Skip to main content
. 2023 Jul 10;25:e47612. doi: 10.2196/47612

Table 3.

Mean (SD) data of the cross-validation results.

Model Sensitivity Specificity Accuracy Balanced accuracy AUROCa
XGBoostb 0.8662 (0.006) 0.7655 (0.014) 0.8498 (0.004) 0.8309 (0.006) 0.9061 (0.005)
AdaBoostc 0.8546 (0.005) 0.8206 (0.012) 0.8467 (0.005) 0.8377 (0.006) 0.9076 (0.006)
GBMd 0.9110 (0.005) 0.7215 (0.001) 0.8669 (0.002) 0.8162 (0.004) 0.9114 (0.002)
LGBMe 0.8927 (0.007) 0.7462 (0.014) 0.8587 (0.002) 0.8194 (0.003) 0.083 (0.004)
RFf 0.8992 (0.006) 0.7490 (0.011) 0.8643 (0.003) 0.8241 (0.004) 0.9097 (0.002)
LRg 0.8551 (0.009) 0.8171 (0.005) 0.8259 (0.002) 0.8361 (0.003) 0.9089 (0.004)
SVMh 0.8370 (0.003) 0.8456 (0.002) 0.8390 (0.004) 0.8413 (0.009) 0.9172 (0.004)

aAUROC: area under receiver operating characteristic.

bXGBoost: extreme gradient boosting.

cAdaBoost: adaptive boosting.

dGBM: gradient boosting machine.

eLGBM: light gradient boosting machine.

fRF: random forest.

gLR: logistic regression.

hSVM: support vector machine.