC failure datasets generated

by mechanical mincing and/or warm enzymatic dissociation (Figures 3B and S3E–S3H, Table 1). The

percent count ambient metric was more variable because the identities of ambient genes differed amongst

techniques, but trended lower for cold protease dissociation on crypts, as expected for high quality data-

sets (Figure 3C). Standard QC metrics, such as number of genes and transcripts detected, also demon-

strated higher data quality derived from cold protease dissociation on crypts compared to conditions

that led to near QC failure (Figures S3I–S3L and Table 1). It is also well-known that different single-cell

dissociation strategies can lead to different cell type representation.14 We show here through integrated

UMAP and clustering analysis that cold protease dissociation recoveredmore tuft cells, while more immune

cells were recovered by short term TrypLE dissociation of crypts (Figure 3D). Standard dissociation strate-

gies can result in acceptable data quality with hardy cell types such as cancer cells; however, normal cells

are more sensitive to stressors at the tissue and cell level during handling that can affect downstream

ambient contamination. Our results confirm the improvement of scRNA-seq data quality using cold prote-

ase dissociation by Adam et al.26 and demonstrate that contamination-focused metrics can explain how

known pre-encapsulation factors impact data quality.

Because cold protease dissociation on isolated crypts resulted in the optimal balance between cell recov-

ery and ambient contamination, we then assessed whether fixation immediately after dissociation would

further improve data quality. We surmised that fixation would contain and trap all RNA within a cell

and thus, will prevent ambient RNA from leaking into the surrounding buffer. We assessed two fixation

strategies previously employed in scRNA-seq studies, 1% light PFA fixation used previous in combinatorial

Table 1. Quality control metrics to assess the impact of pre-encapsulation protocols

MACS Enzyme

on Minced

Tissue

Cold Protease

on Minced

Tissue

MACS Enzyme

on Crypts

Collagenase

and DNase

on Crypts

Cold Protease

on Crypts 0.1X DSP 1% PFA

Contamination metrics

Empty Droplet Scaled

Slope Sum

0.82 0.78 0.84 0.80 0.62 0.53 0.67

Inverted Max Secant

Distance

0.78 0.83 0.86 0.79 0.68 0.65 0.67

Inverted Secant Line St.Dev. 0.44 0.45 0.46 0.44 0.40 0.40 0.40

Inverted AUC Percentage 0.70 0.76 0.80 0.72 0.58 0.54 0.56

Avg. Percent Counts

Ambient

27.06 22.34 15.06 18.14 15.52 10.48 7.11

Standard metrics

Total Number of Cells 730.00 295.00 349.00 249.00 1019.67 2049.00 313.00

Avg. Percent Counts

Mitochondria

9.86 5.06 3.18 5.83 4.03 2.05 0.57

Avg.Total Genes per Cell 990.96 1434.31 1989.21 2373.82 3682.52 3201.20 1685.39

Avg. Total Transcripts

per Cell

1860.70 3220.45 4281.85 8155.20 12509.90 8209.73 4308.89

AmbiQuant

Overall score 0.69 0.70 0.71 0.67 0.57 0.52 0.56
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indexing6 and 0.1X dithiobis(succinimidyl propionate) (DSP), a reversible crosslinker commonly used in

pulldown studies.27 Cells fixed with 1% PFA led to QC failure, mainly because of fixation-induced degra-

dation of RNA that disrupted library preparation (Figure S3M). However, cells fixed with 0.1X DSP led to

lower contamination metrics compared to fresh tissues, again with clear delineation between secretory

and absorptive cells with less ambient transcripts and non-specific Muc2 (Figures 3E and 3F and Table 1).

These results show that fixation can indeed contain RNA within cells and decrease ambient contamination

arising from cell death during dissociation which can also be visualized in the cell hopper (Figure 3G).

Microfluidic manipulations can affect cell death and subsequent ambient contamination in

downstream data

The reduction of ambient contamination by post-dissociation fixation suggests that cells undergo contin-

uous cell death after tissue handling. We also used live/dead cell sorting to maximize cell viability before

cell encapsulation, which surprisingly did not improve downstream data quality (Figures S4A–S4D). The

standard inDrops system loads cells into the encapsulation junction using tubing that are 0.38 mm in

diameter fed by a syringe pump. Thus, we next assessed whether cell traveling through tubing affects

downstream ambient contamination. No significant difference in cell viability was observed between cells

that traveled through 20 cmof the 0.38mm tubing and directly released from the syringe pump (Figure S4E),

indicating that off-chip time does not play a critical role. However, significantly improved results were ob-

tained when a custom alternative cell loading setup was used to load cells directly into the encapsulation

chip. This setup uses a fabricated pipette tip/syringe hybrid loading system with a minimum 0.51 mm diam-

eter (tip loading) to reduce cell travel time in narrowmicrofluidic tubing (Figure 4A). The modification led to

more viable cells as visualized in the cell hopper (Figure 4B), as well as significantly and consistently

reduced contamination and increased number of encapsulated cells (Figures 4C, 4D and S4F–S4N and

Table 2). Goblet cells were also more consistently recovered compared with standard loading

(Figures 4E and 4F). Application of tip loading was also able to improve data quality on colonic samples

prepared with minced tissue in place of crypt isolation (Table S2). Thus, we pinpointed that the major

contributor of ambient contamination and poor data quality in droplet-based scRNA-seq is a combination

of traveling through narrow tubing followed by microfluidic encapsulation.

To further demonstrate the differences in biological interpretation between higher quality versus lower

quality data, we performed functional enrichment analysis on cell populations identified in scRNA-seq da-

tasets generated from tip loading (higher quality) compared to standard (lower quality). The functional

terms enriched for secretory Goblet cells and absorptive colonocytes were similar between high- and

low-quality datasets. Goblet cells were enriched for O-linked glycosylation and unfolded protein response

functions, both of which are required for the production and secretion of mucins (Figures S4O and S4P).28,29

Colonocytes were enriched for functions fatty acid metabolism and monocarboxylic acid transport, both

key functions for reabsorption (Figures S4O and S4P).30 These cells were also enriched for hypoxia and

apoptosis, being that they are located at the luminal surface in contact with the anaerobic environment.31

Both high- and low-quality datasets were able to decipher the canonical functions of these cell types

because they contribute most to ambient contamination (goblet cells being sensitive to cell death and co-

lonocytes being most abundant) and, thus, their transcriptomes are not masked. However, functional

enrichment in other cell types showed stark differences between high- and low-quality datasets. For

instance, MYC and E2F transcriptional targets downstream of WNT signaling in colonic stem cells are de-

tected in the high-quality dataset but not detected in the low-quality dataset (Figures S4O and S4P).32

More strikingly, enteroendocrine cells, enriched for their canonical functions of hormone and neurotrans-

mitter secretion,33 and tuft cells, enriched for eicosanoid synthesis, immune signaling, and cytoskeletal

structure, were completely mischaracterized in low quality datasets (Figures 4G and 4H).34–36 These results

demonstrate how ambient contamination can adversely affect downstream functional analysis of scRNA-

seq data, especially for cell types that do not contribute to the contamination.

We also hypothesized that ambient contamination can be reduced post-cell death via microfluidic manip-

ulations. We utilized an alternative chip design (‘‘All Cell’’) that included another reservoir and inlet for dilu-

tion buffer, with the idea that ambient RNA in the loading buffer can be diluted out immediately before

cells are encapsulated into droplets (Figure 4I). Loading the suspension in a ratio of 4:1 (cell: dilution buffer)

did not improve data quality. Increasing the dilution ratio to �1:1 resulted in lower contamination metrics

(Figures 4C and S4F–S4N and Table 2). However, because of dilution of the cell suspension before encap-

sulation, the number of cells recovered was decreased (Figure S4K). These results demonstrate that
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microfluidics manipulation can improve data quality pre- and post-encapsulation by altering cell exposures

and diluting out ambient contamination, respectively. However, various tradeoffs, for instance, the number

of cells recovered, need to be acknowledged.

Application of contamination-focused metrics to evaluate single-cell/single-nuclei

dissociation protocols on different tissues

Although there is anecdotal knowledge in the field about the performance of sc-/sn-RNA-seq on various

tissues with different dissociation protocols, downstream data quality has not been evaluated in a compre-

hensive manner. Slyper et al. presented a systematic evaluation of various dissociation protocols on 8

cancer types, generating 40 sc-/sn-RNA-seq datasets.14 These datasets were generated within the same

laboratory, which minimized some systematic variations, but their performance has only been evaluated

using standard QC (such as number of genes/UMI per cell, cell type composition, etc.). We visualized stan-

dard and contamination metrics applied to the 40 datasets as a clustered heatmap and observed that

different metrics map onto different types (clusters) of datasets (Figure 5A). Although some covariation

was observed for some sets of metrics (for instance, Inv. Max.Secant Dist/Inv. Secant Line St. Dev./Inv.

AUC Percentage and Avg. Ambient UMI per cell/Avg. Pct Counts Ambient), other metrics are distinct.

For metrics that covary, the correlations were not perfect 1-to-1 correlations, indicating that they

Figure 4. Microfluidic manipulations can affect cell death and subsequent ambient contamination in downstream data

(A) Schematic of standard loading (top) and tip loading (bottom).

(B) Live hopper visualization of viable single cells from tip loading apparatus.

(C and D) Quantification of (C) AmbiQuant overall score, (D) percent counts ambient comparing various microfluidics manipulations. Mean with SEM as error

bars for n = 3 or 4 samples. *p < 0.05, **p < 0.01 by ANOVA followed Tukey post-test.

(E and F) UMAP overlay with percent counts ambient or Muc2 expression for (E) tip loading or (F) standard loading. Secretory (red) and absorptive (green)

lineages are outlined. Gene expression values on scale bars are Z-scores of normalized values described in STAR Methods.

(G and H) Comparison of functional enrichment analysis datasets derived from tip loading (higher data quality) and standard loading (lower data quality)

looking at (G) enteroendocrine (EE) and (H) Tuft (TUF) cells.

(I) Schematic for standard inDrops chip (left), and All Cell chip (right).
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capture slightly different information regarding data quality (Figures S5A–S5C). To leverage the orthog-

onal, non-covarying portions of the metrics to describe data quality, we performed principal component

analysis (PCA) to reduce dimensions followed by clustering and visualization in UMAP space (Figures 5A,

5B, and S5D). Samples organized into four clusters based on PCA-reduced metrics space, with one

high-quality and three lower-quality clusters. The three lower-quality clusters addressed different aspects

of data quality: cluster 1 possessed a decreased number of captured cells/nuclei, whereas cluster 3 showed

more ambient gene contribution (Figures 5A, 5B, and S5E–S5M). Cluster 2 displayed a high number of iden-

tified cells/nuclei, even though both contamination metrics and standard metrics indicated lower data

quality. We then examined different sample types and preparation conditions to elucidate factors that

contribute to different data quality in each cluster (Figures 5A and S5N–S5R). The high-quality cluster

was almost entirely made of single-cell samples, whereas single-nucleus samples were abundant in the

lower-quality clusters. (Figures 5A and S5O). This observation was further supported by plotting the

different metrics between single-cell versus single-nucleus datasets (Figure 5C). The contaminationmetrics

were universally higher for single-nucleus samples compared with single-cell samples, while the standard

metrics weremore variable.While the number of ambient genes and the percent ambient genes weremore

variable as explained previously, they trended unfavorably for snRNA-seq. The increased number of nuclei/

cells captured by snRNA-seq compared to scRNA-seq can be attributed to a harsher andmore comprehen-

sive nuclei isolation strategy tolerated by this approach, while mitochondrial percentages were lower, be-

ing that nuclei do not contain mitochondria. Total transcript counts of snRNA-seq datasets were signifi-

cantly lower than single-cell samples, because the cytoplasm was absent in such preparations. While the

standard metrics are variable, which can be attributed to various experimental factors outside of data qual-

ity (e.g., real depth, transcriptome size), our contamination metrics reliably indicated that single-nucleus

specimens have lower data quality than single-cell specimens. Single-nucleus isolation procedures

generate nuclei containing adhered ribosomes and RNA that can easily shed from the majority of nuclei

into the loading buffer to create ambient contamination.

Further inspection indicated that certain techniques such as single-cell Liberase and DNase (LD) and

CD45+ depletion (CD45n) were consistently yielding higher-quality data, whereas other protocols such

as single-cell C4 (Collagenase 4 and DNase I) resulted in more contaminated datasets (Figures 5A

and S5N). There were also differences in the buffers used in snRNA-seq approaches. For example, Tween

with salts and Tris (TST) was in cluster 1 and 3 with more mitochondrial and ambient contribution,

whereas Nonidet P40 and CHAPS with salts and Tris (NST and CST) generally presented in cluster 2

with higher number of nuclei identified. However, cancer type, tissue origin, or tissue collection proced-

ures scattered randomly amongst clusters, indicating no concordance with data quality (Figures 5A and

S5P–S5R). These results indicate that the cell/nuclei preparation protocol was the major factor impacting

data quality.

Table 2. Quality control metrics to assess the impact of post-dissociation parameters

0.38mm Standard

Tubing

0.51 mm Tip

Loading

4:1 All Cell

Chip Dilution

R1:1 All Cell

Chip Dilution

Contamination metrics

Empty Droplet Scaled Slope Sum 0.62 0.31 0.82 0.56

Inverted Max Secant Distance 0.68 0.46 0.83 0.56

Inverted Secant Line St.Dev. 0.40 0.34 0.45 0.36

Inverted AUC Percentage 0.58 0.34 0.76 0.42

Avg. Percent Counts Ambient 15.52 3.07 19.24 4.59

Standard metrics

Total Number of Cells 1019.67 2880.75 156.00 376.67

Avg. Percent Counts Mitochondria 4.03 4.25 3.54 4.06

Avg.Total Genes per Cell 3682.52 2803.87 1857.88 2475.67

Avg. Total Transcripts per Cell 12509.90 7702.99 5408.91 8095.85

AmbiQuant

Overall score 0.57 0.36 0.70 0.46
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DISCUSSION

Droplet-based scRNA-seq technology has become widely used for understanding tissue biology and het-

erogeneity. Large consortia have been established for human tissue profiling using scRNA-seq as a central

approach.37,38 However, several technical artifacts, such as ambient contamination, have not received suf-

ficient attention. The contamination problem is particularly problematic for healthy tissues compared to

cancer tissues, as differentiated cells, especially fragile secretory cells, are more prone to cell death. The

most prevalent mode for quality control of a scRNA-seq dataset is the ability to distinguish cell populations

via marker genes in some reduced dimension space. Other standard metrics such as feature counts,

transcript counts, and cells recovered in the data do not directly reveal ambient contamination. Although

canonical cell types may still be identified by highly expressed marker genes in a dataset heavily contami-

nated by ambient RNA, downstream analysis regarding gene programs, states, and pathways will be signif-

icantly confounded. For instance, ‘‘mixed lineage’’ cells may just be artifacts of ambient contamination and

Figure 5. Ambient contamination and quality control metrics reveal impact of intrinsic and extrinsic factors on data quality

(A) Heatmap of ambient contamination and standard QC metric scores with HTAPP datasets as columns grouped by Leiden clusters. Metrics are shown as

rows, where the first ten rows are individual metrics, whose colors correspond to the top left color bar. The last row is the AmbiQuant overall score for the

ambient contamination metrics, colored in red corresponding to the bottom left color bar. The Leiden cluster labels and labels of isolation technique,

technique and protocol combination, sample type, tissue origin, and cancer type are shown as color bars above the heatmap. Metric scores are normalized

between 0 and 1 for each row for visualization. Abbreviations - cell: scRNA-seq; nuclei: snRNA-seq; BTD: brain tumor dissociation; C4: collagenase 4 and

DNase I; LD: Liberase TM and DNase I; LE: Liberase TM, elastase and DNase I; Miltenyi Biotec human tumor dissociation; PDEC: pronase, dispase, elastase,

collagenases A and 4 and DNase I; Paipan: (cysteine protease); cd45n: CD45+ depletion; CST: CHAPS with salts and Tris; EZ: EZPrep; NST: Nonidet P40 with

salts and Tris; TST: Tween with salts and Tris; O-PDX1: orthotopic patient-derived xenograft; CLL: Chronic lymphocytic leukemia; MBC: Metastatic breast

cancer; NB: Neuroblastoma; NSCLC: Non-small cell lung carcinoma.

(B) Three-dimensional scatterplot of the first 3 principal components of the ambient contamination and standard QC metric score matrix colored by Leiden

cluster labels.

(C) Boxplot comparing the metric scores between single-cell and single-nucleus sequenced samples. Two-sided Mann-Whitney-Wilcoxon test performed

between single-cell and single-nuclei groups. **p < 0.01, ***p < 0.001,****p < 0.0001.
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not a genuine biological phenomenon.We also speculate that a large portion of batch effectmay arise from

ambient contamination whose composition is random for every set of experiment. Furthermore, ambient

contamination may even prevent cells from being effectively distinguished from empty droplets, resulting

in significant manual efforts in data filtering. Given the widespread use of scRNA-seq, we believe that end

users of publicly available data will benefit from having tools to assess data quality before their use. Quality

control of scRNA-seq experiments is essential formaintaining data integrity, optimizing experimental work-

flows, filtering out poor-quality data points, ensuring comparability and reproducibility across datasets, and

downstream analysis and biological interpretation. We provide quantitative metrics using post-alignment

counts data before filtering that reveal ambient contamination in scRNA-seq data. Our contamination met-

rics essentially capture the ability to identify signal (biological transcripts) from noise (ambient transcripts)

within a scRNA-seq experiment. AmbiQuant metrics can be easily applied across large cohorts of data to

assess overall quality of each dataset. Furthermore, these metrics augment current ambient decontamina-

tion algorithms to provide amore accurate picture of data quality. While we acknowledge that investigators

already perform substantial filtering on their datasets, we would like to highlight two important improve-

ments enabled by ourmetrics. First, conducting quality control and filtering on a per-dataset basis can intro-

duce dataset-specific bias because of the labor-intensive nature of the process. The variations in QC prac-

tices result from human involvement. Second, we emphasize the automatic generation of these metrics at

the cohort level rather than individual datasets. This approach allows for the efficient identification of rela-

tively low-quality datasetswithout the need for extensive filteringefforts. Aside fromambient contamination

that contributes to noise, our metrics can also identify experiments with excessively low transcript counts

that approach baseline signals. For instance, the same level of contamination may more adversely affect

cells with inherently small transcriptomes (e.g., lymphocytes) or single-nuclei runswhere cytoplasmic signals

are largely excluded, as compared to cells with large transcriptomes and high signals (e.g., epithelial cells).

However, we found that our metrics are resistant to variation in sequencing depths, whereas common met-

rics such as total UMI and ambient gene counts are not. This is because of the proportional scaling of both

signal reads and contamination reads with number of total reads. Cell number can affect data quality in a

different manner to ambient contamination if the starting material becomes so minute that the ability to

amplify cDNA and prepare sequencing-amenable libraries is affected. This would affect the number of

genes and transcripts detected stemming from reduced diversity and increased duplication level of the

sequencing library.

Several computational packages have been developed to address ambient contamination post-hoc.

EmptyDrops, dropkick, and DropletQC leverages the ambient contamination profile for automatically

identifying cells from empty droplets.18–20 DecontX, SoupX, and CellBender are tools for factoring out

the contribution of ambient RNA in the resultant counts data matrix.12,21,22 However, it cannot be assumed

that post-processing algorithms can be relied on to turn all poor-quality data to high-quality data, because

algorithms are built on certain assumptions that may not hold true in all experimental conditions. There-

fore, it is difficult to predict when and where these algorithms will fail (Figures S5S and S5T). Thus, we sur-

mise that addressing the problem experimentally on the front end will be the best strategy. We validated

our contamination metrics to show the well-known factor that cell death encountered in mechanical and

standard enzymatic dissociation results in ambient contamination. Leaked DNA/chromatin from dying cells

in the microfluidic encapsulation chip can lead to a cascade of cell death events, as nucleic acid material

can act as danger signals for TLR9 and cGAS.39 However, we also identified factors downstream of tissue

handling that contribute to ambient contamination. We have identified that the primary cause of this

contamination is the traversal of cells through narrow tubing in combination with microfluidic encapsula-

tion. We speculate two explanations for this phenomenon. First, traversal of cells in this fluidic setup

may induce an alternative cell state that sensitizes cells to death subsequently during the encapsulation

process. Second, the interaction between the cells and the tubing results in adhered cells and subsequent

DNA/chromatin release that promotes further cell death during the duration of encapsulation. The degree

of contamination also varies by protocol, with single nuclei sequencing possessing more severe ambient

contamination. Contamination can be partially resolved by fluidic manipulations that either reduces cell

death or dilutes out the contamination. Althoughmicrofluidics parameters cannot be easily altered in com-

mercial systems, there is still significant value in exploring and documenting these factors in affecting data

quality. It is worth noting that there are now alternative droplet-forming technologies, each employing

distinct methods for cell encapsulation. Developing an understanding of how these factors influence

data quality can empower users to make well-informed decisions regarding platform selection. These fac-

tors can also help improve performance of current commercial systems.
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A common misconception in the field is the efficacy of snRNA-seq in dealing with cell death and ambient

RNA. Nuclei are thought to be stiffer, smaller in size, and more resistant to mechanical damage. However,

resistance to death and ambient contamination are not necessarily related. For instance, attached RNA,

which can be sheared off and released into the buffer, is a potential source of contamination independent

of the integrity of the nuclei. There is support for this adhered RNA in the literature, as the nuclei-attached

ribosomes can be visualized14 and snRNA-seq data have been used for RNA Velocity that utilizes spliced

RNAs that are cytoplasmic but attached to nuclei.40 Although snRNA-seq makes single-cell analysis

possible for frozen and difficult-to-dissociate tissues,41 end users should balance these factors when

deciding whether to use cells or nuclei for their single-cell analysis.

Limitations of the study

Our metrics do not capture single-cell or cell population-specific data quality. Instead, our methods focus

on evaluating the overall data quality for each dataset. For instance, if rare cell populations are lysed but do

not contribute significantly to ambient contamination, our metrics will not identify those events. Local

events of contamination, such as a cell that lyses and immediately contributes ambient RNA to its neigh-

boring cell, will also not be identified if occurring at small scales. While systematic, our study did not

exhaustively test every technical factor that can affect data quality.
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KEY RESOURCES TABLE

REAGENT or RESOURCES SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Ethylenediaminetetraacetic acid (EDTA) 0.5M Corning 46-034-CI

Dithiothreitol (DTT) 1M Teknova D9750

Deoxyribonuclease I (Dnase I) Sigma-Aldrich DN25

Protease from Bacillus licheniformis Sigma-Aldrich P5380

Collagenase type 1 Calbiochem 234153

TrypLE� Express Enzyme (1X), no phenol red Gibco 12604-013

Paraformaldehye (PFA) 4% in PBS Thermo Scientific AAJ19943K2

Dimethyl sulfoxide (DMSO) Sigma-Aldrich D8418

dithiobis(succinimidyl propionate) (DSP) Thermo Scientific 22585

Optiprep Density Gradient Medium Sigma-Aldrich D1556

Y-27632 Sigma-Aldrich Y0503

Mineral Oil Sigma-Aldrich M5310

Barcoded Gel Beads - inDrops V2 capture sequence:

CGATGACGTAATACGACTCACTATAGGGATACCA

CCATGGCTCTTTCCCTACACGACGCTCTTCCGATCT

[Barcode 1] GAGTGATTGCTTGTGACGCCTT

[Barcode 2] [6bp UMI] T19V

1CellBio 10070

Oil Red O Alfa Aesar A12989

Deposited data

Optimization datasets This study GEO: GSE234620

K562 Klein et al.9 GEO: GSE65525

Fresh and Frozen Human Tumor sc-, sn-RNA-Seq Datasets Slyper et al.14 GEO: GSE140819

Critical commercial assays

MACS� Tumor Dissociation Kit, Mouse Miltenyi Biotech 130-096-730

MACS� Dead Cell Removal Kit Miltenyi Biotech 130-090-101

Experimental models: Organisms/strains

C57BL/6J The Jackson Laboratory 664

Software and algorithms

CellBender Fleming et al.22 https://github.com/broadinstitute/CellBender.git

dropkick Heiser et al.18 https://github.com/Ken-Lau-Lab/dropkick

QCPipe Chen et al.42 https://github.com/Ken-Lau-Lab/STAR_Protocol.git

Scanpy Wolf et al.43 https://github.com/theislab/scanpy

Anndata Virshup et al.44 https://github.com/scverse/anndata.git

Seaborn Seaborn https://github.com/mwaskom/seaborn

Matplotlib Matplotlib https://github.com/matplotlib/matplotlib

Scipy Virtanen et al.45 https://scipy.org/

Numpy Harris et al.46 https://numpy.org/

Pandas Pandas https://pandas.pydata.org/

Scikit-learn Pedregosa et al.47 https://github.com/scikit-learn/scikit-learn.git

AmbiQuant This study https://github.com/Ken-Lau-Lab/AmbiQuant
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ll
OPEN ACCESS

16 iScience 26, 107242, July 21, 2023

iScience
Article

https://github.com/broadinstitute/CellBender.git
https://github.com/Ken-Lau-Lab/dropkick
https://github.com/Ken-Lau-Lab/STAR_Protocol.git
https://github.com/theislab/scanpy
https://github.com/scverse/anndata.git
https://github.com/mwaskom/seaborn
https://github.com/matplotlib/matplotlib
https://scipy.org/
https://numpy.org/
https://pandas.pydata.org/
https://github.com/scikit-learn/scikit-learn.git
https://github.com/Ken-Lau-Lab/AmbiQuant


RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Ken Lau (ken.s.lau@vanderbilt.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d Single-cell RNA-seq data have been deposited at NCBI GEO and are publicly available as of the date of

publication with accession number GEO: GSE234620.

d Code generated in this work for the contamination metrics pipeline has been deposited at Github

and is publicly available as of the date of publication: https://github.com/Ken-Lau-Lab/AmbiQuant.git

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Animal experiments were performed under protocols approved by the Vanderbilt University Animal Care

and Use Committee and in accordance with NIH guidelines. All animals were housed 2 to 5 per cage in a

controlled environment in standard bedding with a standard 12-hour daylight cycle, cessation of light at

7 PM, and free access to standard chow diet and water. Experiments were conducted during the light cycle.

Wild-type mice (C57BL/6) of both sexes were euthanized in an approved fashion prior to dissection and

tissue harvesting. Mice were generally 6-8 weeks ago at euthanasia.

Continued

REAGENT or RESOURCES SOURCE IDENTIFIER

Other

UV Crosslinking oven Stratagene Stratalinker 1800

AccuSpin Micro 17R FisherBrand 13-100-675

Syringe pump New Era Pump Systems NE-300

Masterflex tubing Cole Parmer MFLX0640660

luer lock connectors Qosina 80410

Male luer adapter Idex P-836

Female luer adapter Idex P-835

Primer Loctite SF 770

Glue Loctite 4310

p200 Non-Filter Pipette tips Biotix M-0200-9TS

Cell Barcoding Chip Droplet Genomics DG-CBC2-80

Droplet Stabilization Oil Droplet Genomics DG-DSO-15

100ft Micro medical Tubing .015’’I.D. x 0.043’’O.D. Scientific Commodities BB31695-PE/2

100ft Micro medical Tubing .030’’I.D. x 0.048’’O.D. Scientific Commodities BB31695-PE/4

70mm PluriStrainer Mini Cell Strainers PluriSelect 43-10070-40

2mL Round bottom tubes FisherBrand 14-666-315

27G x 0.5" Hypodermic Needles BD 305109

20G x 1" Hypodermic Needles BD 305175

Gyromax Orbital Incubator Shaker Amerex 703

Nexcelom Cellometer Auto 2000 Nexcelom Bioscience 8001334, Rev E

ViaStain� AO/PI Staining Solutions Nexcelom Bioscience CS2-0106-5mL

Cellometer SD100 Counting Chambers Nexcelom Bioscience CHT4-SD100-014
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METHOD DETAILS

Droplet simulation

We used CellBender22 to simulate representative datasets of different quality. We generated synthetic da-

tasets by randomizing the number of real cells, number of droplets, number of transcripts from cells, over

distributions centered on 2000, 12000, and 5000 respectively (Figures S1A–S1C). In the simulation, a

droplet can either contain a cell with simulated biological UMIs or not, where the simulated biological

UMIs are generated based on expression profiles pulled from public 10x genomic datasets; the simulated

cells have cell-type clusters so that cells share similar biological UMI profile within a cluster and distinct pro-

files between clusters. All droplets contain some simulated ambient UMIs, defined as a weighted average

of total expression, as background. The difference in data quality is specified by the ambient UMI counts in

each dataset, which were set to between 5 to 4900 to simulate a range of ambient contamination levels. The

number of ambient UMI counts follows a log norm distribution as shown in Figure S1D. We chose the range

of 5-4900 ambient UMI because the number of biological UMIs are centered around 5000. A level of 5

ambient UMI per cell confers a�0.001 noise-to-signal ratio, which can be considered as an extremely ideal

quality in depicting reality. In contrast, a level of 4900 ambient UMI per cell will lead to a 0.98 noise-to-signal

ratio, which can be a severe QC failure, beyond which the dataset should strictly be prohibited from further

analysis. n=1000 simulations were performed for each ambient level. The parameters of the representative

low- and high- contamination datasets in Figures 1A–1D and S1E–S1J are drawn from the same number of

real cells, number of droplets, and number of transcripts distributions above, with ambient UMI centered

around 100 and 4000 respectively.

Sequencing depth simulation

One dataset was simulated for each ambient of the ten ambient levels ranging from 500 to 4900, where

ambient levels were the averaged ambient UMI per cell. The simulation was performed using

CellBender22 as described in the Droplet Simulation section. For each simulated dataset, relative

sequencing depth are simulated by randomly downsampling UMI counts from the count matrix to fractions

(0.2, 0.4, 0.6, 0.8) of the original dataset’s total UMI counts using scanpy.pp.downsample_counts() function

with replacement.

Mechanical mincing of tissue

The HTAPP protocol was followed (https://doi.org/10.17504/protocols.io.busfnwbn). Briefly, tissues were

minced into 1-2mm pieces using a scalpel followed by enzymatic dissociation outlined below.

Crypt isolation by chelation

Colonic crypt isolation was performed.48 Briefly, isolated colonic tissues were chelated in buffer consisting

of 3 mM EDTA (Corning) and 0.5mM DTT (Teknova) in 1X Dulbecco’s Buffered Saline (DPBS) for 1 hour and

15 minutes rotating at 4�C. The tissue was then transferred to 1X DPBS and shaken rigorously for 2 minutes

to separate the colonic epithelium from the tissue. After transfer of crypts to a new tube, shaking was

repeated 3X to collect remaining crypts. Crypts were washed in DPBS and divided among various enzymic

cocktails and conditions for dissociation.

Enzymatic single-cell dissociations

Minced tissues or isolated crypts prepared above were dissociated with various enzymatic protocols (cold

protease, MACS enzyme, or DNase1/collagenase cocktail). For dissociation with the cold protease cock-

tail, tissues were incubated with cold protease (Sigma-Aldrich) (5mg/ml) and Dnase (Sigma-Aldrich)

(2.5mg/ml) on a rotator (�8 rpm) for 25 minutes at 4�C. For enzymatic digestion using the cocktail found

in MACs Mouse Tumor dissociation kit (Miltenyi Biotech), tissues were incubated 20 minutes with gentle

orbital shaking (�200RPM) at 37�C. For dissociation using Collagenase (2mg/ml) with Dnase (2.5mg/ml),

tissues were incubated for 20minutes at 37�C static with trituration at 10-minute intervals.34 After enzymatic

incubations, gentle pipetting with a wide bore p1000 pipette was used to mechanically dissociate tissues,

resulting in visibly turbid cell suspensions. After dissociation, the digestion enzyme mixtures were

quenched with 2% FBS, and the suspensions were passed through a 70mm filter (Pluriselect) to generate

single cells. A series of washes were performed to obtain an optimal single-cell suspension to minimize

debris.
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For stomach corpus, the mucosa was scrapped off using cell scrapers and incubated in pre-warmed diges-

tion buffer (1mg/mL Collagenase, 2.5mg/ml DNAse) on a 37�C shaker at 220 rpm for 30 minutes. After

quenching and filtering, the glands were pelleted at 300 g for 5 minutes and dissociated further in

TrypLE (Gibco) and Y-27632 at 37�C for 5 min, and was quenched and spun down at 500g for an additional

5 minutes thereafter prior to encapsulation.

Fixation

Single-cell suspensions were fixed with 1% paraformaldehyde (PFA) (Thermo Scientific) or 0.1X DSP

(Thermo Scientific). DSP was solubilized in 100% DMSO (Sigma-Aldrich) at a final concentration of

25 mg/mL to form a ‘‘253’’ stock. 1X DSP solution was prepared by diluting the 25X stock dropwise in

1X DPBS with 2 mM Mg 2+ while being continually vortexed and then filtered through a 0.2-mm polyether-

sulfone membrane syringe filter.27 This solution was then added dropwise to single-cell suspensions to

achieve the final concentration. Samples were incubated on a rotating platform for 30minutes at room tem-

perature. Residual DSP was then quenched with Tris-HCl added to a final concentration of 20 mM. Reverse

cross-linking was conducted by reducing the disulfide bonds of the DSP fixative using the 10mM DTT pre-

sent in the standard inDrops RT/Lysis buffer.

inDrops encapsulation

The standard inDrops protocol served as the reference scRNA-seq protocol.49 inDrops scRNA-seq utilizes

CEL-Seq in preparation for sequencing and is summarized as follows: (1) reverse transcription (RT), (2) ExoI

nuclease digestion, (3) SPRI purification (SPRIP), (4) single strand synthesis, (5) SPRIP, (6) T7 in vitro transcrip-

tion linear amplification, (7) SPRIP, (8) RNA fragmentation, (9) SPRIP, (10) primer ligation, (11) RT, and (12)

library enrichment PCR. We used the TruDrop library structure for sequencing on NovaSeq 6000.25 Align-

ment of reads and barcode deconvolution to generate count matrices was performed using the DropEst

pipeline.50 The inDrops platform was customized for gut tissues,32,51 and further modifications were

made as documented below. Standard loading was performed with assemblies made using 0.38 mm inner

diameter tubing 20 cm in length (Scientific Commodities) and fed with a syringe pump. Wide bore loading

was performed similarly but with 0.76 mm inner diameter tubing (Scientific Commodities). For

enhanced loading, luer lock connectors (Qosina) were spray coated with primer (Loctite) and allowed to

dry for 10 minutes in a fume hood. After drying, connectors were glued to pipette tips (Biotix) using UV

curing glue (Loctite) and cured using a UV Crosslinker (Stratalinker). Cells were then loaded into the tip as-

sembly, locked using male to female luer adaptors (Idex) to a syringe assembly made using a 30 cm length

of tubing (Cole-Parmer), primed with mineral oil (Sigma-Aldrich) colored with oil red (Alfa Aesar), and con-

nected to a syringe pump. Redmineral oil then acted as a void volume to push cells directly into the inDrops

encapsulation chip.

Dilution microfluidic encapsulation chip

Encapsulations that incorporate dilutions were performed using the ‘‘All Cell’’ chip design as shown in

Figure 4I. The chip design was nearly identical to the standard inDrops chip but featured an additional inlet

connection to the cell channel for diluting cells immediately prior to entering the encapsulation junction. A

syringe pump (New Era Pump Systems) was used to push DPBS into the chip prior to droplet partitioning

through this additional channel. Flow rates for cell and dilution buffers were adjusted to total a rate match-

ing that of the reverse transcriptase, such that enzyme and buffer conditions in the final droplets were kept

constant.

Cell viability enrichment assay

Cells were enriched for viability using the MACS dead cell removal kit (Miltenyi). Cells were incubated with

para-magnetic microbeads to label dead and dying cells, then passed through amagnetic column to retain

the labeled cells, while yielding a flowthrough of viability enriched cells.

Pre-encapsulation tubing comparison

Mouse colon tissue underwent the crypts isolation chelation protocol followed by cold protease enzymatic

dissociation protocol. Single cells were then loaded into syringes and passed through either the standard

0.38mm 20 cm tubing or directly from the syringe into Eppendorf tubes in pairwise fashion. Run times

remained consistent for each pair. Cells were then mixed in a 1:1 ratio with AO/PI Viability solution then
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loaded into the Cellometer disposable counting chamber slide and placed into the Cellometer for subse-

quent counting.

Data analysis

Data processing

To apply the ambient contamination metrics on a dataset, the first step was to read-in raw gene count data

and scale the dataset barcode number relative to the expected real cell number to enable comparison be-

tween samples with different numbers of encapsulated cells and empty droplets. The starting point was an

unfiltered count matrix that can be of various formats (h5ad, mtx, etc.). An inflection curve was computed

using the find_inflection() function from QCPipe.qc module42 where a cumulative sum curve of total tran-

script counts vs barcodes ranked by their transcript counts would be drawn, and the first inflection point of

the curve would be used as an estimated real cell number for the sample. This estimation was based on the

rationale that, when ambient RNA contamination is not comparable to the true biological transcript counts,

droplets capturing real cells contribute to distinctly larger increments in the cumulative count value. In

contrast, empty droplets contribute less, so the first inflection point could be a position to approximate

captured real cells versus empty droplets. Alternatively, an estimated real cell number could be manually

entered in our function as an argument if an expected real cell number for the sample was known. After

determining the estimated real cell number, barcodes would be sorted based on their total transcript

counts; a threshold would be set as amultiple of the estimated cell number to retain only the high transcript

count barcodes beyond the threshold. Through observations of samples used in this study, the multiple

was set to 4 as default. This data-processing step could be performed using the cut_off_h5ad() or cut_off_

from_dropset() functions from our data_processing python module.

Geometric quantification of ambient contamination from the cumulative transcript count curve

Our ambient contamination metric calculation integrated geometric quantifications of the cumulative tran-

scription count curve (Figure 1A). As the total barcode number was set to a multiple of the estimated real

cell number, the curve of a high-quality dataset was expected to raise with steep slope in the first portion

( 1
chosen multiple), then turn to a relatively flat slope. This shape could cause the curve to deviate notably away

from the diagonal linking the final cumulative count and the origin initially (Figure 1A) then gradually get

close to the diagonal. However, in low quality cases where ambient RNA molecules keep contributing to

high increments of the cumulative count throughout the dataset, the cumulative count curve’s slope would

have a low variance, and the curve would not deviate far from the diagonal substantially. Therefore, the

magnitude of the curve’s deviation from the diagonal line and the variance within the distances between

the curve and the diagonal line are indicators of data quality. We computed the vertical distances between

the cumulative sum curve and the diagonal for each barcode, which we defined as secant lines whose

maximal value and standard deviation were then calculated to inform data quality. To establish quantitative

indicators positively correlated with ambient levels, we inverted the maximal secant distance and the stan-

dard deviation by the subtractions:

Inverted max: secant distance = 1 � Max:secant distance

Inverted secant line st: dev: = 0:5 � secant line st: dev

The rationale was that the cumulative transcript count curve was normalized to a range of 0 to 1, so all

secant lines’ length should fall between this range. In extreme cases of secant lines with a maximal distance

close to one, a minimal distance close to 0, and a minimal sample size (eg. =3), the standard deviation did

not go beyond 0.5 and will always be positive. We used the inverted standard deviation and maximal value

of the secant lines as two metrics.

In addition to the secant line distances, as we have described above, a high-quality dataset has a cumula-

tive count curve resembling a rectangular hyperbola with a sharp incline and then flattening of the curve. In

contrast, the lack of deviation from the diagonal line for low quality datasets makes the curve resemble a

straight line. We quantified the shape differences by first computing the minimal rectangle area circum-

scribing the cumulative count curve:

Min: rectangle area = Num: of barcodes3Max: cumulative count
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We then computed the area under the cumulative count curve (AUC) using sklearn.metrics.auc() function.

Taking the ratio between the area under the cumulative count curve and the area of the minimal rectangle

would give a percentage value.

AUC percentage =
Area under cumsum curve

Min: rectangle area

We inverted the AUC percentage by quantify the area above the curve within the minimal rectangle:

Inverted AUC percentage = 23
�
1 � AUC percentage

�

A higher inverted AUC percentage value indicates the closeness of the area to the triangle formed from x,y

axes and the diagonal, thus high contamination. Therefore, inverted AUC percentage was used as one of

our ambient contamination metrics. Steps to compute metrics before inversion were encapsulated in our

plot_quality_score.plot_secant_line() function. Alternatively, numerical results alone could be computed

from our calculation.secant_metrics() function.

Statistical quantification of ambient contamination from the distribution of the slope of the
cumulative transcript count curve

As described earlier, high quality datasets have the pattern of a sharp incline followed by flattening of their

cumulative transcript count curves, whereas low quality datasets have curves with small change in slopes.

The slope difference can be a continuous value informing the quality in a quantitative way. We therefore

inspected the slope distribution (Figures S1I and S1J) by generating a histogram on the slopes at each bar-

code for a sample (Figures S1G and S1H), using the matplotlib.axes.Axes.hist() function, fixing the param-

eter of number of bins at 100 for consistency. We expected to see a bimodal distribution with a peak

contributed by low-slope barcodes followed by a peak contributed by high-slope barcodes, and a higher

density at high slope region for high-quality datasets than low-quality datasets was expected. However,

even though the two modes could be observed on histograms of high-quality datasets (Figure S1I), it

was hard to compare the density values because most droplets in the dataset were expected to be empty

due to the way we cut-off the dataset as described above, rendering a notably heavier mass contributed by

low-slope barcodes than high-slope barcodes.

To emphasize the density contribution of the high slope barcodes, we transformed the slope distribution to

scale up the weights of high-slope barcodes. We performed the transformation by getting each histogram

bin’s mean slope value as the x-value for the transformed plot and each bin’s frequency value multiplied by

the bin’s mean slope as the y-values for the transformed plot (Figure 1B). In this way, the contribution of

distribution density from high-slope barcodes were scaled up based on their slope value, and we were

able to quantify the scaled density contributed by these high-slope barcodes as one metric.

To determine slopes that are likely contributed by real cells rather than empty droplets, we set a threshold

to have a binary assignment of a barcode to be either real cell or empty droplet. The threshold was calcu-

lated as:

Threshold of slopes = median
�
slopes

�
+ std

�
slopes

�

Barcodes with slopes higher than the threshold will be identified as real cells, whereas slopes lower than the

threshold will be identified as empty barcodes. The rationale behind the calculation of this threshold is due

to the slope distribution curve having approximately a bimodal Gaussian distribution (Figure 1B). The ma-

jority of slopes (contributed by empty barcodes) lie within the first mode whereas a minority of slopes

(contributed by cells) lie within the second mode. The distribution of slopes will always adopt a major

and minor peak due to our scaling scheme to always include a multiple of barcodes (4X) of estimated cells

in the analysis. Thus, we estimate the center of the low-slope peak as the median of all slopes because the

majority of the slopes are captured by the first peak (empty barcodes), with lower percentage of data

outside the peak (cells), so we can treat the entire distribution as a single gaussian of the first peak but

with outliers that skew the distribution. In this scenario, the median value is a good estimator to reduce

the bias caused by the outliers. Using the median + 1 standard deviation captures �84% of the data on

the left of the cut-off theoretically for a gaussian curve, which is a sufficient threshold to exclude themajority

of low-slope datapoints but still leniently keep the datapoints with high slopes. The calculation of this

threshold is approximate, but it is notably computationally efficient, and we also verify its robustness

with simulation.
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We transformed the scaled slope distribution so that the area under the curve summed up to one. Summing

the y-values contributed by barcodes beyond or below the threshold gave us the scaled slope contribution

from potential real cells and empty droplet respectively. We used the scaled slope sum from the low-slope

region (potential empty droplet) as another metric whose value would increase with increased ambient

level. Histograms were generated by our plot_quality_score.plot_slope() function, whose return value

could be passed to our plot_quality_score. plot_freq_weighted_slope() to generate the scaled slope

distribution plot. Alternatively, numerical results alone could be computed from the calculation.freq_

slope_area_ratio() function.

Ambient gene quantification

Ambient genes were defined as genes that have a dropout rate of less than 2% in this study. We defined

ambient RNAs as those transcripts that contaminate all droplets; that is, they should be present in 100% of

cells and empty barcodes (dropout rate = 0%). However, given the sensitivity limitation of scRNA-seq, the

probability of detecting a gene when it is present in a droplet follows binomial sampling statistics and is

proportional to its expression level. A high expressing gene (those that have > 45 transcripts per droplet)

can be detected �95% (5% dropout rate) of time.9 Since ambient transcript count varies depending on the

level of contamination, we set a slightly stricter threshold (2% dropout rate) so that only highly prevalent

transcripts are defined as ambient. The dropout rate is also a parameter in the pipeline that end-users

can vary. Percentage counts of ambient genes were computed with scanpy.pp.calulate_qc_metrics() func-

tion, with the specific argument ‘qc_vars = [‘‘ambient’’]’, where ‘ambient’ was an anndata object’s obs var-

iable composed of a list of boolean labels identifying the ambient genes among all genes. Histograms of

the distribution of percentage counts of ambient genes were made with seaborn.histplot() function.

Overall score calculation

To assess the contribution of each ambient contamination metrics in depicting the ambient contamination

degree of a given dataset, we performed a principal component analysis (PCA) on metric scores of simu-

lated data (Droplet Simulation Section) with n = 10,000 datasets and 6 features (empty droplet slope sum,

inverted max. secant line distance, inverted secant line stdev, inverted AUC percentage, number of

ambient genes, averaged percent counts ambient).

Scikit-learn package was used to perform the PCA.47 We transformed the score matrix using the fit_trans-

form() function called from a StandardScaler object from the sklearn.prepocessing module. A PCA object

from the sklearn.decomposition module was initiated with the parameter n_components=6. PCA was

computed using the fit_transform() function called from the PCA object with the transformed score matrix

as the input.

Based on the result of the PCA, we calculated the overall score as a weighted linear combination of the

empty droplet slope sum, inverted max. secant line distance, transformed inverted secant line stdev, in-

verted AUC percentage, and averaged percent counts ambient. The inverted secant line st. dev. values

are transformed by doubling the original values so that all metric scores used in calculating the overall

score are bounded between 0 and 1.

Standard quality control metrics calculation

We followed the steps of42 to filter barcodes based on dropkick scores, standard QC information and bio-

logical markers. Total transcript counts, total counts of gene detected and percentage counts of mitochon-

drial genes were calculated with scanpy.pp.calulate_qc_metrics() function on datasets after filtering and

were used as the standard QC metrics in our study.

UMAP visualization

For single-cell RNA-seq data, we normalized raw count data by median library size, log-like transformed

with Arcsinh, and Z- score standardized per gene using scanpy and numpy functions. For the metrics scores

matrix, we performed the Arcsinh transformation and Z-score standardization with scanpy and numpy func-

tions. UMAP coordinates were calculated after PCA and KNN clustering on the matrices as described in42

and UMAPs were visualized with scanpy.pl.umap() function.
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Heatmap and 3-D scatterplot visualization

The heatmap was generated using seaborn.clustermap() function with the input of matrix of the 6 ambient

contaminationmetric and the 4 standardQCmetric scores as rows and the HTAPP samples as columns. The

matrix was sorted by samples’ Leiden cluster labels and then by sequencing technique & protocol labels

before making the heatmap; ’col_cluster’ and ’row_cluster’ were set to false as the function’s input. Meta-

data of sequencing techniques, sequencing technniques & protocols, sample types, cell origins and cancer

types were input as a list of mapped colors as the col_colors argument to the function. The 3-D scatter plot

was generated with matplotlib.Axes.scatter() function; input x,y,z coordinates were the 3 principal compo-

nents of the HTAPP sample’s ambient contamination and standard QC metric scores after Principal

Component Analysis (PCA). PCA was performed using scanpy.tl.pca() function with svd_solver = ’arpack’

argument after the metric score matrix was archsinh transformed and scaled to unit variance and 0 mean

using numpy and scanpy functions.

QUANTIFICATION AND STATISTICAL ANALYSIS

p-values from two-sided, unpaired t-test and One-way ANOVA, Tukey post-test. p-values below 0.05 are

considered statistically significant.
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