Skip to main content
. 2023 Jul 24;23:134. doi: 10.1186/s12911-023-02242-z

Table 2.

Performance of risk prediction models in the test cohort

Algorithms Overall Discrimination Calibration Clinical Usefulness
Brier MCC AUC (95%CI) Hosmer–Lemeshow χ2 ( p value) Net benefit at threshold of 5%
PCE (White) 0.045 0.186 0.777 (0.733–0.821) 37.3 (p < 0.01) 0.013
China-PAR 0.043 0.191 0.780 (0.737–0.822) 67.6 (p < 0.001) 0.016
RePCE (White) 0.057 0.194 0.779 (0.734–0.825) 126.6 (p < 0.001) 0.016
ReChina-PAR 0.043 0.193 0.780 (0.737–0.822) 18.6 (p < 0.05) 0.017
ANN 0.041 0.218 0.800 (0.759–0.838) 9.1 (p = 0.33) 0.017
RF 0.042 0.181 0.759 (0.713–0.804) 12.6 (p = 0.13) 0.011
GBM 0.042 0.193 0.774 (0.727–0.820) 12.1 (p = 0.15) 0.013
KNN 0.042 0.175 0.767 (0.723–0.811) 34.7 (p < 0.01) 0.015
Adaboost 0.051 0.163 0.727 (0.679–0.775) 136.4 (p < 0.001) 0.010
SVM 0.043 0.145 0.697 (0.642–0.752) 4.0 (p = 0.86) 0.009
Catboost 0.041 0.206 0.787 (0.745–0.830) 10.2 (p = 0.25) 0.015

Abbreviations: ASCVD atherosclerotic cardiovascular disease, CI confidence interval, MCC Matthews correlation coefficient, AUC area under the receiver operating characteristic curve, PCE Pooled Cohort Equations, China-PAR Prediction for ASCVD Risk in China, RePCE Recalibrated PCE, ReChina-PAR Recalibrated China-PAR, ANN Artificial Neural Network, RF Random Forest, GBM Gradient Boosting Machine, KNN K Nearest Neighbor, Adaboost Adaptive Boosting, SVM Support Vector Machine, Catboost Categorical Boosting