表 2.
四种模型在测试集上的性能表现
Performance of the 4 models on the test set
Indicator | LR | Naive bayes | RF | EBM |
LR: Logistic regression; RF: Random forest; EBM: Explainable boosting machine; AUC: Area under the subject's working characteristic curve. | ||||
AUC (95%CI) | 0.807 (0.773-0.836) | 0.785 (0.755-0.813) | 0.838 (0.810-0.870) | 0.857 (0.831-0.887) |
Accuracy | 0.789 | 0.747 | 0.787 | 0.808 |
Precision | 0.671 | 0.580 | 0.734 | 0.733 |
Recall | 0.766 | 0.471 | 0.420 | 0.536 |
F1-score | 0.488 | 0.520 | 0.535 | 0.619 |
Brier score | 0.158 | 0.200 | 0.148 | 0.135 |