Skip to main content
. 2023 Jul 24;23:134. doi: 10.1186/s12911-023-02242-z

Table 3.

Predictor variables in ASCVD models

Rank ANN-based ASCVD prediction model One minus AUC after permutations
1 Age 0.6458121
2 SBP 0.7290980
3 V2.R Area 0.7464859
4 V2.Max R Amplitude 0.7522701
5 I.T Area (Full) 0.7565553
6 V2.S Area 0.7570991
7 V4.Max S Amplitude 0.7575463
8 V3.QRS Area 0.7575922
9 CR 0.7578144
10 I.T Duration 0.7582132
11 V6.T Area (Full) 0.7585335
12 V6.T Area 0.7590182
13 eGFR 0.7591497
14 I.T Peak Amplitude 0.7594988
15 GLU 0.7600205
16 V2.Max S Amplitude 0.7602828
17 V3.Max S Amplitude 0.7606117
18 V2.QRS Area 0.7607344
19 V6.Max R Amplitude 0.7615041
20 Peak E Wave Velocity 0.7618305
21 WBC 0.7618512
22 UA 0.7618903
23 I.P Area (Full) 0.7619013
24 aVR.T Area 0.7619031
25 DBP 0.7619409
26 V1.QRS Area 0.7619643
27 V3.S Area 0.7620318
28 I.T Area 0.7622241
29 V2.T Duration 0.7623373
30 V6.QRS Area 0.7628234

The importance of each feature was quantified using the permutation feature importance method which measures the importance of a feature by calculating the decrease in the model’s performance (area under the ROC curve) after permuting its values. The higher their values, the more important the feature is. Features are sorted according to permutation importance

Abbreviations: ANN Artificial Neural Network, SBP Systolic Blood Pressure, CR creatinine, eGFR Estimated Glomerular Filtration Rate, GLU glucose, WBC White Blood Cell, UA Uric Acid, DBP Diastolic Blood Pressure